玻色—爱因斯坦凝聚和磁性薄膜中孤子特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于孤子具有独特的特性和应用潜力,孤子动力学的研究是当今非线性科学研究的前沿课题之一。本论文在总结和分析国内外研究现状及介绍理论研究方法的基础上,从理论上研究了波色-爱因斯坦凝聚(BEC)中的孤子和磁性薄膜中的孤子的特性,得到了若干创新性的结论。论文由三个部分组成。
     论文的第一部分介绍了BEC中的孤子和磁性薄膜中的微波静磁包络(MME)孤子传输和演化所遵循的非线性薛定谔方程(NLSE);介绍了用于分析NLSE的孤子解的理论工具-变分法;讨论了NLSE的数值解法-分步傅立叶法。
     无论是从理解孤子系统的特性还是从他们的实际应用的角度看,非线性系统中孤子的稳定性是关键的特性,因此,研究BEC孤子系统的稳定条件及控制因素是重要的。论文的第二部分运用变分法和分步傅立叶法研究了BEC孤子系统的物理行为。这些研究包括以下三个方面。
     通过在常规势阱中引入局部畸变,系统研究了BEC孤子的演化。研究表明BEC孤子系统的行为极大地依赖于势阱的局部畸变;合适的畸变不仅能被用来维护孤子的稳定,而且可通过适当的方式被用来调控BEC孤子;畸变对BEC孤子演化的影响也与囚禁电势的形式、BEC孤子系统的参数以及初始条件有关。
     借用等效势的概念研究了单个和耦合BEC孤子的演化特征。通过变分法得到了外部囚禁电势的等效势和耦合BEC孤子间相互作用的等效势的表达式;揭示了等效势对BEC孤子运动的影响和耦合BEC孤子间相互作用的特点,得到了耦合BEC孤子系统出现定态和发生自陷的临界条件和相关的判据;发现了耦合BEC孤子间原子迁移的特点和影响因素。
     研究了原子间三体作用对BEC孤子演化的影响,研究表明较小的三体作用的效应会极大地影响BEC孤子系统的行为。通过在圆柱体对称的磁阱中的某一方向引入光格电势,研究了二维“饼”状BEC孤子的演化,发现光格不仅使BEC孤子在该方向上趋向稳定,而且通过相互耦合作用也能影响孤子在其它方向上的稳定性,从而使二维“饼”状BEC孤子整体的稳定性增强。
     论文的第三部分通过引入高阶色散项,采用变分法,研究了窄MME孤子的传输特性.。理论上证实在合适的条件下,具有高阶色散的媒质中可以存在稳定的MME孤子,得到了高阶色散效应下MME亮孤子参数的演化和传输速度的解析表达式;发现了高阶色散效应可以改变MME孤子包络的形状,而MME孤子的演化与相位无关;发现了较大的三阶色散能导致MME孤子三峰分裂,提出了通过引入初始相位调制来抑制MME孤子裂变的方法。
Solitons show unique properties and high potential for applications and, hence, have been one of the most exciting topics in modern nonlinear science. This thesis is devoted to the theoretical investigation of soliton dynamics in Bose-Einstein Condensates (BECs) and magnetic thin films. The work is based on the nonlinear Schr(?)dinger equation (NLSE) and the use of the variational appraoach and the split-step Fourier method.
     The thesis consists of three main parts. In the first part, the nonlinear Schr?dinger equation (NLSE) is briefly introduced. This equation can be used to describe the evolution dynamics of both the solitons in the BEC systems and the microwave magnetic envelope (MME) solitons in magnetic films. The variational approach and the Split-step Fourier method are also introduced. The first one is a typical theoretical tool for the analyses of the soliton solution of the NLSE under restricted conditions. The later one is often used for the numerical simulation of the NLSE.
     From both the fundamental and practical points of view, the stability of solitons in a nonlinear system is critical. The second part of the thesis is devoted to the stability of the BEC solitons and its control methods as well as the physical behaviors of BEC solitons under a variety of different trapping potentials. Three main works are as follows.
     One work is on the dynamics of one and several BEC solitons in a typical trap that is perturbed by a local impurity. It is found that the dynamics of the solitons in such a trap strongly depends on the properties of the trapping potential, the parameters of the BEC system, and the other initial conditions. It is also found that an appropriate potential perturbation can not only enhance the stability of the solitons, but also can be used to control the evolution of the solitons.
     The second work is on the evolution of single and coupled BEC solitons. In this work, the concept of effective potential was introduced to the analyses of the BEC solitons. The effective potential for the external trapping potential and that from the interaction of coupled solitons were obtained. From these effective potentials, one can know the evolution dynamics of the BEC solitons and the interaction of the coupled solitons. One can also know the thresholds for the stationary and self-trapping states of the solitons. In addition, one can know the properties for the atom transfer between coupled solitons.
     The effects of three-body interactions on BEC soliton dynamics are also studied. It is found that even a weak three-body interaction can lead to a significant chang in soliton dynamics. The dynamics of 2D cake-shaped solitons was also studied. This work was done for a cylindral potential modified by an optical lattice. It is found the introduction of an optical lattice can not only enhance the stability of the solitons in the direction of the opdtical lattice, but also improve the stability in other directions.
     The third part focuses on the MME solitons in magnetic thin films. The propagation dynamics of narrow MME solitons was studied. This work was performed with the use of a NLSE that contained high-order dispersion terms. It is found that, under certain conditions, the nonlinear systems with high-order dispersion can support narrow MME solitons. It is also found that, with high order dispersion, the soliton dynamics is independent of the soliton initial phase. Strong third-order dispersion effect can also lead to the break-up of an MME soliton, but this break-up can be controlled through the introduction of an initial phase.
