用户名: 密码: 验证码:
基于激光微纳加工的表面界面调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光微纳加工作为一种具有广阔应用前景的制备技术,其加工过程简单、制备精度非常高、可加工的材料广泛、并实现复杂结构的微纳制备,目前激光微纳加工广泛应用于微光学器件、微结构、微机械、微焊接、仿生表面等诸多领域。本论文基于激光与物质表面及界面相互作用原理,系统的研究了多光束激光干涉和激光微焊接这两种无掩膜激光加工工艺,同时结合材料自身的属性和优势,制备了高精度的大面积仿生疏水表面,如控制实验参数实现不同结构的各向异性表面;通过表面低表面能的修饰,实现各向异性仿生生物表面;同时我们对表面进行曲率调谐,实现各向同性与各向异性表面之间的可逆转换。利用飞秒激光的脉冲能量高特点,我们对玻璃界面进行高效率的玻璃微焊接,并利用双脉冲不同时间到达玻璃界面能充分诱导自由电子产生原理,实现了高效率的玻璃微焊接;并系统分析研究了双脉冲照射玻璃界面,相比较传统的单脉冲照射,它能获得高效率焊接的物理机制,为其在工业化进一步应用奠定了良好的基础。主要研究内容如下:
     利用无掩膜激光干涉技术,首次提出改进的四光束干涉技术,在涂有光刻胶的玻璃衬底上进行一次或多次干涉,形成周期性的光栅阵列。精确调节实验参数如控制光刻胶的厚度、相干光束的夹角大小、紫外曝光时间、不同光束的功率比,制备出不同周期,不同高度的二级结构,实现两个方向可调节的各向异性疏水表面。同时可以根据理论计算,反向定量地设计出所需要各向异性疏水表面。最后受自然界生物低表面能启发,我们在设计出的各向异性表面修饰了低表面能的氟硅烷物质,使得水滴在水平方向的接触角112o±2o增大到145o±1o,垂直方向的接触角从120o±3o增大到150o±2o。对于普通的一级沟槽结构,即使通过低表面能修饰,材料本身的性质决定了水平方向的接触角也仅仅只有110o左右,而自然界生物表面水平、垂直方向接触角约为146o±2o/153o±3o,实现了仿生表面设计。
     超疏水表面与超亲水表面目前已经实现可逆相互转化,但是在几种超疏态之间的可逆调谐目前还未有报导。我们首次提出了介于几种超疏态之间的可逆调谐,首先经过两次双光束干涉,制备出井字行光栅结构,通过控制旋涂光刻胶的厚度、曝光时间制备出不同深度的模板结构,此种制备方法操作简单,大面积制备,结构稳定,可以重复利用。然后通过软复制法,将PDMS聚合物涂于模板表面,控制后烘时间,制备了不同参数的PDMS柱状弹性衬底。我们沿着衬底的一个方向施加曲率,由于曲率会改变水滴与柱之间的接触面积,增大粗糙因子,从而增大接触角的大小和表面粘力的降低。随着曲率的改变,水滴沿着曲率方向的接触角由150o增加到160o,而沿着水平方向的接触角基本保持在150o不变,表面水滴粘力也由开始的滞留变成滚动,随着施加力的撤销,这种弹性薄膜又会慢慢恢复原位,水滴在两方向的接触角又重现150o/150o,实现了生物相容、各向同性表面与各向异性表面之间的可逆调谐。
     首次提出用飞秒激光双脉冲照射玻璃界面,对玻璃进行焊接的一种新技术,我们发现激光焊接玻璃力的大小和不同延时的到达时间有依赖关系,继而我们增加延时时间,最大延时增加到80ns,通过测量热熔区的大小以及力与两脉冲之间的关系,系统的调研了高效率的玻璃微焊接。我们发现当延时从0变化到12.5ps时,热熔区的大小快速增大,此后热熔区快速下降一直到延时30ps,同时在延时100ps时会有个次高峰,直到延时变化到40ns,热熔区的大小仍然比单脉冲照射的热熔区大,当延时增大到60ns时,才会小于单脉冲照射的热熔区。而焊接力和延时的关系与热熔区的变化一致。我们讨论了其潜在的物理机制,初始的电子被第一束脉冲激发,继而吸收第二束脉冲再激发。也就是说,第一束脉冲诱导多光子电离或隧道电离,第二束脉冲诱导雪崩电离或电子加热,或者第二束脉冲被局域态所吸收。我们通过泵浦探测技术分析了超快激光脉冲在玻璃力的瞬态吸收。这些技术为超快激光微焊接技术提供了新视野,同时为将来超快激光应用在其它领域提供了一种可能。
     进一步我们系统地从实验和理论上研究了第二脉冲的吸收机制,分析了飞秒激光双脉冲照射光敏玻璃获得高效率微焊接的原因。第一束脉冲照射后,测量了第一束脉冲诱发后第二束脉冲在不同延时不同功率下的瞬态吸收地变化,结果显示了延时是否在0-30ps(时区I)之间还是在30-几纳秒(时区II)之间。通过计算电子运动过程中的速率方程,得到自由电子在时区I中激发和弛豫时间分别是104.2ps和714.3ps,在这个时间区域内,主要是自由电子通过单光子吸收第二脉冲,从而导致了高效率的玻璃微焊接,而在时间区域II中,局域态上大约46%的第二脉冲通过单光子被吸收,相比较传统单脉冲照射,我们证实了双脉冲照射能实现高的焊接力。
     由于石英玻璃具有良好的光学性能,在工业和光学领域都有着其广泛的应用,同时我们研究了超快激光双脉冲对石英的玻璃微焊接,实验中,我们在0.5ps附近获得最大的激光焊接力,当延时超过0.5ps时,我们发现激光焊接力又会快速下降,甚至在1ps左右焊接力就低于传统的单脉冲焊接力,而延时在1ps到200ps之间,激光焊接力基本达到饱和。这种物理现象不同与光敏玻璃中双脉冲微焊接,更有利于帮助人们理解玻璃微焊接在各种材质中的物理机制。综上所述,本论文主要通过激光多光束干涉,快速制备大面积仿生超疏水表面,并实现功能性的应用。同时通过对弹性表面施加力调谐,实现各向同性表面向各向异性表面之间的变化,且这种变化是可逆的。最后研究了超快激光双脉冲玻璃微焊接,分析高效率微焊接的原因并讨论焊接的物理机制,研究了双脉冲在石英玻璃中的焊接力变化,为超快激光焊接应用于各个材质奠定基础。
Laser micro/nanofabrication, as one of promising techniques; have showed simpleprocess, high accuracy, excellent compatibility with a wide range of materials, and strongcapability for the preparation of complex micro/nanostructures. Laser micro-nanofabrication is currently widely used in micro-optics devices, micro-structure,micromachining, micro-welding, biomimetic surfaces and other areas. In this paper, basedon the interaction theory between laser and material (surface and interface), a systematicstudy of two maskless laser processing technology——multi-beam laser interferometerand laser micro-welding was demonstrated. We combined its own advantages with thematerial, and prepared high-precision large-area hydrophobic surfaces, for example,controlled anisotropic surfaces by different experimental parameters; anisotropicbiomimetic surface by low surface energy modification; reversible tunable surface betweenisotropy and anisotropy by curvature change. By take advantage of high energyfemtosecond laser pulse, we realize high efficiency glass micro-welding by using doublepulses with different delay time. Moreover, we systemically investigated the physicalmechanism of double-pulse irradiation glass, compared to traditional single-pulseirradiation. This will pave the way for its further application in industry. The main contentsare as follows:
     1. One simple method to control two-direction anisotropic wetting by regular micropearlarrays was demonstrated. Various micropearl arrays with large-area were rapidly fabricatedby a kind of improved laser interference lithography. Specially, we found that the parallelcontact angle (CA) θ2decreased from93oto67oas the intensity ratio of four laser beamsincreased from2:1to30:1, while the perpendicular CA θ1determined by the thickness ofthe resin kept constant. This was interpreted as the decrease of height variations△h from1100nm to200nm along the parallel direction caused by the increase of the intensity ratio. According to this rule, both of the θ1and θ2could be simultaneously controlled byadjusting the height variation△h and the resin thickness. Moreover, by combiningappropriate design and low surface-energy modification, natural anisotropic rice leafexhibiting CAs of146o±2o/153o±3ocould be mimicked by our anisotropic bio-surface withthe CAs145o±1o/150o±2o. We believe that these controlled anisotropic bio-surfaces will behelpful for designing smart, fluid-controllable interfaces that may be applied in novelmicrofluidic devices, evaporation-driven micro/nanostructures and liquid microdropletdirectional transfer.
