羟基喜树碱半固体脂质纳米粒的制备和体外药剂学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     随着上世纪70年代,Birrenbach等首次提出纳米粒的概念和制备方法,药物制剂的研究进入了一个全新的微观领域——纳米制剂。与常规药物相比,纳米药物具有比表面积大、表面反应活性高、活性中心多、吸附能力强等特性,还以改变药物在体内的分布,增加药物在靶器官的分布量,从而提高疗效。固体脂质纳米粒(Solid lipid nanoparticles,SLN)是以毒性低、生物相容性好的脂质材料作为载体,将药物吸附或包裹于脂质膜中制成的新一代纳米给药体系。除了减轻毒副作用,固体脂质又使它具有聚合物纳米粒的优点,如以控制药物的释放,避免药物的降解或泄漏以及具有良好的靶向性等。
     羟基喜树碱(10-hydroxycamptothecin,HCPT)是从珙桐科植物喜树中提取的一种微量生物碱,是拓扑异构酶Ⅰ特异性抑制剂,广泛应用于肝癌、胃癌、白血病等多种恶性肿瘤的治疗。但其特殊的理化性质:水不溶脂难溶、内酯环结构不稳定等因素,限制了临床应用,普遍存在疗效降低、半衰期短的缺点。本研究以HCPT为模型药物制备半固体脂质纳米粒(Semisolid lipid nanoparticles,SSLN)并对其体外药剂学性质进行了研究,以期达到提高HCPT的稳定性,延长其生物半衰期,缓释,提高药效,降低毒性的目的。
     主要内容
     以固态和液态脂质为载体,大豆卵磷脂为表面活性剂,采用乳化蒸发—低温固化法制备了HCPT半固体脂质纳米粒。以纳米粒外观、粒径、包封率为指标,对处方和工艺进行了单因素考察,内容包括有机相种类、固态脂质/液态脂质摩尔比、药脂比、表面活性剂浓度以及乳化蒸发搅拌时间、搅拌速度等等,继而通过正交设计,确定了最优处方和制备工艺。为了提高制剂的稳定性,采用冷冻干燥法制成HCPT-SSLN冻干粉剂。
     采用Sephadex G-50凝胶过滤法,先用pH5.0PBS洗脱下HCPT-SSLN,再用pH12.0的NaOH溶解并洗脱下吸附在柱顶端的游离药物,从而分离HCPT-SSLN和游离药物。利用NaOH破坏脂质膜结构并溶解包封在其中的HCPT,氯仿消除磷脂等脂质膜材的干扰后,依据建立的羧酸盐形式存在的HCPT紫外分光光度法测定HCPT的含量。
     考察了HCPT-SSLN混悬液的理化性质,电镜下纳米粒为圆整的球状体,大小比较均匀,边缘光滑,平均粒径130.5nm,Zeta电位-33.1mV,pH6.29,包封率79.19;冻干品的粒径稍有增大,电位和pH几乎不变,包封率下降了约5%,载药量为2.51%。差示扫描量热分析(DSC)和X射线衍射分析(XRD)皆表明HCPT被脂质包裹后已经构成了一种新的物相。
     以外观、粒径、pH、包封率、水中再分散性及显微镜检等为指标,考察了HCPT-SSLN混悬液和冻干品在影响因素实验、留样观察中的稳定性。结果表明:HCPT-SSLN最宜制成冻干粉剂,充氮密封避光置于4℃条件下保存。
     选择含有30%甲醇的pH7.4磷酸盐缓冲液做释药介质,在(37±0.5)℃避光的条件下对HCPT原料药和自制的HCPT-SSLN进行了0~72h体外释药的研究。以内酯形式存在的HCPT的HPLC含量测定结果表明:HCPT-SSLN0~3h内有一定程度的突释,72h累积释药量不超过70%,对照药物72h只有24.7%,见HCPT-SSLN增强了HCPT在体内的吸收,且显示出一定的缓释效应。
     以HCPT钠盐注射液作对比,对HCPT-SSLN进行了小鼠的急性毒性实验。HCPT钠盐注射液组的半数致死量是93.47mg/kg,HCPT-SSLN的最大耐受剂量(MTD)大于214.6mg/kg,HCPT-SSLN毒性降低。
     结论
     本实验为HCPT的剂型开发作了有益的探索,为它的临床应用提供了一种能的新剂型,有较好的研究开发价值。
Background & objectiveSince 1970s, Birrenbach introduced the concept and preparative method of nanoparticle firstly, the study of the pharmaceutical preparation has entered into anew micro realm——nanometric praeparatum. Compared to routine drugs,nanometric praeparatums have many good characters such as large specific surface area,high surface reaction activity, plenty of active centers, strong adsorbability and so on. They can also change the intracorporal distribution of the medicine to increase the dose distribution in target organs and raise therapeutic effects. Solid lipid nanoparticles(SLN) is a latest generation of nanometric drug delivery system. It uses lipid materials with low toxicity and fine biocompatibility as carrier, then absorbs the drug and wraps it up into the lipid membrane. Besides descreasing poison and side effects, solid lipid make it control drug release, just like PVP, so it avoids the degradation or leakage of the drug and has favourable target characteristics.