引文
[1] Zabusky N J, Kruskal M D. Interaction of "Solitons" in a collisionless plasma and the recurrence of initial states. Phys Rev Lett, 1965, 15(6): 240-243
    [2]王育竹,李明哲,龙全.碱金属气体中的玻色-爱因斯坦凝聚.物理, 2002, 31(5): 269-271陈徐宗,周小计,陈帅,等.物质的新状态-玻色-爱因斯坦凝聚.物理, 2002, 31(3): 141-145
    [3] Bose S N. Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik. 1924, 26: 178-181 (The German translation of Bose's paper on Planck's law). Einstein A. Quantentheorie des einatomigen idealen Gases: Zweite Abhandlung, Sitzungsber. Preuss. Akad. Wiss. (Kl. Phys./Chem.) 1925, 3-14
    [4] Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, 1995, 269: 198-201
    [5] Bradley C C, Sackett C A, Tollett J J, et al. Evidence of Bose-Einstein Condensation in an Atomic Gas with attractive Interactions. Phys Rev Lett, 1995, 75: 1687-1690
    [6] Davis K B, Mewes M-O, Andrews M R, et al. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys Rev Lett, 1995, 75: 3969-3973
    [7]印建平,王正岭.玻色-爱因斯坦凝聚(BEC)实验及其最新进展.物理学进展, 2005, 25(3): 235-258
    [8] Burger S, Bongs K, Dettmer S, et al. Dark Solitons in Bose-Einstein Condensates. Phys Rev Lett, 1999, 83: 5198-5201
    [9] Khaykovich L, Schreck F, Ferrari G, et al. Formation of a Matter-Wave Bright Soliton. Science, 2002, 296: 1290-1293
    [10] Strecker K E, Partridge G. B, Truscott A G., et al. Formation propagation of matter-wave soliton trains. Nature, 2002, 417: 150-153
    [11] Inouye S, Andrews M R, Stenger J, et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature, 1998, 392: 151-154
    [12] Denschlag J, Simsarian J E, Feder D L, et al. Generating Solitons by Phase Engineering of a Bose-Einstein Condensate. Science, 2000, 287: 97-101
    [13] Williams J, Walser R Cooper J, et al. Nonlinear Josephson-type oscillations of a driven, two-component Bose-Einstein condensate. Phys Rev A, 1999, 59, R31
    [14] Anderson B P, Kasevich M A. Macroscopic Quantum Interference from Atomic Tunnel Arrays. Science, 1998, 282: 1686-1689
    [15] Hall D S, Matthews M R, Ensher J R, et al. Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates. Phys Rev Lett, 1998, 81: 1539-1542
    [16] Hall D S, Matthews M R, Wieman C E, et al. Measurements of Relative Phase in Two-Component Bose-Einstein Condensates. Phys Rev Lett, 1998, 81: 1543-1546
    [17] Anderson B P, Haljan P C, Regal C A, et al. Watching Dark Solitons Decay into Vortex Rings in a Bose-Einstein Condensate. Phys Rev Lett, 2001, 86: 2926
    [18] Pérez-García V M, Beitia J B. Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates. Phys Rev A, 2005, 72: 033620
    [19] Xu K, Liu Y, Miller D E, et al. Observation of Strong Quantum Depletion in a Gaseous Bose-Einstein Condensate. Phys Rev Lett, 2006, 96: 180405
    [20] Cornish S L, Thompson S T, Wieman C E. Formation of Bright Matter-Wave Solitons during the Collapse of Attractive Bose-Einstein Condensates. Phys Rev Lett, 2006, 96: 170401
    [21] Dreischuh A, Neshev D N, Petersen D E, et al. Observation of Attraction between Dark Solitons. Phys Rev Lett, 2006, 96: 043901
    [22] Rudolf G, Borge H, Jonas F, et al. Noise thermometry with two weakly coupled Bose-Einstein Condensates. Phys Rev Lett, 2006, 96: 130404
    [23] Wang Y Z, Zhou S Y, Long Q, et al. Evidence for a Bose-Einstein condensate in dilute Rb gas by absorption image in a quadrupole and Ioffe configuration trap. Chin Phys Lett, 2003, 20(6): 799-801
    [24] Chen S, Zhou X J, Yang F, et al. Analysis of runaway evaporation and Bose-Einstein condensate by time-of-flight absorption imaging. Chin Phys Lett, 2004, 21(11): 2105-2108
    [25] Dalfovo F, Giorgini S, Pitaevskii L P, et al. Theory of Bose-Einstein Condensation in trapped gases. Rev Mod Phys, 1999, 71(3): 463-512
    [26] Leggett A J. Bose-Einstein condensation in the alkali gases: Some fundamental concepts. Rev Mod Phys, 2001, 73(2): 307-356
    [27] Liang Z X, Zhang Z D, Liu W M. Dynamics of a Bright Soliton inBose-Einstein Condensates with Time-Dependent Atomic Scattering Length in an Expulsive Parabolic Potential. Phys Rev Lett, 2005, 94: 050402
    [28] Xie Z W, Zhang W P, Chui S T, et al. Magnetic solitons of spinor Bose-Einstein condensates in an optical lattice. Phys Rev A, 2004, 69: 053609
    [29] Xie Z W, Cao Z X, Kats E I, et al. Nonlinear dynamics of a dipolar Bose-Einstein condensate in an optical lattice. Phys Rev A, 2005, 71: 025601
    [30] Li Z D, He P B, Li L, et al. Magnetic soliton and soliton collisions of spinor Bose-Einstein condensates in an optical lattice. Phys Rev A, 2005, 71:053611
    [31] Li L, Li Z D, Malomed B A, et al. Exact soliton solutions and nonlinear modulation instability in spinor Bose-Einstein condensates. Phys Rev A, 2005, 72: 033611
    [32] Hai W H, Feng M, Zhu X W, et al. Alternative quantum perturbation theory without divergences. Phys Rev A, 2000, 61: 052105
    [33] Lee C H, Hai W H, Shi L, et al. Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates. Phys Rev A, 2001, 64: 053604
    [34] Lee C H, Hai W H, Luo X L, et al. Quasispin model for macroscopic quantum tunneling between two coupled Bose-Einstein condensates. Phys Rev A, 2003, 68: 053614
    [35] Lee C H, Hai W H, Shi L, et al. Phase-dependent spontaneous spin polarization and bifurcation delay in coupled two-component Bose-Einstein condensates. Phys Rev A, 2004, 69: 033611
    [36] Liu M, Wen L H, Xiong H W, et al. Structure and generation of the vortex-antivortex superposed state in Bose-Einstein condensates. Phys Rev A, 2006, 73: 063620
    [37] Zhang W P, Wright E M, Pu H, et al. Fundamental limit for integrated atom optics with Bose-Einstein condensates. Phys Rev A, 2003, 68: 023605
    [38] Zhai H, Chen W Q, Xu Z, et al. Skyrmion excitation in a two-dimensional spinor Bose-Einstein condensate. Phys Rev A, 2003, 68: 043602
    [39] Zhai H, Zhou Q, LüR, et al. Double-layer Bose-Einstein condensates with a large number of vortices. Phys Rev A, 2004, 69: 063609
    [40] Zhang P, Xu Z, You L. Nonadiabatic production of spinor condensates with a quadrupole-Ioffe-configuration trap. Phys Rev A, 2006, 73: 013623
    [41] Wu Y, Yang X X, Xiao Y. Analytical Method for Yrast Line States inInteracting Bose-Einstein Condensates. Phys Rev Lett, 2001, 86: 2200
    [42] Wu Y, Deng L. Ultraslow Optical Solitons in a Cold Four-State Medium. Phys Rev Lett, 2004, 93: 143904
    [43] Huang G X, Velarde M G, Makarov V A. Dark solitons and their head-on collisions in Bose-Einstein condensates. Phys Rev A, 2001, 64: 013617
