植物叶片蒸腾作用模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸腾作用是植物的一项基本生理活动,蒸腾作用产生的蒸发潜热对植物叶片温度有重要影响。要想模拟植物叶片的热红外辐射特性,必须实现蒸腾作用这一生理过程的模拟。
     为深入理解植物蒸腾作用,我们首先研究了植物叶片的传热传质过程;实测了长江中下游流域7种典型植被的气孔阻力、叶片温度以及蒸腾耗水;选择蒸腾耗水旺盛的樟树为研究对象,建立了单个樟树叶片的传热传质模型,并利用气孔阻力和叶片温度的实测值验证了模型;将实测气孔阻力拟合成Jarvis模型,结合南京地区典型气象年气象参数计算了夏季樟树叶片温度、蒸腾耗水以及三种方式(对流换热、辐射换热和蒸腾作用潜热)的散热量,并分析了蒸腾作用潜热对叶片温度带来的影响。结果表明:叶片日平均温度受环境空气日平均温度影响,而其蒸腾耗水则由太阳辐照主导;叶片蒸腾作用潜热在叶片散热体系中具有重要作用,蒸腾潜热占叶片总散热量的比例超过30%;蒸腾作用对叶片温度有重要影响,且影响程度与气象条件有关,无风条件下影响程度要高于有风天气。基于对植物叶片传热传质过程的研究,我们提出了一种能模拟植物叶片蒸腾作用且具备植物叶片相似热特性的仿生叶片原理结构,该仿生叶片由表面涂层、保水层、吸脱附层和吸脱附速率控制层组成。
     复合/混合吸附剂是仿生叶片制备的关键材料。我们分别利用浸渍法和压块法制备了活性碳纤维布-氯化钙复合吸附剂和膨胀石墨-氯化钙混合吸附剂,并测试了复合/混合吸附剂的吸水性能和关键热物性,着重研究了浸渍法制备活性碳纤维布复合吸附剂时活性碳纤维布吸附氯化钙的机理以及复合/混合吸附剂吸水机理。浸渍过程中钙离子会通过离子交换被活性碳纤维布表面含氧官能团吸附,氯化钙会由于范德华力被活性碳纤维布微孔吸附。对于复合吸附剂的制备过程,表面官能团对钙离子的吸附作用可以忽略。微孔对氯化钙的吸附能用Polanyi吸附势理论和D-R方程描述。氯化钙在活性碳纤维布孔道中的填充方式为逐层覆盖。当活性碳纤维布的微孔被氯化钙完全填充满时,复合吸附剂的吸水作用完全由氯化钙决定。当活性碳纤维布的微孔没有被完全填充满时,复合吸附剂的吸水作用是活性碳纤维布与氯化钙共同作用的结果。活性碳纤维布的物理吸附过程受复合吸附剂的有效微孔容积影响,满足D-A方程。分散于孔道中的氯化钙在水合和潮解阶段化学性质发生改变,具体表现在水合和潮解压力降低,且复合吸附剂中氯化钙含量越低,其水合、潮解压力越低。膨胀石墨-氯化钙混合吸附剂的吸水完全由氯化钙发挥作用。活性碳纤维布复合吸附剂吸附速率快,其表面扩散速度系数为0.027-0.041s-1。但活性碳纤维布复合吸附剂的导热系数低,最大值仅有0.063W/(m·K)。膨胀石墨混合吸附剂吸附速率慢,其表面扩散速度系数为2×10-5s-1,但膨胀石墨混合吸附剂具备优异的导热性能,其导热系数能达到5W/(m·K)。
     基于实测的复合/混合吸附剂吸水性能和热物性,我们建立了仿生叶片的传热传质模型,并通过实验验证了模型,再利用模型完成了仿生叶片的设计计算。结果表明:保水层对仿生叶片温度影响很小,可以去掉保水层;影响仿生叶片上表面温度的关键因素是吸附脱附层的导热系数,应当选取高导热系数的膨胀石墨-氯化钙混合吸附剂来制备仿生叶片,且由于膨胀石墨-氯化钙混合吸附剂吸附速率慢,可以去掉吸脱附速率控制层;当膨胀石墨-氯化钙混合吸附剂中氯化钙含量达到40%时,仿生叶片便能很好地模拟真实叶片的热特征。基于理论分析结果,利用压块法将表面涂层粉末和混合吸附剂压制到一起,制备了氯化钙含量为50%的仿生叶片原理样品,并实测了仿生叶片与真实叶片的辐射温度。结果表明:该仿生叶片能很好地模拟真实叶片的热红外辐射特性,其辐射温度与真实叶片辐射温度差值在2℃以内。
Transpiration is one of the basic physiological activities of the plant leaf. It significantly affects leaf temperature. In order to imitate the thermal infrared characteristics of a plant leaf, we must imitate its transpiration.