     10-hydroxycamptothecin(HCPT) is a kind of microamount alkaloids extracted from Camptotheca acuminata Decaisne, and is one of the specific DNA topoisomeraseⅠinhibitors. It is widely used to cure fiver cancer, stomach cancer, leukemia and many malignant tumors. However, its clinical applications are confined by its special physico-chemical properties(for example, it is insolubilize in water and difficultly dissolves in fipids, the lactone band is also instable), so its curative effects decrease and the intracorporal half life is too short. This study chose it as model drug to prepare semisolid lipid nanoparticles(HCPT-SSLN) and investigated its pharmaceutical characteristics in vitro, intending to enhance its stability and prolong biological half-fife, make it release slowly in vivo to reinforce drug action and lower the toxicity.
     Mean content
     HCPT-SSLN was prepared by the method of "emulsion evaporation at a high temperature and solidification at a low temperature", using solid & liquid lipids as carrier materials, Soya lecithin as surfactant. According to the appearance, particle size and entrapment efficiency, the single factor experiment of prescription and technology were carried out. There were many factors such as "organic phase category", "mole ratio of solid lipids/liquid lipids", "ratio of HCPT/Lipids", "concentration of surfactant", "stir time", "stir velocity" and so on. Then the optimized prescription was obtained by orthogonal design. In order to keep the stability, HCPT-SSLN was lyophilized.
     Sephadex G-50 filtration chromatography was adopted to separate free drug from HCPT-SSLN. pH5.0PBS was used to elute HCPT-SSLN and then pH12.0 sodium hydroxide solution was applied to dissolve and elute free HCPT. pH12.0 sodium hydroxide solution was added to the HCPT-SSLN solution to destroy the structure of lipid membrane and dissolve HCPT, and then chloroform was added to eliminate the lecithoid. The concentration of HCPT in sodium hydroxide solution was in carboxylate form and determined at wavelength of 414nm by ultraviolet spectrophotometry.
     The physicochemical properties of HCPT-SSLN were studied. The morphology was examined by transmission electron microscope and the TEM graph showed that the morphological characteristic of most nanoparticles were spheroplasts, well distributed with smooth surface. The mean particle size of the prepared HCPT-SSLN was 130.5nm, zeta potential was-33.1mV, pH was 6.29, entrapment efficiency was 79.19%; After lyophilization, the mean particle size of the prepared HCPT-SSLN turned a little larger, zeta potential and pH were almost the same, the entrapment efficiency decreased about 5% and the drug loading was 2.51%. The results of DSC and XRD both showed that HCPT was wrapped up into lipid materials and constituted a new physical phase.