     2. We reported a kind of novel smart surfaces with reversible switching between isotropyand anisotropic wetting, which was realized by one-direction curvature tune on flexiblesuperhydrophobic surfaces. Along the curvature change, the wettability of this flexible filmwas changed from isotropic state (150o/150o) into anisotropic state confirmed by itsanisotropic contact angles (150o/160o) and sliding properties (30o/65o). Furtherinvestigation revealed that the surface wettability was changed from composited pinnedstate into transitional state. This was interpreted as the increase of roughness factor and thedecrease of the contact area between water droplet and pillar arrays. Moreover, therelationship between the anisotropy and curvature was systemically investigated, by whichthe anisotropy could be precisely controlled by the curvature change. At last, wedemonstrated the wetting states between isotropy and anisotropy on this flexiblesuperhydrophobic film could be reversibly switched by curvature for many times (>10).3. We investigated the physical mechanism of high-efficiency glass microwelding bydouble-pulse ultrafast laser irradiation by measuring the dependences of the size of theheat-affected zone and the bonding strength on the delay time between the two pulses fordelay time up to80ns. The size of the heat-affected zone increases rapidly when the delaytime is increased from0to12.5ps. It then decreases dramatically when the delay time isfurther increased to30ps. It has a small peak around100ps. For delay time up to40ns,the size of the heat-affected zone exceeds that for a delay time of0ps, whereas for delaytime over60ps, it becomes smaller than that for a delay time of0ps. The bonding strengthexhibits the same tendency. The underlying physical mechanism is discussed in terms ofinitial electron excitation by the first pulse and subsequent excitation by the second pulse: specifically, the first pulse induces multiphoton ionization or tunneling ionization, whilethe second pulse induces electron heating or avalanche ionization or the second pulse isabsorbed by the localized state. Transient absorption of glass induced by the ultrafast laserpulse was analyzed by an ultrafast pump–probe technique. We found that the optimumpulse energy ratio is unity. These results provide new insights into high efficiency ultrafastlaser microwelding of glass and suggest new possibilities for further development of otherultrafast laser processing techniques.
     4. The absorption mechanism of the second pulse is experimentally and theoreticallyinvestigated for high-efficiency microwelding of photosensitive glass by double-pulseirradiation using a femtosecond laser. The transient absorption change during the secondpulse irradiation for various energies induced by the first pulse is measured at differentdelay times. The resulting effects depend on whether the delay time is0–30ps (timedomain I) or30–several ns (domain II). By solving rate equations for the proposedelectronic processes, the excitation and relaxation times of free electrons in time domain Iare estimated to be0.98and20.4ps, respectively, whereas the relaxation times from theconduction band to a localized state and from the localized state to the valence band indomain II are104.2and714.3ps, respectively. Single-photon absorption of the secondpulse by free electrons dominates in domain I, resulting in high bonding strength. In timedomain II, about46%of the second pulse is absorbed by a single photon due to thelocalized state, which is responsible for higher bonding strength compared with thatprepared by single-pulse irradiation.
     5. Since fused silica exhibited good optical performance and thus showed a wide range ofapplications in industrial and optical applications. So, we begin to study the high efficiencyfused silica micro-welding by double laser pulses. The maximum force is in the vicinity of0.5ps. After that, we found the laser welding force will decline rapidly. The welding forceat1ps is less than the traditional single-pulse welding force. At the delay time between1ps and200ps, laser welding force almost reached saturation. This physical phenomenon isdifferent from the one in photosensitive glass double pulse micro-welding, which isbeneficial for helping people better understand the physical mechanisms of glassmicro-welding of various materials.
     In summary, this paper mainly focused on large area biomimetic superhydrophobicsurfaces prepared by multi-beam laser interference lithography. Moreover, the surface wastuned by applying a force of an elastic surface to achieve reversible switching betweenisotropy anisotropy. Finally, we study high-efficiency micro-welding by ultrafast laserdouble-pulse, analyze the physical mechanism of welding, and study the double pulsewelding force changes in the fused silica, which lay the foundation for ultrafast laserwelding in various materials.
引文
[1] Nakajima A, Hashimoto K, Watanabe T, Recent studies on super-hydrophobicfilms [J]. Monatshefte fur Chemie,2001,132:31-41.
    [2] Could P, Smart clean surfaces [J]. Materials today,2003,44-48.
    [3] Ball P, Shark skin and other solutions [J].1995,400:507-509.
    [4] Truesdell R, Mammoli A, Vorobieff P, et al. Drag reduction on a patternedsuperhydrophobic surface [J]. Phys. Rev. Lett.,2006,97:044504(4).