    [44] Xiong H W, Liu S J, Huang G X, et al. Canonical statistics of trapped ideal and interacting Bose gases. Phys Rev A, 2002, 65: 033609
    [45] Huang G X, Szeftel J, Zhu S H. Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates. Phys Rev A, 2002, 65: 053605
    [46] Huang G X, Makarov V A, Velarde M G. Two-dimensional solitons in Bose-Einstein condensates with a disk-shaped trap. Phys Rev A, 2003, 67: 023604
    [47] Xie Q T, Hai W H, Chong G S. Chaotic atomic tunneling between two periodically driven Bose–Einstein condensates. Chaos, 2003, 13(3): 801-805
    [48] Kuang L M, Ouyang Z W. Macroscopic quantum self-trapping and atomic tunneling in two-species Bose-Einstein condensates. Phys Rev A, 2000, 61: 023604
    [49] Hai W H, Lee C H, Chong G S. Propagation and breathing of matter–wave-packet trains. Phys Rev A, 2004, 70: 053621
    [50] Chong G S, Hai W H, Xie Q T. Spatial chaos of trapped Bose–Einstein condensate in one-dimensional weak optical lattice potential. Chaos, 2004, 14(2): 217-223
    [51] Li W D, Zhang Y B, Liang J Q. Energy-band structure and intrinsic coherent properties in two weakly linked Bose-Einstein condensates. Phys Rev A, 2003, 67: 065601
    [52] Ng H T, Law C K, Leung P T. Quantum-correlated double-well tunneling of two-component Bose-Einstein condensates. Phys Rev A, 2003, 68: 013604
    [53] Ng H T, Leung P T. Two-mode entanglement in two-component Bose-Einstein condensates. Phys Rev A, 2005, 71: 013601
    [54] Law C K. Dynamic quantum depletion in phase-imprinted generation of dark solitons. Phys Rev A, 2003, 68: 015602
    [55] Wang S J, Jia C L, Zhao D, et al. Dark and bright solitons in a quasi-one- dimensional Bose-Einstein condensate. Phys Rev A, 2003, 68: 015601
    [56] Zhang Y Y, Yin L. Three-body recombination of a condensed Bose gas near a Feshbach resonance. Phys Rev A, 2005, 72: 043607
    [57] Ma X Q, Xia L, Yang F, et al. Population oscillation of the multicomponent spinor Bose-Einstein condensate induced by nonadiabatic transitions. Phys Rev A, 2006, 73: 013624
    [58] Tsutsumi M, Ueda T, Okubo K. Magnetostatic-Wave envelope soliton in microstrip line using YIG-Film substrate. IEEE Trans. Microwave Theory Tech, 2000, 48(2):239-244
    [59]冯则坤,何华辉.静磁波基本特性及其频散特性控制.探测与控制学报, 1999, 21(3): 50-52
    [60]胡文忠.控制静磁表面波线性色散的一种新方法.磁性材料及器件, 2004, 35(5): 21-24
    [61]余声明.微波YIG铁氧体技术的开发和利用.通信元器件, 2000, (10): 64-65
    [62] Scott M M, Kalinikos B A, Patton C E. Self-generation of bright microwave magnetic envelope soliton trains in ferrite films through frequency filtering. Appl Phys Lett, 2001, 78(7): 970-972
    [63] Kalinikos B A, Kovshikov N G, Patton C E. Excitation of bright and dark microwave magnetic envelope solitons in a resonant ring. Appl Phys Lett, 1999, 75(2): 265-267
    [64] Kalinikos B A, Kovshikov N G, Slavin A N. Observation of spin wave solitons in ferromagnetic films. Sov. Phys. JETP Lett, 1983, 38(7): 413-417
    [65] Boyle J W, Nikitov S A, Boardman A D, et al. Observation of cross-phase induced modulation instability of travelling magnetostatic waves in ferromagnetic films. J Magn Magn Mater, 1997, 173: 241-252
    [66] Korotkevich A O, Nikitov S A. Cross-phase modulation of surface magnetostatic spin waves. JETP, 1999, 89(6): 1114-1119 (Russian reference: Zh Eksp Teor Fiz, 1999, 116: 2058-2068 )
    [67] Khomeriki R, Tkeshelashvili L. A generalized approach for the description of magnetostatic soliton interaction in yttrium–iron-garnet films. J Phys, 2000, 12: 8875-8882
    [68] Lukomskii V P. Nonlinear magnetostatic waves in ferromagnetic plates. Ukr. Fiz.Zh., 1978, 23: 134-39
    [69] Zvezdin A K, Popkov A F. Contribution to the nonlinear theory of magnetostaticspin waves. Sov Phys JETP, 1983, 57: 350-355
    [70] Zhang H Y, Kabos P, Xia H, et al. Modeling of microwave magnetic envelope solitons in thin ferrite films through the nonlinear Schr?dinger equation. J Appl Phys, 1998, 84(7): 3776-3785
    [71] Kovshikov N G, Kalinikos B A, Patton C E, et al. Formation, propagation, reflection, and collision of microwave envelope solitons in yttrium iron garnet films. Phys Rev B, 1996, 54: 15210
    [72] Zaspel C E, Slavin A N. A new model for dark solitons in magnetic films. J Appl Phys 1997, 81(8): 5159-5161
    [73] Rapoport Y G, Zaspel C E, Mantha J H, et al. Multisoliton formation in magnetic thin films. Phys Rev B 2002, 65: 024423
    [74] Zaspel C E, Kindyak A S. Radiation emitted by microwave envelope solitons propagating in thin ferrite films. Phys Rev B 2002, 65: 094435
    [75] Zaspel C E, Mantha J H, Rapoport Y G, et al. Evolution of solitons in magnetic thin films. Phys Rev B, 2001, 64: 064416
    [76] Giorgadze N, Khomeriki R. Interaction of envelope solitons in yttrium iron garnet films. Phys Rev B, 1999, 60: 1247
    [77] Kindyaka A S, Boardmanb A D, Kindyak V V. Surface magnetostatic spin wave envelope solitons in ferrite semiconductor structure. J Magn Magn Mater, 2002, 253: 8-14
    [78] Si X W, Liu G Q. Magnetostatic wave propagation in a double- layered film structure under inclined magnetic field. J Magn Magn Mater, 2001, 223(2): 147-155
    [79] Cai J H, Liu G Q, Photomagnetic effect of a magnetic impurity embedded in a nonmagnetic base. Phys Rev B, 2001, 64: 014409
    [80] Wu B J, Liu G Q, Zou Z Q. Mode Conversion and Diffraction of Guided Optical Waves from Magnetostatic Waves under Inclined Bias Magnetic Field. Commun. Theor. Phys. 2001, 36(4): 497-502
    [81] He P, Liu W M. Nonlinear magnetization dynamics in a ferromagnetic nanowire with spin current. Phys Rev B, 2005, 72: 064410
    [82]杨青慧,刘颖力,张怀武,等.实用化静磁表面波带通滤波器研究.红外与毫米波学报, 2004, 23(5): 389-392
    [83]杨青慧,刘颖力,张怀武.静磁波器件研究进展.磁性材料及器件, 2003,34(6): 30-33
    [84]杨青慧,刘颖力,张怀武,等.静磁表面波器件插入损耗分析.磁性材料及器件, 2004, 35(3): 9-12
    [85] Russell J S. Report on Waves. in Rep 14th Meet British Assoc Adv Sci (John Murray, 1844) 311
    [86] Boussinesq J. Theory of wave and swells propagated in long horizontal rectangular canal and imparting to the liquid contained in this canal. J Math Pure Appl, 1872, 17(2): 55-108
    [87] Korteweg D J, de Vries G. On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves, Phil Mag, 1895, 39: 442
    [88] Fermi E, Pasta J, Ulam S. Studies of Nonlinear Problems (Los Alamos National Laboratory, Los Alamos, 1955) Report No. LA1940
    [89] Perring J K, Skyrme T H R. A model unified field equation. Nucl. Phys., 1962, 31: 550-555
    [90] Kruskal M D, Zabusky N J. Exact Invariants for a Class of Nonlinear Wave Equations. J. Math. Physics, 1966, 7: 1256-1267.