     To deeply understand the plant transpiration, the heat and mass transfer processes of the plant leaf were investigated. Stomatal resistance, leaf temperature and transpiration water consumption of7kinds of typical plants in the middle and lower reaches of the Yangtze River Basin were measured. Camphor with large transpiration water consumption was chosen as the investigation object. A general thermophysical model was established for a camphor leaf. The model was verified by the field measured stomatal resistance and temperature of a camphor leaf. Then the leaf temperature, the transpiration water consumption and the heat exchange between the leaf and the environment were calculated throughout the summer using the fitted Jarvis model of the measured stomatal resistance and the weather data of the typical meteorological year in Nanjing. The dynamical simulation revealed that the day-average temperature of the leaf is dominated by the ambient air temperature, diurnal transpiration water consumption is dominated by the solar irradiance; transpiration plays an important role in the cooling of the leaf, it could dissipate more than30%of the total absorbed solar energy; transpiration latent heat has different degree of impact on the leaf temperature under different weather conditions, the impact is more significant in a calm weather than in a windy weather. Based on the above results, a kind of bionic leaf which can imitate the transpiration of the plant leaf and has a similar thermal infrared characteristic to the plant leaf was proposed. It consists of green coating, water holding layer, composite sorbent (CS) layer and adsorption-desorption rate control layer.
     The CS is the key material of the bionic leaf. Activated carbon fiber cloth (ACFC) and CaCl2CS was prepared by impregnating the ACFC in CaCl2aqueous solution. Expanded graphite (EG) and CaCl2CS was prepared using briquetting method. Then the water vapor sorption performance and thermal conductivity of the CSs were measured. Particular attention was paid to the adsorption mechanism of the ACFC to CaCl2during the impregnating and the water vapor sorption mechanism of the CSs. During the impregnating, Ca2+is absorbed by the surface oxygen functional groups of the ACFC due to the cation exchange, CaCl2is adsorbed by the micropores of the ACFC due to the Van der Waals force. From the quantitative analysis, Ca2+adsorption by the surface functional groups can be ignored for the CS preparation. CaCl2adsorption by the micropores can be described with the Polanyi adsorption potential theory and Dubinin-Radushkevich equation. When all the micropores of the ACFC are fully filled with CaC2, the isotherms of the CS coincide with those of the equivalent CaCl2. When there are still micropores remaining in the ACFC, both the ACFC and dispersed CaCl2contribute to the CS's water vapor sorption. The physical adsorption quantity of the ACFC of the CS is impacted by the effective micropore volume and can be calculated with the Dubinin-Astakhov equation. During the hydration and deliquescence, the dispersed CaCl2shows a lower hydration and deliquescence pressures than that of bulk CaCl2, and the hydration and deliquescence pressures increase with the CaCl2content of the CS. The sorption quantity of the EG and CaCl2CS equals to that of the equivalent CaCl2. The ACFC and CaCl2CS has a large sorption rate, its mass transfer coefficient is0.027-0.04ls-1. However, its thermal conductivity is low, the maximal thermal conductivity is only0.063W/(m-K). The EG and CaCl2CS has a high thermal conductivity, its thermal conductivity can reach5W/(m·K). However, its mass transfer coefficient is only2×10-5s-1.
     Based on the measured water vapor sorption property and thermal conductivity of the CS, a thermophysical model was established for the bionic leaf. Then the design calculation of the bionic leaf was completed using the thermophysical model. The dynamical simulation revealed that the influence of the water holding layer on the temperature of the bionic leaf can be ignored, so the water holding layer can be removed; the thermal conductivity of the CS dominates the up surface temperature of the bionic leaf; we should use the EG and CaCl2CS with high thermal conductivity to prepare the bionic leaf; the sorption-desorption rate control layer can be removed due to the low desorption rate of the EG and CaCl2CS; when the CaCl2content of the composite reaches40%, the bionic leaf has the similar temperature to that of the plant leaf throughout the daytime. Based on the above results, we prepared several principle samples of the bionic leaf by compressing the expanded graphite-CaCl2composite and pigment powder together. The radiative temperatures of the bionic and actual leaves were measured. Differeces between them are all less than2℃throughout the whole day.