    [5] Zhao B, Moore J, J.Beebe D, Surface-directed liquid flow inside microchannels.[J]. Science,2001,291:1023-1026.
    [6] Wenzel R N, Resistance of solid surfaces to wetting by water [J]. Industrial andengineering chemistry,1936,28:988-994.
    [7] Wang S, Jiang L, Definition of superhydrophobic states [J]. Adv. Mater.,2007,19:3423-3424.
    [8] Cassie A B D, Baxter S, Wettability of porous surfaces [J]. Transactions of thefaraday society,1994,40:546-551.
    [9] Feng L, Li S H, Li Y S, et al. Super-Hydrophobic surface from natural to artificial[J]. Adv. Mater.,2002,24:1857-1860.
    [10]Barthlott W, Neinhuis C, Purity of the sacred lotus, or escape from contaminationin biological surfaces [J]. Planta,1997,202:1-8.
    [11]Gao X F, Jiang L,Water-repellent legs of water striders [J]. Nature,2004,432:36.
    [12]Huang L, Lau S P, Yang H Y, et al. Stable superhydrophobic surface via carbonnanotubes coated with a ZnO thin film [J]. J. Phys. Chem. B.,2005,109:7746-7748.
    [13]Ming W, Wu D, Benthem R V, et al. Superhydrophobic films from raspberry-likeparticles [J]. Nano. Lett.,2005,5:2298-2301.
    [14]Lin J J, Chu C C, Chiang M L, et al. Manipulating assemblies of high-aspect-ratioClays and fatty amine salts to form surfaces exhibiting a lotus effect [J]. Adv.Mater.,2006,18:3248-3252.
    [15]Wang S T, Feng L, Jiang L, One-step solution-immersion process for thefabrication of stable bionic superhydrophobic surfaces [J]. Adv. Mater.,2006,18:767-770.
    [16]Baldacchini T, E.Carey T, Zhou M, et al. Superhydrophobic surfaces prepared bymicrostructuring of silicon using a femtosecond laser [J]. Langmuir,2006,22:917-4919.
    [17]Zhai L, C.Berg M, C.Cebeci F, et al. Patterned superhydrophobic surfaces: Towarda synthetic mimic of the namib desert beetle [J]. Nano. Lett.,2006,6:1213-1217.
    [18]Zhao N, Xie Q D, Kuang X, et al. A novel ultra-hydrophobic surface: staticallynon-wetting but dynamically non-sliding [J]. Adv. Funct. Mater.,2007,17:2739-2745.
    [19]Zhu Y, Hu D, Wan M X, et al. Conducting and superhydrophobic rambutan-likehollow spheres of polyaniline [J]. Adv. Mater.,2007,19:2092-2096.
    [20]Li W, Amirfazli A, Superhydrophobic surfaces: adhesive strongly towater?[J].Adv. Mater.,2007,19:3421-3422.
    [21]Nosonovsky M, Bhushan B, Biomimetic superhydrophobic surfaces: multiscaleapproach [J]. Nano. Lett.,2007,9:2633-2637.
    [22]Xiu Y H, Zhu L B, Hess D, et al. Hierarchical silicon etched structures forcontrolled hydrophobicity/superhydrophobicity [J]. Nano. Lett.,2007,7:3388-3393.
    [23]Hosono E, Ichihara M, Zhou H S, Fabrication of MnOOH nanorods on a substratein an oxygen bubbled solution with superhydrophobic properties [J].Nanotechnology,2008,19:1-5.
    [24]Rinivasan S, Praveen V, Philip R, et al. Bioinspired superhydrophobic coatings ofcarbon nanotubes and linear π systems based on the “Bottom-up” self-assemblyapproach [J]. Angew. Chem. Int. Ed.,2008,47:5750-5754.
    [25]Nakanishi T, Michinobu T, Yoshida K, et al. Nanocarbon superhydrophobicsurfaces created from fullerene-based hierarchical supramolecular assemblies [J].Adv. Mater.,2008,20:443-446.
    [26]Xi J M, Feng L, Jiang L, A general approach for fabrication of superhydrophobicand superamphiphobic surfaces [J]. Appl. Phys. Lett.,92:053102(3).
    [27]Morita M, Koga T, Otsuka H, et al. Macroscopic-wetting anisotropy on theline-patterned surface of fluoroalkylsilane monolayers [J]. Langmuir,2005,21:911-918.
    [28]Zhao Y, Lu Q F, Li M, et al. Anisotropic wetting characteristics on submicrometerscale periodic grooved surface [J]. Langmuir,2007,23:6212-6217.
    [29]Wu S Z, Wu D, Yao J, et al. One-step preparation of regular micropearl arrays fortwo-direction controllable anisotropic wetting [J]. Langmuir,2010,26:12012-12016.
    [30]Xia D Y, Brueck S R J, Strongly anisotropic wetting on one-dimensionalnanopatterned surfaces [J]. Nano Lett.,2008,8:2819-2824.
    [31]Wu D, Wang J N, Wu S Z, Three-level biomimetic rice leaf surfaces withcontrollable anisotropic sliding [J]. Adv. Funct. Mater.,2011,21:2927-2932.
    [32]Russell T P, Surface-responsive materials [J]. Science,2002,297:964-967.
    [33]Luzinov I, Minko S, Tsukruk V V, Adaptive and responsive surfaces throughcontrolled reorganization of interfacial polymer layers, Progress in polymerscience,2004,29:635-698.
    [34]Sun T L, Wang G J, Feng L, et al. Reversible switching betweensuperhydrophilicity and superhydrophobicity [J]. Angew. Chem. Int. Ed.,2004,43:357-360.
    [35]Feng X J, Feng L, Jin M H, et al. Reversible super-hydrophobicity tosuper-hydrophilicity transition of aligned ZnO Nanorod Films [J]. J. Am. Chem.Soc.,2004,126:62-63.
    [36]Wu D, Wu S Z, Chen Q D, et al. Curvature-driven reversible in-situ switchingfrom pinned to roll-down surperhydrophobic states for water droplettransportation [J]. Adv. Mater.,2011,23:545-549.
    [37]Lahann J, Mitragotri S, Tran T N, et al. A reversibly switching surface, Science,2003,299:371-374.
    [38]Zhao B, Brittain W J, Zhou W, et al. AFM study of tethered polystyrene-b-poly(methyl methacrylate) and polystyrene-b-poly (methyl acrylate) brushes on flatsilicate substrates, Macromolecules [J].2000,33:8821-8827.
    [39]Minko S, Muller M, Motornov M, et al. Two-level structured self-adaptive surfacewith reversibly tunable properties, J. Am. Chem. Soc.,2003,125:3896-3900.