    [91] Gardner C S, Greene J M, Kruskal M D, et al. Method for Solving the Korteweg-deVries Equation. Phys Rev Lett, 1967, 19: 1095
    [92] Lax P D. Intetrals of nonlinear equations of evolution and solitary waves. Commu Pure Appl Math, 1968, 21: 467-490
    [93] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. anomalous dispersion, Appl Phys Lett, 1973, 23(3): 142-144
    [94] Mollenauer L F, Stolen R H, Gorden J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett, 1980, 45(3): 1095-1098
    [95]陈陆君,梁昌洪.孤子理论及应用.第1章西安:西安电子科技大学出版社,1997
    [96]黄念宁.孤子理论和微扰方法.上海:上海科学技术出版社, 1996
    [97]海文华.孤子理论新进展.益阳师专学报, 1995, 12(5): 5-13
    [98]余守宪.孤立子及其相互作用分析.大学物理, 1996, 15(11): 42-44, 15(12): 35-39
    [99]周光辉,朱久运.孤立子——一种非线性效应.大学物理, 1994, 13(4): 32-35
    [100] Yuri S K, Boris A. Malomed. Dynamics of solitons in nearly integrable systems. Rev Mod Phys, 1989, 61(4): 763-915
    [101] Mourachkine A. Nonlinear excitations: Solitons. arXiv:cond-mat/0411452, v1, 2004
    [102] Drazin P G, Johnson R S. Solitons: an introduction. Cambridge University Press, 1990
    [103] Toda M. Nonlinear Waves and Solitons, Kluwer, 1989
    [104] Aranson I S, Kramer L. The world of the complex Ginzburg-Landau equation. Rev Mod Phys, 2002, 74: 99-143
    [105] Gammal A, Frederico T, Tomio L. Critical number of atoms for attractive Bose-Einstein condensates with cylindrically symmetrical traps. Phys Rev A, 2001, 64: 055602
    [106] Kasamatsu K, Tsubota M, Ueda M. Nonlinear dynamics of vortex lattice formation in a rotating Bose-Einstein condensate. Phys Rev A, 2003, 67: 033610
    [107] Saito H, Ueda M. Emergence of Bloch Bands in a Rotating Bose-Einstein Condensate. Phys Rev Lett, 2004, 93: 220402
    [108] Bretin V, Stock S, Seurin Y, et al. Fast Rotation of a Bose-Einstein Condensate. Phys Rev Lett, 2004, 92(5): 050403
    [109] Kartashov Y V, Torner L. Matter-wave soliton control in optical lattices with topological dislocations. Phys Rev A, 2006, 74: 043617
    [110] Andersen J O. Theory of the weakly interacting Bose gas. Rev Mod Phys, 2004, 76(2): 599-639
    [111] Cornell E A, Wieman C E. Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev Mod Phys, 2002, 74(3): 875-893
    [112] Arlt J J, Bongs K, Sengstock K, et al. Bose-Einstein condensation in dilute atomic gases. Naturwissenschatten, 2002, 89: 47-56
    [113] G?rlitz A, Vogels J M, Leanhardt A E, et al. Realization of Bose-Einstein Condensates in Lower Dimensions. Phys Rev Lett, 2001, 87: 130402
    [114]恽旻,印建平.晶格原子光学及其应用.量子电子学报, 2006, 23(1): 10-21
    [115] Rychtarik D, Engeser B, N?gerl H-C, et al. Two-Dimensional Bose-Einstein Condensate in an Optical Surface Trap. Phys Rev Lett, 2004, 92: 173003
    [116] Askar’yan G A. Effects of the gradient of a strong electromagnetic beam on electrons and atoms. Sov Phys JETP, 1962, 15: 1088-1090
    [117] Letokhov V S. Narrowing of the Doppler width in a standing light wave. Pis’ma Zh Eksp Teor Fiz, 7: 348[JETP Lett, 1968, 7: 272-279]
    [118] Letokhov V S, Minogin V G, Pavlik B D. Cooling and trapping atoms and molecules by a resonant laser field. Opt Commun, 1976, 19: 72-75
    [119] Tasgal R S, Menabde G, BandY B. Molecule condensate production from an atomic Bose-Einstein condensate via Feshbach scattering in an optical lattice: Gap solitons. Phys Rev A, 2006, 74: 053613
    [120] Abdullaev F Kh, Baizakov B B, Darmanyan S A, et al. Nonlinear excitations in arrays of Bose-Einstein condensates. Phys Rev A, 2001, 64: 043606
    [121] Band Y B, Towers I, Malomed B A. Unified semiclassical approximation for Bose-Einstein condensates: Application to a BEC in an optical potential. Phys Rev A, 2003, 67: 023602
    [122] Martikainen J-P, Stoof H T C. Vortex-Line Solitons in A Periodically Modulated Bose-Einstein Condensate. Phys Rev Lett, 2004, 93: 070402
    [123] Morsch O, Oberthaler M. Dynamics of Bose-Einstein condensates in optical lattices. Rev Mod Phys, 2006, 78(1): 179-215
    [124] Burger S, Cataliotti F S, Fort C, et al. Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential. Phys Rev Lett, 2001, 86(20): 4447-4450
    [125] Mayteevarunyoo T, Malomed B A. Stability limits for gap solitons in a Bose-Einstein condensate trapped in a time-modulated optical lattice. Phys Rev A, 2006, 74: 033616
    [126] Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 2002, 415: 39-44
    [127] Snoek M, Stoof H T C. Vortex-Lattice Melting in a One-Dimensional Optical Lattice. Phys Rev Lett, 2006, 96: 230402
    [128] Morsch O, Muller J H, Christiani M, et al. Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices. Phys Rev Lett, 2001, 87: 140402
    [129] Salasnich L, Parola A, Reatto L. Periodic quantum tunnelling and parametric resonance with cigar-shaped Bose-Einstein condensates. J Phys B, 2002, 35(14):3205-3216
    [130] Peil S, Porto J V, Tolra B L, et al. Patterned loading of a Bose-Einstein condensate into an optical lattice. Phys Rev A, 2003, 67: 051603(R)
    [131] Rey A M, Hu B L, Calzetta E, et al. Nonequilibrium dynamics of optical lattice-loaded BEC atoms: Beyond HFB approximation. e-print: arXiv: cond-mat/0308305, August 2003.