     According to the appearance, particle size, pH, entrapment efficiency, the redispersibility after hydrating and microscopic examination, the stabilities of HCPT-SSLN samples before, and after lyophilization were tested in influencing factor experiment and remained sample observation experiment. The results indicated that the HCPT-SSLN should be lyophilized, filled with nitrogen, tightly preserved from light and stored at low temperature (4℃).
     pH7.4 phosphate buffered saline containing 30%(volume ratio) methanol was chosen as release medium in vitro. At (37±0.5)℃, away from light, the release rules in vitro of HCPT and the HCPT-SSLN during 72h were studied. The result by the method of high performance liquid chromatography(HPLC) which was set up to determine the concentration of 10-hydroxycamptothecin(HCPT) in lactone form indicated that in the first 3 hours, there was a break through of HCPT. At 72h,The cumulate percentage of releasing HCPT from HCPT-SSLN was about 70%,while that from HCPT crude drug was only 24.7%.So HCPT-SSLN could increase the absorption of HCPT in vivo and showed some slow-release effect.
     Compared with HCPT sodium injections, the acute toxicity testing of the prepared HCPT-SSLN to mice was carried out. The medial lethal dose(LD_(50)) of HCPT sodium injections was 93.47mg/kg,and the maximum tolerated dose of HCPT-SSLN exceeded 214.6mg/kg. So HCPT-SSLN could lower the toxicity.
     Conclusion
     To sum up, this study took a helpful exploration for the development of HCPT dosage form, and could be expected to apply to clinical application as a new form of medication, which has important meanings to the following research and development.
引文
[1] 杨春娥,李宏力,高苏莉.抗肿瘤药物临床应用的现状与研究进展.国外医药抗生素分册,2004,25(1):30-33.
    [2] Sharma D, Chelvi TP, Kaur J, Ralhan R. Thermosensitive liposomal taxol formulation: heat-mediated targeted drug delivery in murine melanoma. Melanoma Res, 1998, 8(3): 240-244.
    [3] LUBBEAS, ALEXIOUC, BERGEMANNC. Clinical application of magnetic Drug Targeting. Surg Res, 2001, 95(2): 200-206.
    [4] 任献忠.靶向制剂进展.药学进展,1994,18(2):65-69.
    [5] Meijer DKF, Janen RW, Molemag. Drug targeting systems for antiviral agent: options and limitations. Antiviral res., 1992, 18(3-4): 215-258.
    [6] G. Molema, D. K. F. Meijer, Drug Targeting Organ-Specific Strategies. 2001.2.
    [7] Torchilin VP. Drug targeting. European Journal of Pharmaceutical Sciences 11, 2000, Suppl. 2: S981-S91.
    [8] Birrenbach G, Speiser P. Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci, 1976, 65(12): 1763-1766.
    [9] Couvreur P, Kante B, Roland M, et al. Polycyanoacrylate nanoparticles as potential lysosomotropic carders:preparation, morphological and sorptive properties. J Pharm Pharmacol, 1979, 31(5): 331-332.
    [10] 张志荣,魏振平.载药毫微粒制备方法及药物靶向性.华西药学杂志,1996,11(2):123-126.
    [11] 谭忠华,载药纳米微粒靶向输送和控释系统的研究进展.国外医学.放射医学核医学分册,2003,27(5):204.
    [12] Gref R, Minamitake Y, Peracchina MT, etal. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263: 1600-1603.
    [13] 马国,邓盛齐.纳米技术在药学中的研究应用进展.国外医药抗生素分册,2004,25(5):233-237.
    [14] Muller R H, Mehnert W, Lucks JS, et al. Solid lipid nanoparticles(SLN)-an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm, 1995, 41(1): 62-69.
    [15] Muhlen A Z, Mehnert W. Drug release and release mechanism of prednidolone loaded solid lipid nanoparticles. Pharmazie, 1998, 53(5): 552-555.
    [16] Muhlen A Z, Schwarz C,Mehnert W. Solid lipid nanoparticles(SLN) for controlled drug delivery release and release mechanism. Eur J Pharm Biopharm, 1998, 45(2): 149-155.
    [17] Siekmann B, Westesen K. Melt-homogenized solid lipid nanoparticles stabled by the nonionic surfactant tyloxapol preparation and particle size determination. Pharm Pharmaco Lett, 1994, 3(3): 194-197.