    [40]Moulton P F, Ti-doped sapphire: tunable solid state lasers [J]. Optics news,1982,8:9.
    [41]Kautek W, Krueger J, Femtosecond pulse laser ablation of metallic,semiconducting, ceramic, and biological materials [J]. SPIE Proceedings,1994,2207:600-611.
    [42]Lenzner M, Krger J, Sartania S, et al. Femtosecond optical breakdown indielectrics [J]. Phys. Rev. Lett.,1998,80:4076-4079.
    [43]Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with afemtosecond laser [J]. Optc. Lett.,1996,21:1729-1731.
    [44]Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storageinside transparent materials [J]. Optc. Lett.,1996,21:2023-2025.
    [45]Schaffer C B, Brodeur A, Garc A J F, et al. Micromachining bulk glass by use offemtosecond laser pulse with nanojoule energy [J]. Optc. Lett.,2001,26:93-95.
    [46]Stuart B C, Feit M D, Rubenchik A M, et al. Laser-induced damage in dielectricswith nanosecond to subpicosecond pulses [J]. Phys. Rev. Lett.,1995,74:2248-2251.
    [47]Stuart B C,Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-inducedbreakdown in dielectrics [J]. Phys. Rev. B.,1996,53:1749-1761.
    [48]Schaffer C, Nishimura N, Glezer E, et al. Dynamics of femtosecond laser-inducedbreakdown in water femtosecond to microseconds [J]. Optc. Express.,2002,10:196-203.
    [49]Sakakura M, Terazima M, Initial temporal and spatial changes of the refractiveindex induced by focused femtosecond pulsed laser irradiation inside a glass [J].Phys. Rev. B.,2005,71:024113.
    [50]Sakakura M, Terazima M, Shimotsuma Y, et al. Observation of pressure wavegenerated by focusing a femtosecond laser pulse inside a glass [J]. Optc. Express.,2007,15:5674-5686.
    [51]张国顺,现代激光制造技术[M].北京:机械工业出版社,2002:119-198.
    [52]徐炜,李章,大功率激光焊接技术及其工业应用[J].机械工人,2005(3):32-36.
    [53]张文敏,激光焊接技术的研究现状与应用[J].新技术新工艺,2009(1):48-50.
    [54]Tamaki T, Watanabe W, Nishii J, et al. Welding of transparent materials usingfemtosecond laser pulses [J]. Jpn. J. Appl. Phys.,2005,44:687-689.
    [55]Miyamoto I, Horn A, Gottmann J, Local melting of glass material and itsapplication to direct fusion welding by ps-laser pulses [J]. J. Laser Micro/Nanoeng,2007,2:7-14.
    [56]Horn A, Mingareev I, Werth A, Investigation on melting and welding of glass byultra-short laser radiation [J]. J. Laser Micro/Nanoeng,2008,3:114-118.
    [57]Miyamoto I, Horn A, Gottmann J, et al. Fusion welding of glass usingfemtosecond laser pulses with high-repetition rates [J]. J. Laser.Micro/Nanoeng,2007,2:57-63.
    [58]Hirao K, Shimotsuma Y, Qiu J, et al. Femtosecond laser induced phenomena ingasses and photonic device application [J]. Mater. Res. Soc. Symp. Proc.,2005,13-23.
    [59]Borrelli N, Helfinstine J, Price J, et al. Glass strengthening with an ultrafast laser[J]. in Proceedings of the Int. Cong. Appl. Laser and Electro Optics (ICALEO)2008,185-189.
    [60]Gattass R R, Cerami L R, Mazur E, Micromachining of bulk glass with burstsof femtosecond laser pulses at variable repetition rates [J]. Opt. Express.,2006,14:5279-5284.
    [61]Schaffer C B, Brodeur A, García J F, et al. Micromachining bulk glass by useof femtosecond laser pulses with nanojoule energy [J]. Opt. Lett.,2001,26:93-95.
    [62]Stuart B C, Feit M D, Rubenchik A M, et al. Laser-induced damage in dielectricswith nanosecond to subpicosecond pulses [J]. Phys. Rev. Lett.,1995,74:2248-2251.
    [63]Tien A C, Backus S, Kapteyn H C, et al. Short-pulse laser damage in trans-parentmaterials as a function of pulse duration [J]. Phys. Rev. Lett.,1999,82:3883-3886.
    [64]Lenzner M, Kr¨uger J, Sartania S, et al. Femtosecond optical breakdown indielectrics [J]. Phys. Rev. Lett.,1998,80:4076-4079.
    [65]Li M, Menon S, Nibarger J P, et al. Ultrafast electron dynamics in femtosecondoptical breakdown of dielectrics [J]. Phys. Rev. Lett.,1999,82:2394-2397.
    [66]Petite G, Guizard S, Martin P, et al. Comment on ultrafast electron dynamics infemtosecond optical breakdown of dielectrics [J]. Phys. Rev. Lett.,1999,83:5182-5182.
    [67]Deng Y P, Xie X H, Xiong H, et al. Optical breakdown for silica and silicon withdouble femtosecond laser pulses [J]. Opt. Express.,2005,13:3096-3103.
    [68]Stoian R, Boyle M, Thoss A, et al. Dynamic temporal pulse shaping in advancedultrafast laser material processing [J]. Appl. Phys. A.,2003,77:265-269.
    [69]Watanabe W, Onda S, Tamaki T, et al. Space-selective laser joining of dissimilartransparent materials using femtosecond laser pulse [J]. Appl. Phys. Lett.,2006,89:021106.
    [70]Tamaki T, Watanabe W, Nagai H, et al. Structural modification in fused silica by afemtosecond fiber laser at1558nm [J]. Opt. Express.,2006,14:6971-6980.
    [71]Quere F, Guizard S, Martin P, Time-resolved study of laser-induced breakdown indielectrics [J]. Europhys. Lett.,2001,56:138-147.
    [72]Temnov V V, Sokolowski-Tinten K, Zhou P, Multiphoton Ionization in Dielectrics:Comparison of Circular and Linear Polarization [J]. Phys. Rev. Lett.,2006,97:237403-237406.
    [73]Horn A, Mingareev I, Werth A, et al. Investigations on ultrafast welding ofglass-glass and glass-silicon [J]. Appl. Phys., A Mater. Sci. Process.,2008,93:171-175.
    [74]Sugioka T, Iida M, Takai H, et al. Efficient microwelding of glass substrates byultrafast laser irradiation using a double-pulse train [J]. Opt. Lett.,2011,36:2734-2736.
    [75]陈虹,吴世凯,张正伟等,高功率激光光束特性对激光加工的影响[J].光学技术,2006,32(6):834-837.