    [132] Iacopo C, Davide E, Giuseppe C L R. Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices. Phys Rev A, 2002, 65: 053611
    [133] Brazhnyi V A, Konotop V V. Theory of Nonlinear Matter Waves in Optical Lattices. Mod Phys Lett B, 2004, 18(14): 627-651
    [134] Bronski J C, Carr L D, Deconinck B, et al. Bose-Einstein Condensates in Standing Waves: The Cubic Nonlinear Schr?dinger Equation with a Periodic Potential. Phys Rev Lett, 2001, 86: 1402-1405
    [135] Bronski J C, Carr L D, Deconinck B, et al. Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys Rev E, 2001, 63: 036612
    [136] Bronski J C, Carr L D, Gonzalez R C, et al. Stability of attractive Bose-Einstein condensates in a periodic potential. Phys Rev E, 2001, 64: 056615
    [137] Hagley E W, Deng L, Kozuma M, et al. A Well-Collimated Quasi-Continuous Atom Laser. Science, 1999, 283: 1706-1709
    [138] Gonzalez R C, Promislow K. Localized breathing oscillations of Bose-Einstein condensates in periodic traps. Phys Rev A, 2002, 66: 033610
    [139] Bloch F. Zur Theorie des Ferromagnetismus. (German), Z Phys, 1930, 61: 206-219
    [140] Demokritov S O, Hillebrands B, Slavin A N. Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Physics Reports, 2001, 348: 441-489
    [141] Stancil D. Theory of Magnetostatic Wave (Springer-Verlag, New York, 1993)
    [142] Kalinikos B A, Kovshikov N G, Slavin A N. Spin-wave solitons in ferromagnetic films: observation of a modulational instability of spin waves during continuous excitation. Sov Tech Phys Lett, 1984, 10(8): 392-393
    [143] Kalinikos B A, Kovshikov N G, Slavin A N. Observation of dipole spin wave envelope solitons in ferromagnetic film. IEEE Trans Magn, 1990, 26: 1477-1479
    [144] Kalinikos B A, Kovshikov N G, Slavin A N. Envelope solitons of highlydispersive and low dispersive spin waves in magnetic films (invited). J Appl Phys, 1991, 69: 5712-5717
    [145] De Gasperis P, Marcelli R, Miccoli G. Microwave soliton in magnetic garnet film (invited). J Appl Phys, 1988, 63: 4136-4140
    [146] Kalinikos B A, Kovshikov N G, Kolodin P A, et al. Observation of dipole-exchange spin wave solitons in tangentially magnetized ferromagnetic films. Solid State Commun., 1990, 74: 989-993
    [147] Kalinikos B A, Kovshikov N G, Slavin A N. Spin-wave envelope solitons in thin ferromagnetic films (invited). J Appl Phys, 1990, 67: 5633-5638
    [148] Wu M, Kalinikos B A, Patton C E. Generation of Dark and Bright Spin Wave Envelope Soliton Trains through Self-Modulation Instability in Magnetic Films. Phys Rev Lett, 2004, 93: 157207
    [149] Scott M M, Kostylev M P, Kalinikos B A, et al. Excitation of bright and dark envelope solitons for magnetostatic waves with attractive nonlinearity. Phys Rev B, 2005, 71: 174440
    [150] Kalinikos B A, Scott M M, Patton C E. Self-Generation of Fundamental Dark Solitons in Magnetic Films. Phys Rev Lett, 2000, 84: 4697-4700
    [151] Wu M, Kalinikos B A, Carr L D, et al. Observation of Spin-Wave Soliton Fractals in Magnetic Film Active Feedback Rings Phys Rev Lett, 2006, 96: 187202
    [152] Wu M, Kraemer M A, Scott M M, et al. Spatial evolution of multipeaked microwave magnetic envelope solitons in yttrium iron garnet thin films. Phys Rev B, 2004, 70: 054402
    [153] Wu M, Patton C E. Experimental Observation of Fermi-Pasta-Ulam Recurrence in a Nonlinear Feedback Ring System. Phys Rev Lett, 2007, 98: 047202
    [154] Kostylev M P, Kovshikov N G. Self-generation of spin-wave envelope soliton trains with different periods. JETP Lett, 2002, 76: 253-257
    [155] Bischof B, Slavin A N, Benner H, et al. Generation of spin-wave dark solitons with phase engineering. Phys Rev B, 2005, 71: 104424
    [156] Leblond H. Rigorous derivation of the NLS in magnetic films. J Phys A, 2001, 34: 9687-9712
    [157] Wang X, Xu S. Nonlinear magnetostatic surface waves of magnetic multilayers: Effective medium theory. Phys Rev B, 2001, 63: 054415
    [158] Lamb Jr G L. B?cklund transformations for certain nonlinear evolutionequations. J Math Phys, 1974, 15: 2157-2165
    [159] Chen H H. General derivation of B?cklund transformations from inverse scattering problems. Phys Rev Lett, 1974, 33: 925-928
    [160] Clarkson P A, Joshi N, Pickering A. B?cklund transformations for the second Painlevéhierarchy: a modified truncation approach. Inverse Problems, 1999, 15: 175-187
    [161] Hirota R. Direct methods of finding exect solution of nonlinear evolution equations, in“Backlund Transformation”. Ed. Miura R M. Springer, Berlin, 1976
    [162] Gibbon J D, Radmore P, Tabor M, et al. The Painlevéproperty and Hirota's method. Stud Appl Math, 1985, 72: 39-63
    [163] Hirota R, Satsuma J. N-soliton solutions of model equations for shallow water waves. J Phys Soc Japan Letters, 1976, 40: 611-612
    [164] Matveev V B, Salle M A. Darboux transformations and solitons. Springer-Verlag, Berlin, 1991
    [165] Fordy A P, Gibbons J. Some remarkable nonlinear transformations. Phys Lett A, 1980, 75: 325-325
    [166] Fleck J A, Morris J R. Time-dependent propagation of high energy laser beams through the atmosphere. Appl Phys, 1976, 10: 129-160
    [167] Caetano D P, Cavalcanti S B, Hickmann J M, at al. Soliton propagation in a medium with Kerr nonlinearity and resonant impurities: A variational approach. Phys Rev E, 2003, 67: 046615
    [168] Elyutin P V, Buryak A V, Gubernov V V, et al. Interaction of two one-dimensional Bose-Einstein solitons: Chaos and energy exchange. Phys Rev E, 2001, 64: 016607