引文
[1]胡巧玲,李晓东,沈家骢.2003.仿生结构材料的研究进展[J].材料研究学报,17(4):337-344.
    [2]郑黎俊,乌学东,楼增,吴旦.2004.表面微细结构制备超疏水表面[J].科学通报,49(17):1691-1699.
    [3]Neinhuis C, Barthlott W.1997. Characterization and distribution of water-repellent, self-cleaning plant surfaces [J]. Annals Of Botany,79(6):667-677.
    [4]Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, et al.2002. Super-Hydrophobic Surfaces:From Natural to Artificial [J]. Advanced Materials,14(24):1857-1860.
    [5]郭志光,刘维民.2006.仿生超疏水性表面的研究进展[J].化学进展,18(6):721-726.
    [6]Mandelbrot BB.1982. The fractal geometry of nature [M]:Times Books.
    [7]Li H, Wang X, Song Y, Liu Y, Li Q, Jiang L, et al.2001. Super-"Amphiphobic" Aligned Carbon Nanotube Films [J]. Angewandte Chemie International Edition,40(9):1743-1746.
    [8]Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, et al.2002. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers [J]. Angewandte Chemie,114(7):1269-1271.
    [9]Yao J, Wang JN, Yu YH, Yang H, Xu Y.2012. Biomimetic fabrication and characterization of an artificial rice leaf surface with anisotropic wetting [J]. Chinese Science Bulletin,57(20):2631-2634.
    [10]Shirtcliffe NJ, McHale G, Newton MI, Chabrol G, Perry CC.2004. Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces [J]. Advanced Materials,16(21):1929-1932.
    [11]刘志明.2009.植物叶片仿生伪装材料研究[D]:博士.长沙:国防科学技术大学.
    [12]张勇,吴文健,刘志明.2009.仿生迷彩伪装设计[J]. Computer Engineering,35(6).
    [13]喻钧,双晓.2012.仿造数码迷彩的设计方法[J].应用科学学报,30(4).
    [14]卢军,李杨,赵康健,都思丹.2011.基于主色共生矩阵法的数码迷彩纹理特征提取[J].Computer Engineering,37(7).
    [15]Demmig-Adams B, Adams WW.1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis [J]. Trends In Plant Science,1(1):21-26.
    [16]Dodd I, Critchley C, Woodall G, Stewart G.1998. Photoinhibition in differently coloured juvenile leaves of Syzygium species [J]. Journal Of Experimental Botany,49(325):1437-1445.
    [17]Sims DA, Gamon JA.2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages [J]. Remote Sensing Of Environment,81(2-3):337-354.
    [18]Sims DA, Gamon JA.2003. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance:a comparison of indices based on liquid water and chlorophyll absorption features [J]. Remote Sensing Of Environment,84(4):526-537.
    [19]Penuelas J, Inoue Y.1999. Reflectance indices indicative of changes in water and pigment contents of peanut and wheat leaves [J]. Photosynthetica,36(3):355-360.
    [20]Gitelson AA, Merzlyak MN, Lichtenthaler HK.1996. Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm [J]. Journal Of Plant Physiology, 148(3):501-508.
    [21]Penuelas J, Filella I, Biel C, Serrano L, Save R.1993. The reflectance at the 950-970 nm region as an indicator of plant water status [J]. International Journal Of Remote Sensing,14(10):1887-1905.
    [22]Penuelas J, Pinol J, Ogaya R, Filella I.1997. Estimation of plant water concentration by the reflectance water index WI (R900/R970) [J]. International Journal Of Remote Sensing,18(13): 2869-2875.
    [23]Claudio HC, Cheng Y, Fuentes DA, Gamon JA, Luo H, Oechel W, et al.2006. Monitoring drought effects on vegetation water content and fluxes in chaparral with the 970 nm water band index [J]. Remote Sensing Of Environment,103(3):304-311.
    [24]Rollin E, Milton E.1998. Processing of high spectral resolution reflectance data for the retrieval of canopy water content information [J]. Remote Sensing Of Environment,65(1):86-92.