    [18] Siekmann B, Westesen K. Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions. Eur J Pharm Biopharm, 1996, 43(2): 104-109.
    [19] Labouret A D, Thioune O, Fessi H, et al. Application of an original process for obtaining colloidal dispersions of some coating polymers, preparation, characterization, industrial scaling up. Drug Dev Ind Pharm, 1995, 21: 229-241.
    [20] Cavalli R, Caputo O, Mareng E, et al. The effect of the components of microemulsions on both size and crystalline structure of solid lipid nanoparticles(SLN) containing a series of model molecules. Pharmazie, 1998, 53(5): 392-396.
    [21] Muller R H, Mader K, Gohla S. Solid lipid nanoparticles(SLN) for controlled drug delivery-A review of the state of art.Eur J Pharm Biopharm, 2000, 50(1): 161-177.
    [22] Wall ME, Wani MC, Cook CE, et al. Plant Antitumor Agent I. The Isolation and structure of Camptothecin,a novel alkaloidal Leukemia and tumor inhibitor from Camptotheca Acumianta. J Am Chem Soc, 1966, 88(16): 3888-3890.
    [23] 中国科学院上海药物研究所.10-羟基喜树碱抗癌作用的研究.中华医学杂志,1978,58(10):598-602.
    [24] Monroe E Wall, et al. Structure activity relationships of plant antitumor agents related to Camptothecin and Quassinoids. International Research Congress and Medicinal Plant Research. 1980.
    [25] Hsiang YH, Hertzberg R, Hecht S, et al. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem, 1985, 260(27): 14873-14878.
    [26] Hsiang YH, Liu LEIdentification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug Camptothecin. Cancer Res, 1988, 48(7): 1722-1726.
    [27] Ling YH and Xu B. Inhibition of phosphorylation of histone HI an H3 induced by 10-hydroxycamptothecin, DNA topoisomerase I inhibitor, in routine ascites hepatoma cells. Acta Pharm Sin, 1993, 14(6): 546-550.
    [28] 张志荣,路伟.肝靶向羟基喜树碱缓释毫微粒的研究.药学学报,1997,32(3):222-227.
    [29] 马骏,甲正平,张强等.限进介质作为柱切换填料的高效液相色谱法测定人血中羟基喜树碱含量及其药动学研究.中华国际医药杂志,2003,2(1):3-8.
    [30] 胥彬,杨金龙.抗肿瘤药学羟基喜树碱.医药工业,1985,16(12):22-27.
    [31] Crow RT and Crothers CM. Structural modifications of Captothecin and effects on topoisomerase I inhibition. J Med Chem, 1992, 35(22): 4160-4164.
    [32] Giovanella, Hinz, Kozielski, et al. Complete growth inhibition of human cancer xenografts in nude mice by treatment with 20-(S)-Camptothecin. Cancer Research, 1991, 51(11): 3052-3055.
    [33] Wani MC, Ronman PE, Lindley JT, et al. Pant antitumor agents, 18.Synthesis and biological activity of Camptothecin analogues. J Med Chem, 1980, 13(5): 554-560
    [34] Wani, Nicholas, Manikumar, et al. Plant antitumor agents. 25. Total synthesis and antileukemic activity of ring a substituted Camptothecin analogues.Structure-activity correlations. J Med Chem, 1987, 30(10): 1774-1779.
    [35] Zhou Jianjun, Liu Jian, Xu Bin. Relationship between lactone ring forms of HCPT and their antitumor activities. Acta Pharmacol Sin, 2001, 22(9): 827-830
    [36] Fassberg J and Stella VJ. A kinetic and mechanistic study of the hydrolysis of Camptothecin and some analogues. J Pharm Sci, 1992, 81(7): 676-684
    [37]. Mi Z and Burke TG. Marked interspecies variations concerning the interactions of Camptothecin with serum albumins:a frequency-domain fluorescence spectroscopic study. Biochemistry, 1994, 33(42): 12540-12545.
    [38] Burke, Jiang, Mishra, et al. Proc Am Assoc Cancer Res, 1993, 34(3): 424-430.
