煤矿用乳化液高精度自动配比装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国95%以上的煤矿企业使用液压设备。乳化液作为一种廉价的工作介质,在液压传动中有着广泛的应用,特别是在煤矿中,被誉为液压设备的血液。
     乳化液浓度作为评价乳化液性能的一个重要指标,在很大程度上影响着其使用性能。浓度过小会降低乳化液抗硬水能力,降低支架的稳定性、防锈性,降低抑制细菌的能力及其润滑性;浓度过高,成本高,刺激皮肤,冷却性差。《煤矿安全规程》规定:乳化液的浓度一般在3%~5%之间。目前的配制精度为±0.5%。采用单片机或是PLC控制则浓度精度达±0.1%,但是成本太高阻碍了它们在实际生产中的应用。
     当前国内外在实际生产中所使用的乳化液的配制方法有三种:一是人工混合配制;二是机械配制;三是自动配制。自动配制方式代表了乳化液配制方法的发展趋势。自动配制现在没有广泛普及主要是因为当前产品的性价比较低,不能适应实际生产的要求。
     本课题要研制一款结构简单、配比准确、浓度调、性价比高、易于推广使用的乳化液自动配比装置,从而满足实际生产需要。本课题有助于加快自动配比方式的迅速普及,提高乳化液配制的自动化水平,降低工人的劳动强度,降低吨煤生产成本,最终实现煤矿节能降耗。
     本文首先采用理论分析,利用伯努利方程对射流泵型自动配比装置进行流体力学分析,确定仿真的范围,然后用PRO/E建立流场模型再导入GAMBIT中进行网格划分,之后在FLUENT中进行流体力学仿真确定较合适的各项参数。依此设计出射流泵型乳化液自动配比装置的结构并进行加工制造,最后进行试验确定最终的参数。
     本文的研究成果主要有:1、将吸油口直径进行系列化,保证有足够精度的前提下乳化液配制浓度有级调。2、将配比装置放在小船上来消除油面下降造成浓度变化的影响,证明是简便易行的。3、设计了新型液位自动控制装置,适应了无人化自动控制的趋势。4、防漏装置和水力警铃配合使用,在出现泄漏时自动将压力水切换到水力警铃进行报警。5、加装了乳化装置以提高配制质量。6、研究分析了最新的乳化技术,建议采用超声波乳化装置中的簧片哨进行乳化。
     本课题设计出了一款性价比较高的装置,解决了原乳化液配比装置配制精度低的问题,使空吸式自动配比装置的配比精度由±0.5%提高到±0.2%;提高了配制质量,85%以上油滴直径小于4.5μm;无需动力,节能效果明显;实现了液位自动控制与自动报警功能。
     本课题通过设计一款高性价比的自动配比装置,推动了自动配比技术的进步,使其不再只停留在实验室而走向采煤工作面现场。
At present, more than 95% coal mine enterprises use the hydraulic equipments in our country. The emulsion, known as the blood of hydraulic equipments, one kind of inexpensive medium, has wide application in the hydraulic power transmission, especially in coal mine equipments.
     The concentration of emulsion, took the appraisal emulsion performance as an important target, is affecting its operational performance to a great extent. Concentration is too low will reduce the anti-hard water capacity, the stability and rust prevention of the supports, suppression bacterium ability and the lubricating ability of the emulsion; Otherwise, concentration is too high will costs more money, stimulates the skin, reduces the cooling capacity. "Coal Mine Safety Regulations" stipulated that generally the concentration of emulsion is between 3%-5%. The precision of producing emulsion by ordinary device is±0.5% at present. If use the Single-chip computer or the PLC to control pumps then the precision may reach±0.1%, but the cost is too high has hindered them using in the actual production.
     Nowadays, there are three ways used in the actual production of emulsions both at home and abroad: artificial, machinery and automatic compounding. The automatic compounding represents the development trend of the emulsion preparation method. But the emulsion automatic compounding has not been widely used because of the productions are low cost-effective, so they can’t meet the actual requirements.