    [76]章佶,超短脉冲与透明介质相互作用研究[D].上海:华东师范大学2005届研究生硕士学位论文.2005.
    [1] Shoji S, Kawata S, Photofabrication of three-dimensional photonic crystals bymultibeam laser interference into a photopolymerizable resin [J]. Appl. Phys. Lett.,2000,76:2668-2670.
    [2] Campbell M, Sharp D N, Harrison M T, et al. Fabrication of photonic crystals for thevisible spectrum by holographic lithography [J].Nature,2000,404:53-57.
    [3] Kondo T, Matsuo S, Juodkazis S, et al. Femtosecond laser interference technique withdiffractive beam splitter for fabrication of three-dimensional photonic crystals [J].Appl.Phys.Lett.,2001,79:725-727.
    [4] Kawamura K, Sarukura N, Hirano M, Periodic nanostructure array in crossedholographic gratings on silica glass by two interfered infrared-femtosecond laserpulses [J]. Appl. Phys. Lett.,2001,79:1228-1230.
    [5] Kondo T, Matsuo S, Juodkazis S, et al,Multiphoton fabrication of periodic structuresby multibeam interference of femtosecond pulses [J]. Appl.Phys.Lett.,2003,82:2758-2760.
    [6] Shoji S, Sun H B, Kawata S, Photofabrication of wood-pile three-dimensionalphotonic crystals using four-beam laser interference [J]. Appl.Phys.Lett.,2003,83:608-610.
    [7] Miklyaev Y V, Meisel D C, Blanco A, et al. Three-dimensional face-centered-cubicphotonic crystal templates by laser holography: fabrication, optical characterization,and band-structure calculations [J]. Appl. Phys. Lett.,2003,82:1284-1286.
    [8] Wang X, Xu J F, Su H M, et al. Three dimensional photonic crystals fabricated byvisible lighte holographic lithography [J]. Appl. Phys. Lett.,2003,82:2212-2214.
    [9] Kondo T, Yamasaki K, Juodkazis S, et al. Three-dimensional microfabrication byfemtosecond pulses in dielectrics [J]. Thin Solid Films,2004,453:550-556.
    [10]Zhong Y C, Zhu S A, Su H M, et al. Photonic crystal with diamondlike structurefabricated by holographic lithography [J]. Appl.Phys.Lett.,2005,87:061103.
    [11]Mao W D, Liang G Q, Zou H, et al. Controllable fabrication of two-dimensionalcompound photonic crystals by single-exposure holographic lithography [J]. Opt. Lett.,2006,31:1708-1710.
    [12]Jang J H, K.Ullal C, Gorishnyy T, et al. Mechanically tunable three-dimensionalelastomeric network/air structure via interference lithography [J]. Nano. Lett.,2006,6:740-743.
    [13]Jang J H, K.Ullal C, E.Kooi S, et al. Shape control of multivalent3D colloidalparticles iva interference lithography [J]. Nano Lett.,2007,7:647-651.
    [14]Neinhuis C, Barthlott, Characterization and distribution of water-repellent,self-cleaning plant surfaces [J]. W. Ann. Bot.,1997,79:667-677.
    [15]Sato O, Kubo S, Gu Z Z, Structural color films with lotus effects, superhydrophilicity,and tunable stop-bands [J]. Acc. Chem. Res.,2009,42:1-10.
    [16]Bernhard C G, Structural and functional adaptation in a visual system Endeavour [J].1967,26:79-84.
    [17]Feng L, Li S H, Li Y S, et, al. Super-Hydrophobic surfaces: from natural to artificial[J]. Adv. Mater.,2002,14:1857-1860.
    [18]Yu X, Wang Z, Jiang Y, et al. Reversible pH-responsive surface: fromsuperhydrophobicity to superhydrophilicity [J]. Adv. Mater.,2005,17:1289-1293.
    [19]Xu L, Chen W, Mulchandani A, et al. Reversible conversion of conducting polymerfilms from superhydrophobic to superhydrophilic [J]. Angew. Chem. Int. Ed.,2005,44:6009-6012.
    [20]Jin M, Feng X, Feng L, et al. Superhydrophobic aligned polystyrene nanotube filmswith high adhesive force [J]. Adv. Mater.,2005,17:19771981.
    [21]Xie Q, Xu J, Feng L, et al. Facile creation of a super-amphiphobic coating surface withbionic microstructure [J]. Adv. Mater.,2004,16:302-305.
    [22]Luo Z, Zhang Z, Hu L, et al. Stable bionic superhydrophobic coating surfacefabricated by a conventional curing process [J]. Adv. Mater.,2008,20:970-974.
    [23]Gu Z Z, Uetsuka H, Takahashi K, et al. Structural color and the lotus effect [J]. Angew.Chem. Int. Ed.,2003,42:894-897.
    [24]Wu Z, Lee D, Rubner M F, et al. Structural color in porous, superhydrophilic, andself-cleaning SiO2/TiO2bragg stacks [J]. Small,2007,8:14451451.
    [25]Li Y, Zhang J, Zhu S, et al. Biomimetic surfaces for high-performance optics [J]. Adv.Mater.,2009,21:4731-4734.
    [26]Min W L, Jiang B, Jiang P, Bioinspired self-cleaning antireflection [J]. Adv. Mater.,2008,20:3914-3918.
    [27]Zhao B, Moore J S, Beebe D J, Interwoven metal-organic framework on a periodicminimal surface with extra-large pores [J]. Science,2001,291:1021-1023.
    [28]Gau H, Herminghaus S, Lenz P, et al. Liquid morphologies on structured surfaces:from microchannels to microchips [J]. Science,1999,283:46-49.
    [29]Higgins A M, Jones R A L, Anisotropic spinodal dewetting as a route to self-assemblyof patterned surfaces [J]. Nature,2000,404:476-478.
    [30]Xia D Y, Brueck S R J, Strongly anisotropic wetting on one-dimensionalnanopatterned surfaces [J]. Nano Lett.,2008,8:2819-2824.
    [31]Vorobyev A Y, Guo C, Metal pumps liquid uphill [J]. Appl. Phys. Lett.,2009,94:224102.
    [32]Morita M, Koga T, Otsuka H, et al. Macroscopic-wetting anisotropy on theline-patterned surface of fluoroalkylsilane monolayers [J]. Langmuir,2005,21:911-918.
    [33]Sommers A D, Jacobi A M J, Creating micro-scale surface topology to achieveanisotropic wettability on an aluminum surface [J]. Micromech. Microeng.,2006,16:1571-1578.
    [34]Chung J Y, Youngblood J P, Stafford C M, Anisotropic wetting on tunablemicro-wrinkled surfaces [J]. Soft Matter,2007,3:1163-1169.