    [39].国家药典委员会.国家药品监督管理局国家药品标准:化学药品地方标准上升国家标准第三册,2003:3-274-275.
    [40]. Cao Z, Harris N, Kozielski A, et al. Alkyl esters of Camptothecin and 9-Nitrocamptothecin: synthesis, in vitro pharmacokinetics, toxicity, and antitumor activity, J Med Chem, 1998, 41(1): 31-37.
    [41] Anna Shenderova, Thomas Burke and Steven Schwendeman.Stabilization of 10-bydroxycamptothecin in poly(lactide-co-glycolide) microsphere delivery vehicles. Pharm Res, 1997, 14(10): 1406-1414.
    [42] Lundberg BB.Biologically active Camptothecin derivatives for incorporation into liposome bilayers and lipid emulsions. Anti-Cancer Drug Design, 1998, 13(5): 453-461.
    [43] 董生,肖湘生,郝楠馨.羟基喜树碱明胶微球肝动脉化疗栓赛治疗原发性肝癌.中国医学计算机成像杂志,1999,5(1):55-58.
    [44] 董生,肖湘生,陈庆华等.羟基喜树碱明胶微球肝动脉化疗栓赛治疗原发性肝肿瘤的实验研究.实用放射学杂志,1998.14(2):64-70.
    [45] Shenderova A, Burke TG, chwendeman SP. The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins.Pharm Res 1999,16(2):241-8.
    [46] Zhang L, Hu Y, Jiang X, et al. Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice. J Control Release. 2004, 96(1): 135-48.
    [47] 张志荣,路伟.肝靶向羟基喜树碱缓释毫微粒的研究.药学学报,1997,32(3):222~227.
    [48] 袁建华,熊俊.羟基喜树碱乳剂及其制备方法.申请(专利)号:03152834.1.2004-05-05.
    [49] 易以木,陈秀珍.羟基喜树碱葡聚糖纳米粒的制备方法.申请(专利)号:01138252.X.2002-08-07.
    [50] 易以木,杨唐玉,吴汉强等.羟基喜树碱聚乳酸纳米粒的制备方法.申请(专利)号:01133700.1.2002-08-14.
    [51] 易以木,陈秀珍.靶向性羟基喜树碱豆磷脂纳米冻干粉针制剂及制备方法、用途.申请(专利)号:CN200410013143.2.2004-05-13.
    [52] Thomas G, Awadesh K, Mansukh C, et al. Lipid bilayer partitioning and stability of Camptothecin drugs. Biochemistry, 1993, 32(20): 5352-5360.
    [53] Westesen K, Drechsler M, Bunjes H.In food colloids: Fundamentals of formulation.Royal society of chemistry, 2001, 103.
    [54] Muller RH, Radtke M, Wissing SA.Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm, 2002, 242(1/2): 121-128.
    [55] Siekmann B, Westesen K.Melt-homogenized solid lipid nanoparticles stabled by the nonionic surfactant tyloxapol preparation and particle size determination. Pharm Pharmaco Lett, 1994,3(3): 194-197.
    [56] Heiati H,Tawashi R,Shivers R R,et al.Drug retention sand stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving,storage and lyophilization[J].Journal of Microencapsulation, 1998,15(2): 173-184.
    [57] 陈大兵,吕万良,杨天智,等.紫杉醇表面修饰脂质纳米粒的制备和性质.北京大学学报(医学版),2002,34(1):57-60.
    [58] Muhleu AZ, Muhlen EZ, Niehus H, et al. Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res, 1995, 13(9): 1411-1416.
    [59] 陆彬主编.药物新剂型与新技术.人民卫生出版社,1998.
    [60] Westesen K, Wehker T. Investigation of the particle size distribution of a model intravenous emulsion. J Pharm Sci, 1993, 82(12):1237-1244.
    [61] Thomas G, Awadesh K, Mansukh C, et al. Lipid bilayer partitioning and stability of Camptothecin drugs. Biochemistry.1993, 32(20):5352-5364.
    [62] Daoud, Fetouh and Giovanella. Antitumor effect of liposome-incorporated camptothecin in human malignant xenografts.Anti-Cancer Drug, 1995, 6(1):83-93.