     The purpose of this project is to design an emulsion automatic compounding device which is simple structure, proportion accurate, concentration adjustable, high performance-to-price ratio, easy to promote to meet the actual production required. The significance of the subject lies in speeding up popularity of emulsion automatic compounding devices, reduces the work strength, improve the level of automation, reduces production cost, realizes the coal mine energy saving.
     To determine the scope of simulation, in the paper, the theoretical analysis was put up firstly. The Bernoulli equation was used to analys the internal flow field of the jet-pump automatic compounding device.Then the flow field model which has been established with PRO/E, was imported in GAMBIT to carry on the grid division. Afterwards it was simulated in FLUENT to determine appropriate parameters. The structure of the emulsion automatic compounding device was designed according to simulation results, and then the device was made. Finally, the parameters of the device were determined by experiment.
     The main results of research are: first, oil diameter will be serialized, so that the concentration of emulsion preparation is adjustable class at the base of enough precision. Second, the device was put on boat to eliminate the impact of changes the concentration of emulsion caused by the surface of oil decline, which is proved to be simple implementation. Third, a new device automatic control by fluid level was designed to meet the unmanned trend. Fourth, leak-proof devices with water power alarm will alarm by automatically switching to the water power motor when divulging appears. Fifth, emulsification device was installed in order to improve the quality of preparation. Sixth, after analysis of the latest emulsification technology, the reed whistle which belongs to ultrasonic emulsifying device was proposed to use for emulsifying.
     The project through designing a set of much cost-effective device solves the problem of low accuracy as used the original emulsion preparation devices. It also improves the compound precision from±0.5% to±0.2%; Improves the quality of the preparation, more than 85% of oil droplets are less than the diameter of 4.5μm; It’s obvious to save energy as it doesn’t need importing power; It realizes automatic control by fluid level and the auto-alarm function.
     Through designing a high cost-effective automatic compounding device, the project improves automatic compounding technology developing. So that emulsion automatic compounding is no longer stay in the laboratory and moves toward to practical application.
引文
[1]王文江,宋钧,张顺朝等.合理配制乳化液控制液压支架液压系统污染[J].煤炭技术,2005,24(3):27-28.
    [2]吴晓兰,陆泉.乳化液配制方式的发展[J].煤矿机械,1999,8:7-8.
    [3]李建中.乳化液配制质量及其对液压支架工作性能的影响[J].煤炭学报,1999,24(2):181-183.
    [4]宋理敏,寇子明,杨贵元.乳化液浓度的自动配比和在线检测[J].机械管理开发,2006,1:13-14.
    [5]王晓丽.乳化液浓度自动检测及其配比系统[J].煤矿机电,2006,3:52-53.
    [6]丁恩杰,陈桂珍,刘云霞.一种新颖的乳化液浓度的检测方法[J].仪器仪表学报,2002,23(3):333-334.
    [7]王开松.自动配置乳化液系统的应用[J].煤矿机电,2002,4:44-45.
    [8]刘绪玉.RZPB-160型乳化液自动配比装置[J].煤矿现代化,2004,1:37.
    [9]王东,王正良.乳化液浓度配比仪的应用[J].轧钢,2000,17(6):17-18.
    [10]李军霞,寇子明,杨贵元.一种新型的乳化液自动配比装置[J].煤矿机电,2004,3:25-26.
    [11]柴光远,王晓丽.基于模糊控制的乳化液自动配比系统[J].机床与液压,2004,6:73-74.
    [12]宋理敏.乳化液自动配比及其应用研究[D].太原:太原理工大学,2006.
    [13]周新建,杨献文,张萧云.乳化液在煤矿的应用[J].润滑与密封,2003,3:85-87.
    [14]李亚辛.矿区水质对煤炭洗选与乳化液配制的影响[J].煤质技术,2003,6:52-54.
    [15]汪韵秋.液压支架用乳化液机理的研究[J].煤炭学报,1995,20(3):334-336.
    [16]万平玉,韩克飞,杨晓波等.全面优化O-W型乳化液的缓蚀防锈性能与稳定性的研究[J].北京化工大学学报,2000,27(1):74-79.