    [35]Wu H, Zhang R, Sun Y, et al. Biomimetic nanofiber patterns with controlledwettability [J]. Soft Matter,2008,4:2429-2433.
    [36]Zhao Y, Lu Q H, Li M, et al. Anisotropic wetting characteristics onsubmicrometer-scale periodic grooved surface [J]. Langmuir,2007,23:6212-6217.
    [37]Wu D, Chen Q, Yao D J et al. A simple strategy to realize biomimetic surfaces withcontrolled anisotropic wetting [J]. Appl. Phys. Lett.,2010,96:053704.
    [1] Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: from structural control tofunctional application [J]. J. Mater. Chem.,2008,18:621-633.
    [2] Pozzato A, Zilio S D, Fois, et al. Superhydrophobic surfaces fabricated by nanoimprintlithography [J]. Microelectronic engineering,2006,83:884-888.
    [3] Oner D, Mccarthy T J, Ultrahydrophobic surfaces. Effects of topography length scaleson wettability [J]. Langmuir,2000,16:7777-7782.
    [4] Shiu J Y, Kuo C W, Chen P, et al. Fabrication of tunable superhydrophobic surfaces bynanosphere lithography [J]. Chem. Mater.,2004,16:561-564.
    [5] Baldacchini T, Carey J E, Zhou M, et al. Superhydrophobic surfaces prepared bymicrostructuring of silicon using a femtosecond laser [J]. Langmuir,2006,22:4917-4919.
    [6] Gao X, Yan X, Yao X, et al. The dry-style antifogging properties of mosquitocompound eyes and artificial analogues prepared by soft lithography [J]. Adv. Mater.,2007,19:2213-2217.
    [7] Wu D, Wu S Z, Chen Q D, et al. Curvature-driven reversible in situ switching betweenpinned and roll-down superhydrophobic states for water droplet transportation [J]. Adv.Mater.,2011,23:545-549.
    [8] Feng L, Song Y, Zhai J, et al. Creation of a superhydrophobic surface from anamphiphilic polymer [J]. Angewandte chemie international edition,2003,115:824-826.
    [9] Feng L, Li S, Li H, et al. Super-hydrophobic surface of aligned polyacrylonitrilenanofibers [J]. Angewandte chemie international edition,2002,114:1269-1271.
    [10]Jisr R M, Rmaile H H, Schlenoff J B, Hydrophobic and ultrahydrophobic multilayerthin films from perfluorinated polyelectrolytes [J]. Angewandte chemie internationaledition,2005,44:782-785.
    [11]Zhai L, Cebeci F C, Cohen R E, et al. Stable superhydrophobic coatings frompolyelectrolyte multilayers [J]. Nano Lett.,2004,4:1349-1353.
    [12]Ji J, Fu J, Shen J. Fabrication of a superhydrophobic surface from the amplifiedexponential growth of a multilayer [J]. Adv. Mater.,2006,18:1441-1444.
    [13]Lim J M, Yi G R, Moon J H, et al. Superhydrophobic films of electrospun fibers withmultiple-scale surface morphology [J]. Langmuir,2007,23:7981-7989.
    [14]Kanehata M, Ding B, Shiratori S. Nanoporous ultra-high specific surface inorganicfibres [J]. Nanotechnology,2007,18:315602.
    [15]Ding B, Ogawa T, Kim J, et al. Fabrication of a super-hydrophobic nanofibrous zincoxide film surface by electrospinning [J]. Thin solid films,2008,516:2495-2501.
    [16]Ma M, Mao Y, Gupta M, et al. Superhydrophobic fabrics produced by electrospinningand chemical vapor deposition [J]. Macromolecules,2005,38:9742-9748.
    [17]Ma M, Hill R M, Lowery J L, et al. Electrospun poly (styrene-block-dimethylsiloxane)blocks copolymer fibers exhibiting superhydrophobicity [J]. Langmuir,2005,21:5549-5554.
    [18]Zhu M, Zuo W, Yu H, et al. Superhydrophobic surface directly created byeletrospinning based on hydrophilic material [J]. Journal of Materials science,2006,41:3793-3797.
    [19]Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers byelctrospinning [J]. Nano Lett.,2004,4:933-938.
    [20]Lim J M, Yi G R, Moon J H, et al. Superhydrophobic films of electrospun fibers withmultiple-scale surface morphology [J]. Langmuir,2007,23:7981-7989.
    [21]Feng X J, Feng L, Jin M H, et al. Reversible super-hydrophobicity tosuper-hydrophilicity transition of aligned ZnO nanorod films [J]. J. Am. Chem. Soc.,2004,126:62-63.
    [22]Yu X, Wang Z Q, Jiang Y G, et al. Reversible PH-responsive surface: FromSuperhydrophobicity to Superhydrophilicity [J]. Adv. Mater.,2005,17:1289-1293.
    [23]Verplanck N, Galopin E, Camart J C, et al. Reversible electrowetting onsuperhydrophobic silicon nanowires [J]. Nano Lett.,2007,7:813-817.
    [24]Lim H S, Lee S G, Lee D H, et al. Superhydrophobic to superhydrophilic wettingtransition with programmable ion-pairing interaction [J]. Adv. Mater.,2008,20:4438-4441.
    [25]Wang J B, Shen Y F, Kessel S, et al. Self-Assembly made durable: Water-repellentmaterials formed by cross-linking fullerene derivatives [J]. Angew. Chem. Int. Ed.,2009,48:2166-2170.
    [26]Gaputo G, Cortese B, Nobile C, et al. Reversibly light-switchable wettability of hybridorganic/inorganic surfaces with dual micro-/nanoscale roughness [J]. Adv. Funct.Mater.,2009,19:1149-1157.
    [27]Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: From natural to artificial [J].Adv. Mater.,2002,14:1857-1860.
    [28]Morita M, Koga T, Otsuka H, et al. Macroscopic-Wetting Anisotropy on theLine-Patterned Surface of fluoroalkylsilane monolayers [J]. Langmuir,2005,21:911-918.
    [29]Sommers A D, Jacobi A M, Creating micro-scale surface topology to achieveanisotropic wettability on an aluminum surface [J]. J. Micromech. Microeng.,2006,16:1571-1578.
    [30]Chung J Y, Youngblood J P, Stafford C M, Anisotropic wetting on tunablemicro-wrinkled surfaces [J]. Soft Matter,2007,3:1163-1169.
    [31]Wu H, Zhang R, Sun Y, et al. Biomimetic nanofiber patterns with controlledwettability [J]. Soft Matter,2008,4:2429-2433.
    [32]Zhao Y, Lu Q H, Li M, et al. Anisotropic wetting characteristics onsubmicrometer-scale periodic grooved surface [J]. Langmuir,23:6212-6217.