    [63] Coon JS, Knudson W, Clodfelter K, et al. Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance. Cancer Res. 1991 Feb 1; 51(3):897-902.
    [64] Liu FY, Shao Z, Kildsig DO, et al. Pulmonary delivery of free and liposomal insulin. Pharm Res, 1993, 10(2):228-232.
    [65] Elorza B, Elorza MA, Frutos G, et al. Characterization of 5-fluorouracil loaded liposomes prepared by reverse-phase evaporation or freezing-thawing extrusion methods: study of drug release. Biochem Biophys Acta, 1993, 1153(2): 135-142.
    [66] Lasic DD, Ceh B, Stuart MC, et al. Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery. Biochem Biophys Acta, 1995, 1239(2): 145-156.
    [67] Pated HM, Ryman BE. Oral administration of insulin by encapsulation within liposomes.FEBS Lett, 1976, 62(1):60-63.
    [68] Amselem S, Gabizon A, Barenholz Y. Optimization and upscaling of doxorubicin-containing liposomes for clinical use. J Pham Sci, 1990, 79(12): 1045-1052.
    [69] Santos-Magalhaes NS, Cave G, Seiller M, et al. Stability and in vitro release kinetics of a clofibride emulsion. Int J Pharm, 1991, 76:225-237
    [70] Washington C. Evaluation of non-sink dialysis methods for the measurement of drug release from colloids: effect of drug partition. Int J Pharm, 1989, 56:71-74
    [71] Levy MY, Benita S. Drug release from submicronized o/w emulsion: new in vitro kinetic evalution model. Int J Pharm, 1990, 66:29-37
    [72] New RRC.Preparation of liposomes. In New RRC(ed), liposomes, a practical approach. IRL Oxford, 1993:83-97.
    [73] 周祖康,顾锡人,马季铭.胶体化学基础.北京大学出版社,1987.
    [74] 许鸣镝.热分析法在化学药品对照品中的应用.药物分析杂志,2003,23(增刊):166-173.
    [75] 纪雷,孙忠松,王岩,等.差热扫描量热法测定肌醇纯度.药物分析杂志,2002,22(2):110-112.
    [76] 朱小梅,韩森,甄宝勤.差示扫描量热法(DSC)研究阿莫西林的热谱表征.中国新药杂志,2004,13(12):1142-1143.
    [77] 许顺生,X射线衍射学进展,北京,科学出版社,1986.
    [78] Westesen K, Siekmann B, Koch MHJ.Investigations on the physical state of lipid nanopsticles by synchroton radiation X-ray diffraction. Int J Pharm, 1993, 93:189.
    [79] Laggner P. X-ray diffraction of lipids. In: Hamilton RJ, Cast J. Spectral Properties of Lipids. Sheffield: Sheffiels Academic Press, 199:327-367.
    [80] Sugimoto I, Sasaki K, Kuchiki A et al. Stability and bioavailability of nifedipine in fine granules. Chem Pharm Bull, 1982:30(12):4479.
    [81] Ntawukulilyayo JD, Bouckacrt S, Remon JP. Enhancement of dissolution rate of nifedipine using sucrose ester coprecipitates. Int J Pharm, 1993:93(1-3):209.
    [82] 陈军,方芸,黄莉莉,等.RP-HPLC法测定兔血浆中羟基喜树碱的浓度.广东药学院学报,2003,19(4):319-321.
    [83] 张海霞,方芸,陈军,等.雾化吸入羟基喜树碱在兔体内分布及肺器官中药代动力学研究.中国药理学通报,2004,20(9):1042-1044.
    [84] Annette Z, Muhlen CS.Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism.Eur J Pharm Biopharm, 1998, 45: 149~155.
    [85] Merodio M, Amedo A, Renedo MJ, et al.Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties.Eur J Pharm Sci,2001,12:251~259.
    [86] 腾南雁,蒋及年.HPLC测定羟基喜树碱及其注射液的含量.中国药学杂质,1997,32(9):552~553.