    [169] Aleshkevich V, Kartashov Y, Vysloukh V. Self-bending of the coupled spatial soliton pairs in a photorefractive medium with drift and diffusion nonlinearity. Phys Rev E, 2000, 63: 016603
    [170] Lederer F, Biehlig W, Muschall R, et al. Soliton switching in properly tailored nonlinear directional couplers. Proc. SPIE, 1994, 2212: 95-105
    [171] Bondeson A, Lisak M, Anderson D. Soliton Perturbations: A Variational Principle for the Soliton Parameters. Phys Scr, 1979, 20: 479-485
    [172] Rizzato F B, de Oliveira G I, Chian A C-L. Nonlinear stability of solitons against strong external perturbations. Phys Rev E, 2003, 67: 047601
    [173] Quintero N R, El?as Z-S. Lagrangian formalism in perturbed nonlinear Klein–Gordon equations. Phys D, 2004, 197: 63-68
    [174] Minzoni A A, Smyth N F, Worthy A L. A variational approach to the stability of an embedded NLS soliton at the edge of the continuum. Phys D, 2005, 206: 166-179
    [175] Anderson D, Lisak M, Berntson A. A variational approach to nonlinear evolution equations in optics. J Phys, 2001, 57(5): 917-936
    [176] Kivshar Y S, Krolikowski W. Lagrangian approach for dark solitons. Opt. Commun. 1995, 114: 353-362
    [177] Ostrovskaya E A, Kivshar Y S, Lisak M, et al. Coupled-mode theory for Bose-Einstein condensates. Phys Rev A, 2000, 61: 031601(R)
    [178] Al Khawaja U, Stoof H T C, Hulet R G, et al. Bright Soliton Trains of Trapped Bose-Einstein Condensates. Phys Rev Lett, 2002, 89: 200404
    [179] Schmelcher G T P, Oberthaler M K, Kevrekidis P G, et al. Lagrangian approach to the dynamics of dark matter-wave solitons. Phys Rev A, 2005, 72: 023609
    [180] Hammer H-W, Son D T. Universal Properties of Two-Dimensional Boson Droplets. Phys Rev Lett, 2004, 93: 250408
    [181] Saito H, Ueda M. Dynamically Stabilized Bright Solitons in a Two-Dimensional Bose-Einstein Condensate. Phys Rev Lett, 2003, 90: 040403
    [182] Cuevas J, Malomed B A, Kevrekidis P G. Motion of discrete solitons assisted by nonlinearity management. Phys Rev E, 2005, 71: 066614
    [183] Itin A, Morishita T, Watanabe S. Reexamination of dynamical stabilization of matter-wave solitons. Phys Rev A, 2006, 74: 033613
    [184] Chevy F. Low-lying twisting and acoustic modes of a rotating Bose-Einstein condensate. Phys Rev A, 2006, 73: 041604(R)
    [185] Banerjee A, Singh M P. Properties of trapped Bose gas with vortices in large-gas-parameter regime. Phys Rev A, 2006, 73: 033607
    [186] ParéC, Florjańczyk M. Approximate model of soliton dynamics in all-optical couplers. Phys Rev A, 1990, 41(11): 6287-6295,
    [187] Pérez-García V M, Michinel H, Cirac J I, et al. Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis. Phys Rev Lett, 1996, 77: 5320-5323
    [188] Filho V S, Abdullaev F Kh, Gammal A, et al. Autosolitons in trapped Bose-Einstein condensates with two- and three-body inelastic processes. PhysRev A, 2001, 63: 053603
    [189] Salasnich L, Parola A, Reatto L. Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates. Phys Rev A, 2002, 65: 043614
    [190] Saito H, Ueda M. Bose-Einstein droplet in free space. Phys Rev A, 2004, 70: 053610
    [191] Anderson D. Variational approach to nonlinear pulse propagation in optical fibers. Phys Rev A, 1983, 27(11): 3135-3145
    [192] Manousakis M, Droulias S, Papagiannis P, et al. Propagation of chirped solitary pulses in optical transmission lines: perturbed variational approach. Opt Commu, 2002, 213: 293-299
    [193] Malomed B A. Variational methods in nonlinear fiber optics and related fields. In: E. wolf, Progress in optics 43( Elsevier Science B.V., 2002, Chapter 2)
    [194] Xua Z, Lic Lu, Lia Z-H, et al. Soliton interaction under the influence of higher-order effects. Opt Commu, 2002, 210: 375-384
    [195] Hong Woo-Pyo. Modulational instability of optical waves in the high dispersive cubic–quintic nonlinear Schr?dinger equation. Opt Commu, 2002, 213: 173-182
    [196] Sakaguchi H. Motion of pulses and vortices in the cubic-quintic complex Ginzburg-Landau equation without viscosity. Phys D, 2005, 210: 138-148
    [197] Mayteevarunyoo T, Malomed B A, Chu P L, et al. Stability and collisions of moving semi-gap solitons in Bragg cross-gratings. Phys Lett A, 2004, 332: 220-229
    [198] Neill D R, Atai J. Collision dynamics of gap solitons in Kerr media. Phys Lett A, 2006, 353: 416-421
    [199] Sakaguchi H, Malomed B A. Two-dimensional solitons in the Gross-Pitaevskii equation with spatially modulated nonlinearity. Phys Rev E, 2006, 73: 026601
    [200] Sakaguchi H, Malomed B A. Resonant nonlinearity management for nonlinear Schr?dinger solitons. Phys Rev E, 2004, 70: 066613
    [201] Michinel H, Salgueiro J R, Paz-Alonso M J. Square vortex solitons with a large angular momentum. Phys Rev E, 2004, 70: 066605
    [202] Carpentier A V, Michinel H, Rodas-Verde M I. Analysis of an atom laser based on the spatial control of the scattering length. Phys Rev A, 2006, 74: 013619
    [203] Lundh E, Martikainen J, Suominen K. Vortex nucleation in Bose-Einstein condensates in time-dependent traps. Phys Rev A, 2003, 67: 063604
    [204] Bradley C C, Sackett C A, Hulet R G. Bose-Einstein Condensation of Lithium:Observation of Limited Condensate Number. Phys Rev Lett, 1997, 78: 985-989
    [205] Fetter A L. Nonuniform states of an imperfect Bose gas. Ann Phys (N.Y.) 1972, 70: 67-101