    [17]倪蓓,贾秋莲,张二水.乳化液防锈性能的研究[J].石油商技,2003,21(3):11-14.
    [18] H. Schubert and R. Engel.Product and formulation engineering of emulsions [J].Chemical Engineering Research and Design,2004, 82(9):1137-1143.
    [19] L. Fradette, B. Brocart and P.A. Tanguy. Comparison of mixing technologies for the production of concentrated emulsions[J].Chemical Engineering Research and Design,2007,85(11):1553-1560.
    [20]罗曾义.超声波乳化理论和技术[J].声学技术,1996,15(4):201-206.
    [21] Chen Gonglun and Daniel Tao.An experimental study of stability of oil–water emulsion[J].Fuel Processing Technology,2005,86(5):499-508.
    [22] Shahriar Sajjadi.Effect of mixing protocol on formation of fine emulsions [J].Chemical Engineering Science, 2006,61(9):3009-3017.
    [23] Sabine Br?sel,Helmar Schubert.Investigations on the role of surfactants in mechanical emulsification using a high-pressure homogenizer with an orifice valve[J].Chemical Engineering and Processing,1999,38(4-6):533-540.
    [24]张玉平,金锋,张岩等.两相流相浓度检测技术的研究[J].北京理工大学学报, 2002,22(3):383-386.
    [25]顾德英,刘万军,朱华等.采用红外透光技术的乳化液浓度自动监测系统[J].电测与仪表,1998,35(2):43-44.
    [26]刘镇清,魏墨庵,朱士明.一种超声波浓度传感器的研制[J].传感技术学报,1994,1:5-8.
    [27]王东,王兵,李昌禧.超声波技术检测乳化液浓度的仿真与实验[J].武汉工程职业技术学院学报,2004,16(2):8-11.
    [28]孙永,蒲煜,骆广生等.一种新型的制乳技术-膜法制乳[J].化工进展,2000,1:60-63.
    [29] T.Goran Vladisavljevi? and Richard A. Williams.Recent developments in manufacturing emulsions and particulate products using membranes [J].Advances in Colloid and Interface Science,2005,113(1):1-20.
    [30] S. Berot, S. Giraudet and A. Riaublanc etc.Key Factors in Membrane Emulsification [J].Chemical Engineering Research and Design, 2003,81(9):1077-1082.
    [31] Tadao Nakashima, Masataka Shimizu, Masato Kukizaki.Particle control of emulsion by membrane emulsification and its applications [J].Advanced Drug Delivery Reviews,2000,45:47–56.
    [32]王志,王世昌.乳化液制备新工艺膜乳化过程实验研究[J].膜科学与技术,1999,19(2):49-53.
    [33] B.Abismail,J.P.Canselier,A.M.Wilhelm etc.Emulsification by ultrasound:Drop size distribution and stability [J].Ultrasonics Sonochemistry, 1999,6(1-2):75-83.
    [34] O.Behrend,K.Ax and H.Schubert.Influence of continuous phase viscosity on emulsification by ultrasound [J].Ultrasonics Sonochemistry,2000,7(2):77-85.
    [35]罗曾义,邓文海.悬臂式簧片哨工作特性的研究[J].声学技术,1996,15(4):166-169.
    [36]陆宏圻.射流泵技术的理论及应用[M].北京:水利电力出版社,1987:1-34.
    [37]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:1-10.
    [38]龙新平,程茜,韩宁等.射流泵最佳喉嘴距的数值模拟[J].核动力工程,2008,29(1):35-38.
    [39]郑观雄.水力警铃试验与零件设计要素.消防技术与产品信息[J],1994,12:24-31.
    [40]寇子明,吴娟,宋理敏.乳化器内部流场的数值模拟与分析[J].煤炭学报,2007,32(10):1105-1107.
    [41]宋理敏,寇子明,杨贵元.乳化液浓度的自动配比和在线检测[J].机械管理开发.2006,8:13-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700