    [33]Wu D, Chen Q D, Yao J, et al. A simple strategy to realize biomimetic surfaces withcontrolled anisotropic wetting [J]. Appl. Phys. Lett.,2010,96:053704(3).
    [34]Xia D Y, Brueck S R J, Strongly anisotropic wetting on one-dimensionalnanopatterned surfaces [J]. Nano Lett.,2008,8:2819-2824.
    [35]Zhao B, Moore J S, Beebe D J, Surface-directed liquid flow inside microchannels [J].Science,2001,291:1023-1026.
    [36]Gau H, Herminghaus S, Lenz P, et al. Liquid morphologies on structured surfaces:From microchannels to microchips [J]. Science,1999,283:46-49.
    [37]Higgins A M, Jones R A L, Anisotropic spinodal dewetting as a route to self-assemblyof patterned surface [J]. Nature,2000,404:476-478.
    [38]Vorobyev A Y, Guo C L, Metal pumps liquid uphill [J]. Appl. Phys. Lett.,2009,94:224102(3).
    [39]Wu D, Chen Q D, Xu B B, Self-organization of polymer nanoneedles into large-areaordered flowerlike arrays [J]. Appl. Phys. Lett.,2009,95:091902(3).
    [40]Luo Z, Zhang Z, Hu L, et al. Stable Bionic Superhydrophobic Coating SurfaceFabricated by a Conventional Curing Process [J]. Adv. Mater.,2008,20:970-974.
    [41]Lee Y, Park S H, Kim K B, et al. Fabrication of hierarchical structures on a polymersurface to mimic natural superhydrophobic surfaces [J]. Adv. Mater.,2007,19:2330-2335.
    [42]Wu S Z, Wu D, Yao J, et al. One-step preparation of regular micropearl arrays fortwo-direction controllable anisotropic wetting [J]. Langmuir,2010,26:12012-12016.
    [43]Wang S, Jiang L, Definition of superhydrophobic states [J]. Adv. Mater.,2007,19:
    3423-3424.
    [1] Tamaki T, Watanabe W, Nishii J, et al. Welding of transparent materials usingfemtosecond laser pulses [J]. Jpn. J. Appl. Phys.,2005,44:687-689.
    [2] Miyamoto I, Horn A, Gottmann J, Local melting of glass material and its applicationto direct fusion welding by ps-laser pulses [J]. J. Laser Micro/Nanoeng,2007,2:7-14.
    [3] Horn A, Mingareev I, Werth A, Investigation on melting and welding of glass byultra-short laser radiation [J]. J. Laser Micro/Nanoeng,2008,3:114-118.
    [4] Miyamoto I, Horn A, Gottmann J, et al. Fusion welding of glass using femtosecondlaser pulses with high-repetition rates [J]. J. Laser. Micro/Nanoeng,2007,2:57–63.
    [5] Hirao K, Shimotsuma Y, Qiu J, et al. Femtosecond laser induced phenomena ingasses and photonic device application [J]. Mater. Res. Soc. Symp. Proc.,2005,13–23.
    [6] Borrelli N, Helfinstine J, Price J, et al. Glass strengthening with an ultrafast laser [J].in Proceedings of the Int. Cong. Appl. Laser and Electro Optics (ICALEO)2008,185–189.
    [7] Gattass RR, Cerami LR, Mazur E, Micromachining of bulk glass with bursts offemtosecond laser pulses at variable repetition rates [J]. Opt. Express.,2006,14:5279-5284.
    [8] Schaffer CB, Brodeur A, García JF, et al. Micromachining bulk glass by use offemtosecond laser pulses with nanojoule energy [J]. Opt. Lett.,2001,26:93-95.
    [9] Stuart BC, Feit MD, Rubenchik AM, et al. Laser-induced damage in dielectrics withnanosecond to subpicosecond pulses [J]. Phys. Rev. Lett.,1995,74:2248-2251.
    [10]Tien AC, Backus S, Kapteyn HC, et al. Short-pulse laser damage in trans-parentmaterials as a function of pulse duration [J]. Phys. Rev. Lett.,1999,82:3883-3886.
    [11]Lenzner M, Kr¨uger J, Sartania S, et al. Femtosecond optical breakdown in dielectrics[J]. Phys. Rev. Lett.,1998,80:4076–4079.
    [12]Li M, Menon S, Nibarger JP, et al. Ultrafast electron dynamics in femtosecond opticalbreakdown of dielectrics [J]. Phys. Rev. Lett.,1999,82:2394–2397.
    [13]Petite G, Guizard S, Martin P, et al. Comment on ultrafast electron dynamics infemtosecond optical breakdown of dielectrics [J]. Phys. Rev. Lett.,1999,83:5182–5182.
    [14]Deng YP, Xie XH, Xiong H, et al. Optical breakdown for silica and silicon withdouble femtosecond laser pulses [J]. Opt. Express.,2005,13:3096–3103.
    [15]Stoian R, Boyle M, Thoss A, et al. Dynamic temporal pulse shaping in advancedultrafast laser material processing [J]. Appl. Phys. A.,2003,77:265–269.
    [16]Watanabe W, Onda S, Tamaki T, et al. Space-selective laser joining of dissimilartransparent materials using femtosecond laser pulse [J]. Appl. Phys. Lett.,2006,89:021106.
    [17]Tamaki T, Watanabe W, Nagai H, et al. Structural modification in fused silica by afemtosecond fiber laser at1558nm [J]. Opt. Express.,2006,14:6971–6980.
    [18]Quere F, Guizard S, Martin P, Time-resolved study of laser-induced breakdown indielectrics [J]. Europhys. Lett.,2001,56:138-147.
    [19]Temnov VV, Sokolowski-Tinten K, Zhou P, Multiphoton Ionization in Dielectrics:Comparison of Circular and Linear Polarization [J]. Phys. Rev. Lett.,2006,97:237403-237406.
    [20]Sugioka T, Iida M, Takai H, et al. Efficient microwelding of glass substrates byultrafast laser irradiation using a double-pulse train [J]. Opt. Lett.,2011,36:2734-2736.
    [21]Luo C, Lin L, The application of nanosecond-pulsed laser welding technology inMEMS packaging with a shadow mask [J]. Sens. Actuators A Phys.,2002,97-98:398-404.
    [22]Watanabe W, Onda S, Tamaki T, et al. Direct joining of glass substrates by1kHzfemtosecond laser pulses [J]. Appl. Phys. B.,2007,87:85-89.
    [23]Horn A, Mingareev I, Werth A, et al. Investigations on ultrafast welding of glass-glassand glass-silicon [J]. Appl. Phys., A Mater. Sci. Process.,2008,93:171-175.