    [206] Olshanii M. Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Phys Rev Lett, 1998, 81: 938-941
    [207] Jackson A D, Kavoulakis G M, Pethick C J. Solitary waves in clouds of Bose-Einstein condensed atoms. Phys Rev A, 1998, 58: 2417-2422
    [208] Chiofalo M L, Tosi M P. Output from Bose condensates in tunnel arrays: the role of mean-field interactions and of transverse confinement. Phys Lett A, 2000, 268: 406-412
    [209] Ma X Q, Chen S, Yang F, et al. Observation of F=2 sponor Bose-Einstein condensate in a magnetic field. Chin. Phys Lett 2005, 22: 1106-1109
    [210] Mewes M O, Andrews M R, van Druten N J, et al. Bose-Einstein Condensation in a Tightly Confining dc Magnetic Trap. Phys Rev Lett, 1996, 77: 416-419
    [211] Wynar R, Freeland R S, Han D J, et al. Molecules in a Bose-Einstein Condensate. Science, 2000, 287: 1016-1019
    [212] Frantzeskakis D J, Theocharis G, Diakonos F K, et al. Interaction of Dark Solitons with Localized Impurities in Bose-Einstein Condensates. Phys Rev A, 2002, 66: 053608
    [213] Edwards M, Burnett K. Numerical solution of the nonlinear Schr?dinger equation for small samples of trapped neutral atoms. Phys Rev A, 1995, 51: 1382-1386
    [214] Ruprecht P A, Holland M J, Burnett K, et al. Time-dependent solution of the nonlinear Schr?dinger equation for Bose-condensed trapped neutral atoms. Phys Rev A, 1995, 51: 4704-4711
    [215] Weiner J, Bagnato V S, Zilio S, et al. Experiments and theory in cold and ultracold collisions. Rev Mod Phys, 1999, 71: 1-85
    [216] Kagan Y, Muryshev A E, Shlyapnikov G V, et al. Bose-Einstein Condensation in Trapped Atomic Gases. Phys Rev Lett, 1996, 76: 2670-2673
    [217] Esry B D, Greene C H, Zhou Y, et al. Role of the scattering length in three-boson dynamics and Bose–Einstein condensation. J Phys B, 1996, 29: L51-L57
    [218] Josserand C, Rica S. Coalescence and Droplets in the Subcritical Nonlinear Schr?dinger Equation. Phys Rev Lett, 1997, 78: 1215-1218
    [219] Frederico T, Tomio L, Delfino A, et al. Scaling limit of weakly bound triatomic states. Phys Rev A, 1999, 60: R9-R12
    [220] Burt E A, Ghrist R W, Myatt C J, et al. Coherence, Correlations, and Collisions: What One Learns about Bose-Einstein Condensates from Their Decay. Phys Rev Lett, 1997, 79: 337-340
    [221] K?hler T. Three-Body Problem in a Dilute Bose-Einstein Condensate. Phys Rev Lett, 2002, 89: 210404
    [222] Gammal A, Frederico T, Tomio L, et al. Atomic Bose–Einstein condensation with three-body interactions and collective excitations. J Phys B, 2000, 33: 4053-4067
    [223] Frantzeskakis D J, Proukakis N P, Kevrekidis P G. Dynamics of shallow dark solitons in a trapped gas of impenetrable bosons. Phys Rev A, 2004, 70: 015601
    [224] Pelinovsky Dmitry E, Frantzeskakis D J, Kevrekidis P G. Oscillations of dark solitons in trapped Bose-Einstein condensates. Phys Rev E, 2005, 72: 016615
    [225] ZińP, Chwedeńczuk J, Trippenbach M. Elastic scattering losses from colliding Bose-Einstein condensates. Phys Rev A, 2006, 73: 033602
    [226] Kevrekidis P G, Frantzeskakis D J, Carretero-González R, et al. Statics, dynamics, and manipulations of bright matter-wave solitons in optical lattices. Phys Rev A, 2005, 71: 023614
    [227] Scott R G, Martin A M, Bujkiewicz S. Transport and disruption of Bose-Einstein condensates in optical lattices. Phys Rev A, 2004, 69: 033605
    [228] Josselin G, Fatkhulla K A. Transmission of matter-wave solitons through nonlinear traps and barriers. Phys Rev A, 2006, 74: 013604
    [229] Yulin A V, Skryabin D V, Russell P St J. Transition Radiation by Matter-Wave Solitons in Optical Lattices. Phys Rev Lett, 2003, 91: 260402
    [230] Schart R, Bishop A R. Length-scale competition for the one-dimensional nonlinear Schr?dinger equation with spatially periodic potentials. Phys Rev E, 1993, 47: 1375-1383
    [231] Liu S J, Xiong H W, Xu Z J, et al. Interference patterns of Bose-Einstein condensed gases in a two-dimensional optical lattice. J Phys B, 2003, 36: 2083-2092
    [232] Liu W M, Fan W B, Zheng W M, et al. Quantum Tunneling of Bose-Einstein Condensates in Optical Lattices under Gravity. Phys Rev Lett, 2002, 88: 170408
    [233] Smerzi A, Fantoni S, Giovanazzi S, et al. Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates. Phys Rev Lett, 1997, 79: 4950-4953
    [234] Raghavan S, Smerzi A, Fantoni S, et al. Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects,πoscillations, and macroscopic quantum self-trapping. Phys Rev A, 1999, 59: 620-633
    [235] Milburn G J, Corney J, Wright E M, et al. Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys Rev A, 1997, 55: 4318-4324
    [236] Orzel C, Tuchman A R, Fenselau M L, et al. Squeezed States in a Bose-Einstein Condensate. Science, 2001, 291: 2386-2389
    [237] Andrews M R, Townsend C G, Miesner H-J, et al. Observation of Interference Between Two Bose Condensates. Science, 1997, 275: 637-641
    [238] Shchesnovich V S, Cavalcanti S B, Kraenkel R A. Solitons in tunnel-coupled repulsive and attractive condensates. Phys Rev A, 2004, 69: 033609
    [239] Myatt C J, Burt E A, Ghrist R W, et al. Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Phys Rev Lett, 1997, 78: 586-589
    [240] Kevrekidis P G, Susanto H, Carretero-González R, et al. Vector solitons with an embedded domain wall. Phys Rev E, 2005, 72: 066604,
    [241] Busch T, Anglin J R. Dark-Bright Solitons in Inhomogeneous Bose-Einstein Condensates. Phys Rev Lett, 2001, 87: 010401