    [87] 程宇慧,廖工铁,侯世祥等.去甲斑蝥酸钠白蛋白微球的研究.药学学报,1993,28(5):384.
    [88] 黄景健.复方羟基喜树碱注射液处方及其制备工艺,[P].申请(专利)号:CN96112301.X.1996-08-19
    [89] Miller D.S, Blessing J.A, Waggoner S,et al. Phase Ilevaluation of 9-aminocamptothecin (9-AC,NSC 603071) in platinum-resistant ovarian and primary peritoneal carcinoma:A Gynecologic Oncology Group Study. GYNECOL. ONCOL. 2005,96(1):67.
    
    [90] Hans GL.Milestones in camptothecin research.Drugs Fut, 2002,27(9):869-878.
    
    [91] Takimoto CH,Wright J,Arbuck SG Clinical applications of the camptothecins.Biochim Biophys Acta, 1998,1400(123): 107.
    
    [92] Pommier Y,Kohlhagen G,Kohn KW,et al.Interaction of an alkylating camptothecin derivative with a DNA base at topoisomerase I-DNA cleavage site.Proc Natl.Acad.Sci.USA, 1995,92(19):8861.
    
    [93] Cao ZS,Giovanella BC.Cascade esters of camptothecins and methods of treating cancer using these compounds.WO,Patent Schrift:WO 03095460,2003-11-20.
    
    [94] Wall ME,Wani MC.Water-soluble esters of camptothecin compound.USA, Patent Schrift: US6040313.2000-03-21.
    
    [95] Yang LX.Nitrogen-based camptothecin derivatives.USA,Patent Schrift: US2003032624,2003-02-13.
    
    [96] Yang LX,Pan XD,Wang HJ.Novel camptothecin derivatives, part 1: oxyalkanoic acid esters of camptothecin and their in vitro and in vivo antitumor activity.Bioorg Med Chem Lett, 2002,12(9):1241.
    
    [97] Yu Deshan,Peng Ping,Dharap Sonia S,et al.Antitumor activity of poly(ethylene glycol)-camptothecin conjugate:The inhibition of tumor growth in vivo.Joumal of Controlled Release,2005,110(1):90.
    
    [98] Caiolfa VR,Zamai M,Fiorino A,et al.Polymer-bound camptothecin: initial biodistribution and antitumour activity studies J Control Release, 2000, 65(2):105-119.
    
    [99] Sarapa N,Britto MR,Speed W,et al.Assessment of normal and tumor tissue uptake of MAG-CPT, a polymer-bound prodrug of camptothecin,in patients undergoing elective surgery for colorectal carcinoma.Cancer Chemother Pharmacol,2003,52(5):424.
    [100] 周本宏,吴燕,何文,等.羟基喜树碱包衣纳米脂质体的制备及体外释药研究.中国药师,2005,8(4):270.
    [101] 龚明涛,张钧寿,沈益,等.羟基喜树碱纳米乳的制备及其抗癌作用初步研究.中国天然药物,2005,3(1):41.
    [102] Bom D,Curran DP, Zhang J,et al.The highly lipophilic DNA topoisomerase Ⅰ inhibitor DB-67 displays elevated lactone levels in human blood and potent anticancer activity.J Control Release,2001,74(3):325.
    [103] Liu J,Hong RL, Cheng WF, et al.Simple and efficient liposomal encapsulation of topotecan by ammonium sulfate gradient:stability, pharmacokinetic and therapeutic evaluation.Anticaner Drugs,2002,13:709.
    [104] Seiden MV, Muggia EAstrow A,et al.A phase Ⅱ study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer.Glynecol Oncol,2004,93(1):229.
    [105] He XG,Lu W,Cai JC,et al.Synthesis and biological evaluation of bis and mono carbonate prodrugs of 10-hydroxycampothecins.Bioorg Med Chem, 2004,12 (15):4003.
    [106] Wang CY, Pan XD,Liu HY, et al.Synthesis and antitumor activity of 20-O-linked nitrogen-based camptothecin ester derivatives.Bioorg Med Chem, 2004,12(13):3657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700