    [24]Ozeki Y, Inoue T, Tamaki T, et al. Direct welding between copper and glass substrateswith femtosecond laser pulses [J]. Appl. Phys. Express.,2008,1:082601.
    [25]Kim Y, Choi J, Lee Y, et al. Femtosecond laser bonding of glasses and ion migration inthe interface [J]. Appl. Phys., A Mater. Sci. Process.,2010,101:147-152.
    [26]Miyamoto I, Cvecek K, Okamoto Y, et al. Characteristics of laser absorption andwelding in FOTURAN glass by ultrashort laser pulses [J]. Opt. Express.,2011,19:22961-22973.
    [27]Miyamoto I, Cvecek K, Schmidt M, Evaluation of nonlinear absorptivity in internalmodification of bulk glass by ultrashort laser pulses [J]. Opt. Express.,2011,19:10714-10727.
    [28]Miyamoto I, Cvecek K, Schmidt M, Evaluation of nonlinear absorptivity andabsorption region in fusion welding of glass using ultrashort laser pulse [J]. Phys.Procedia,2011,12:378-386.
    [29]Richter S, Doring S, Tunnermann A, et al. Bonding of glass with femtosecond laserpulses at high repetition rates [J]. Appl. Phys. A Mater. Sci. Process.,2011,103:257-261.
    [30]Hélie D, Bégin M, Lacroix F, et al. Reinforced direct bonding of optical materials byfemtosecond laser welding [J]. Appl. Opt.2012,51:2098-2106.
    [31]Eaton SM, Zhang H, Herman PR, et al. Heat accumulation effects in femtosecondlaser-written waveguides with variable repetition rate [J]. Opt. Express.,2005,13:4708-4716.
    [32]Eaton SM, Zhang H, Ng ML, et al. Transition from thermal diffusion to heataccumulation in high repetition rate femtosecond laser writing of buried opticalwaveguides [J]. Opt. Express.,2008,16:9443-9458.
    [33]Englert L, Rethfeld B, Haag L, et al. Control of ionization processes in high band gapmaterials via tailored femtosecond pulses [J]. Opt. Express.,2007,15:17855-17862.
    [34]Stoian R, Boyle M, Thoss A, et al. Laser ablation of dielectrics with temporally shapedfemtosecond pulses [J]. Appl. Phys. Lett.,2002,80:353-355.
    [35]Wollenhaupt M, Englert L, Horn A, et al. Control of ionization processes in high bandgap materials [J]. J. Laser. Micro/Nanoeng,2009,4:144-151.
    [36]Wu SZ, Wu D, Xu J, et al. Characterization and mechanism of glass microwelding bydouble-pulse ultrafast laser irradiation [J]. Opt. Express.,2012,20:28893-28905.
    [37]Wu SZ, Wu D, Xu J, et al. Absorption mechanism of the second pulse in double-pulsefemtosecond laser glass microwelding [J]. Opt. Express.,2013,21:24049-24059.
    [38]Ho CY, Effects of polarizations of a laser on absorption in a paraboloid ofrevolution-shaped welding or drilling cavity [J]. J. Appl. Phys.,2004,96:5393-5401.
    [39]Shimizu M, Sakakura M, Ohnishi M, et al. Mechanism of heat-modification inside aglass after irradiation with high-repetition rate femtosecond laser pulses [J]. J. Appl.Phys.,2010,108:073533.
    [40]Schaffer CB, Garcia JF, Mazur E, Bulk heating of transparent materials using ahigh-repetition-rate femtosecond laser [J]. Appl. Phys. A Mater. Sci. Process.,2003,76:351-354.
    [41]Mao SS, Quere F, Guizard S, et al. Dynamics of femtosecond laser interactions withdielectrics [J]. Appl. Phys. A Mater. Sci. Process.,2004,79:1695-1709.
    [42]Gattass RR, Mazur E, Femtosecond laser micromachining in transparent materials [J].Nat. Photonics,2008,2:219-225.
    [43]Guizard S, Oliveira PD, Daguzan P, et al. Time-resolved studies of carriers dynamicsin wide band gap materials [J]. Nucl. Instr. and Meth. in Phys. Res. B.,1996,116:43-48.
    [44]Stuart BC, Feit MD, Herman S, et al. Nanosecond-tofemtosecond laser-inducedbreakdown in dielectrics [J]. Phys. Rev. B Condens. Matter,1996,53:1749-1761.
    [45]Hongo T, Sugioka K, Niino H, et al. Investigation of photoreaction mechanism ofphotosensitive glass by femtosecond laser [J]. J. Appl. Phys.,2005,97:063517.
    [46]Song KS, Williams RT, Self-Trapped Excitons [M]. Springer-Verlag, Berlin,Heiderberg,1993.
    [47]Cvecek K, Miyamoto I, Strauss J, et al. Strength of joining seam in glass welded byultra-fast lasers depending on focus height [J]. JLMN-J. Laser Micro/Nanoeng.,2012,7:68-72.
    [48]Helie D, Lacroix F, Vallee R, Reinforcing a direct bond between optical materials byfilamentation based femtosecond laser welding [J]. JLMN-J. Laser Micro/Nanoeng.,2012,7:284-292.
    [49]Shimizu M, Sakakura M, Ohnishi M, et al. Three-dimensional temperature distributionand modification mechanism in glass during ultrafast laser irradiation at highrepetition rates [J]. Opt. Express.,2012,20:934-940.
    [50]Alexeev I, Cvecek K, Schmidt C, et al. Characterization of shear strength and bondingenergy of laser produced welding seams in glass [J]. JLMN-J. Laser Micro/Nanoeng.,2012,7:279-283.
    [51]Sugioka K, Wada S, Tashiro H, et al. Multiwavelength excitation byvacuum-ultraviolet beams coupled with fourth harmonics of a Q-switched Nd:YAGlaser for high-quality ablation of fused quartz [J]. Appl. Phys. Lett.,1995,67:2789-2791.
    [52]Nahen K, Vogel A, Plasma formation in water by picosecond and nanosecondNd:YAG laser pulses-part II: transmission, scattering, and reflection [J]. IEEE J. Sel.Top. Quant.,1996,2:861-871.
    [53]Fisette B, Meunier M, Three-dimensional microfabrication inside photosensitiveglasses by femtosecond [J]. JLMN-J. Laser Micro/Nanoeng.,2006,1:7-11.
    [54]Kim J, Berberoglu H, Xu X, Fabrication of microstructures in photoetchable glassceramics using excimer and femtosecond lasers [J]. J. Micro/Nanolith. MEMSMOEMS.,2004,3:478-485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700