    [242] Raghavan S, Agrawal G P. Switching and Self-Strapping Synamics of Bose-Einstein Solitons. J Mod Opt, 2000, 47: 1155-1169
    [243] Ananikian D, Bergeman T. Gross-Pitaevskii equation for Bose particles in a double-well potential: two-mode models and beyond. Phys Rev A, 2006, 73: 013604
    [244] Schumayer D, Apagyi B. Painleve test of coupled Gross–Pitaevskii equations. J Phys A, 2001, 34: 4969-4981
    [245] Ostrovskaya E A, Kivshar Y S. Localization of Two-Component Bose-Einstein Condensates in Optical Lattices. Phys Rev Lett, 2004, 92: 180405
    [246] Coullet P, Vandenberghe N. Chaotic dynamics of a Bose–Einstein condensate in a double-well trap. J Phys B, 2002, 35: 1593-1612
    [247] Ohberg P, Santos L. Solitons in two-component Bose-Einstein condensates. JPhys B, 2001, 34: 4721-4735
    [248] Radhakrishnan R, Lakshmanan M. Bright and dark soliton solutions to coupled nonlinear Schrodinger equations. J Phys A, 1995, 28: 2683-2692
    [249] Porsezian K, Sundaram S P, Mahalingam A. Complete integrability of N-coupled higher-order nonlinear Schr?dinger equations in nonlinear optics. J Phys A, 1999, 32: 8731-8737
    [250] Deconinck B, Kutz J N, Patterson M S, et al. Dynamics of periodic multi-component Bose-Einstein condensates. J Phys A, 2003, 36: 5431-5447
    [251] Alexandrov A S, Kabanov V V. Excitations and phase segregation in a two-component Bose–Einstein condensate with an arbitrary interaction. J Phys, 2002, 14: L327-L332
    [252] Buonsante P, Kevrekidis P, Penna1 V, et al. Ground-state properties of attractive bosons in mesoscopic 1D ring lattices. J Phys B, 2006, 39: S77-S87
    [253] Zapata I, Sols F, Leggett A J. Josephson effect between trapped Bose-Einstein condensates. Phys Rev A, 1998, 57: R28-R31
    [254] Adhikari S K. Stability and collapse of a hybrid Bose-Einstein condensate of atoms and molecules. J Phys B, 2001, 34: 4231-4241
    [255] Aguero M, Frantzeskakis D J, Kevrekidis P G. Asymptotic reductions of two coupled(2+1)-dimensional nonlinear Schrodinger equations: application to Bose–Einstein condensates. J Phys A, 2006, 39: 7705-7718
    [256] Li Y, Hai W H. Three-body recombination in two coupled Bose–Einstein condensates. J Phys A, 2005, 38: 4105-4114
    [257] Ballagh R J, Burnett K, Scott T F. Theory of an Output Coupler for Bose-Einstein Condensed Atoms. Phys Rev Lett, 1997, 78: 1607-1611
    [258] Zhang S, Wang F. Interference effects between three coupled Bose–Einstein condensates. Phys Lett A, 2001, 279: 231-238
    [259] Reiman A. Space-time evolution of nonlinear three-wave interactions. I. interaction in a homogeneous medium. Phys. Mod. Rev., 1979, 51(2): 275-309
    [260] Kaup D J, Reiman A, Bers A. Space-time evolution of nonlinear three-wave interactions. I. interaction in an inhomogeneous medium. Phys Mod Rev, 1979, 51(2): 311-330
    [261] Zaspel C E, Kabos P, Xia H, et al. Modeling of the power-dependent velocity of microwave magnetic envelope solitons in thin films. J Appl Phys, 1999, 85: 8307
    [262] Kindyak A S, Scott M M, Patton C E. Theoretical analysis of nonlinear pulse propagation in ferrite-dielectric-metal structures based on the nonlinear Schr?dinger equation with higher order terms. J Appl Phys, 2003, 93: 4739-4746
    [263] Slavin A N. Thresholds of Envelope Soliton Formation in a Weakly Dissipative Medium. Phys Rev Lett, 1996, 77: 4644-4647
    [264] Staudinger R A, Kabos P, Xia H, et al. Calculation of the Formation Time for Microwave Magnetic Envelope Solitons. IEEE Trans Magn, 1998, 34: 2334-2338
    [265] Slavin A N, Benner H. Formation and propagation of spin-wave envelope solitons in weakly dissipative ferrite waveguides. Phys Rev B, 2003, 67: 174421
    [266] Xia H, Kabos P, Staudinger R A, et al. Velocity characteristics of microwave-magnetic-envelope solitons. Phys Rev B, 1998, 58: 2708-2715
    [267] Sasa N, Satsuma J. New-type of soliton solutions for a higher-order nonlinear Schr?dinger equation. J Phys Soc Jpn, 1991, 60: 409-417
    [268] Porsezian K, Nakkeeran K. Optical Solitons in Presence of Kerr Dispersion and Self-Frequency Shift. Phys Rev Lett, 1996, 76: 3955-3958
    [269] Gedalin M, Scott T C, Band Y B. Optical Solitary Waves in the Higher Order Nonlinear Schr?dinger Equation. Phys Rev Lett, 1997, 78: 448-451
    [270] Gromov E M, Tyutin V V. Stationary waves in a third-order nonlinear Schr?dinger equation. Wave Motion, 1998, 28(1): 13-24
    [271] Yashiro K, Ohkawa S. Experimental conditions for magnetostatic wave envelope solitons. IEEE Trans Magn, 1997, 33: 3439-3441
    [272] Boardman A D, Nikitov S A, Waby N A, et al. Effect of third-order dispersion on nonlinear magnetostatic spin waves in ferromagnetic films. Phys Rev B, 1998, 57: 10667
    [273] Cheng Y S, Li H, Gong R Z. Effects of parameters of the system on stability of three coupled Bose-Einstein Condensates solitons. Chin Opt Lett, 2005, 3(12): 715-717
    [274] Slavin A N, Zaspel C E. Power and initial pulse width dependent soliton velocity in ferrite films. J Appl Phys, 2002, 91: 8673-8675
    [275] Chen M, Nash J M, Patton C E. A numerical study of nonlinear Schrodinger equation solutions for microwave solitons in magnetic thin films. J Appl Phys, 1993, 73: 3906-3909
    [276] Boardman A D, Nikitov S A, Xie K, et al. Bright magnetostatic spin-waves envelope solitons in ferromagnetic films. J Magn Magn Mater, 1995, 145: 357-378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700