    [25]刘志明,吴文健,张勇.2007.植物叶片仿生伪装结构模型设计[J].功能材料,38(A08):3119-3122.
    [26]杨玉杰,胡碧茹,吴文健.2011.植物叶片仿生伪装材料的设计与制备[J].国防科技大学学报,33(5):50-53.
    [27]赵振国.2005.吸附作用应用原理[M].北京:化学工业出版社.
    [28]章燕豪.1989.吸附作用[M].上海:上海科学技术文献出版社.
    [29]杨RT.1991.吸附法气体分离[M].北京:化学工业出版社.
    [30]Zhuravlev L.2000. The surface chemistry of amorphous silica. Zhuravlev model [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,173(1):1-38.
    [31]Donohue M, Aranovich G.1998. Classification of Gibbs adsorption isotherms [J]. Advances In Colloid and Interface Science,76:137-152.
    [32]Li X, Li Z, Xia QB, Xi HX.2007. Effects of pore sizes of porous silica gels on desorption activation energy of water vapour [J]. Applied Thermal Engineering,27(5-6):869-876.
    [33]Tashiro Y, Kubo M, Katsumi Y, Meguro T, Komeya K.2004. Assessment of adsorption-desorption characteristics of adsorbents for adsorptive desiccant cooling system [J]. Journal Of Materials Science,39(4):1315-1319.
    [34]Ng K, Chua H, Chung C, Loke C, Kashiwagi T, Akisawa A, et al.2001. Experimental investigation of the silica gel-water adsorption isotherm characteristics [J]. Applied Thermal Engineering,21(16):1631-1642.
    [35]Chihara K, Suzuki M.1983. Air drying by pressure swing adsorption [J]. Journal Of Chemical Engineering Of Japan,16(4):293-299.
    [36]Alam K, Saha B, Kang Y, Akisawa A, Kashiwagi T.2000. Heat exchanger design effect on the system performance of silica gel adsorption refrigeration systems [J]. International Journal Of Heat and Mass Transfer,43(24):4419-4431.
    [37]Wang R, Wang Q.1999. Adsorption mechanism and improvements of the adsorption equation for adsorption refrigeration pairs [J]. International Journal Of Energy Research,23(10):887-898.
    [38]Solmus.1, Yamah C, Kaftanoglu B, Baker D, Caglar A.2010. Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles [J]. Applied Energy,87(6):2062-2067.
    [39]Zhang L.2000. Design and testing of an automobile waste heat adsorption cooling system [J]. Applied Thermal Engineering,20(1):103-114.
    [40]Lu Y, Wang R, Zhang M, Jiangzhou S.2003. Adsorption cold storage system with zeolite-water working pair used for locomotive air conditioning [J]. Energy Conversion and Management,44(10):1733-1743.
    [41]Cossarutto L, Zimny T, Kaczmarczyk J, Siemieniewska T, Bimer J, Weber J.2001. Transport and sorption of water vapour in activated carbons [J]. Carbon,39(15):2339-2346.
    [42]Sullivan PD, Stone BR, Hashisho Z, Rood MJ.2007. Water adsorption with hysteresis effect onto microporous activated carbon fabrics [J]. Adsorption-journal Of The International Adsorption Society,13(3):173-189.
    [43]Neitsch M, Heschel W, Suckow M.2001. Water vapor adsorption by activated carbon:a modification to the isotherm model of Do and Do [J]. Carbon,39:1421-1422.
    [44]Do D, Do H.2000. A model for water adsorption in activated carbon [J]. Carbon,38(5):767-773.
    [45]Barton S, Evans M, Holland J, Koresh J.1984. Water and cyclohexane vapour adsorption on oxidized porous carbon [J]. Carbon,22(3):265-272.
    [46]Iloeje O, Ndili A, Enibe S.1995. Computer simulation of a CaCl2 solid-adsorption solar refrigerator [J]. Energy,20(11):1141-1151.
    [47]Goetz V, Spinner B, Lepinasse E.1997. A solid-gas thermochemical cooling system using BaCl2 and NiCl2 [J]. Energy,22(1):49-58.
    [48]Goetz V, Llobet J.2000. Testing and modelling of a temperature front solid-gas reactor applied to thermochemical transformer [J]. Applied Thermal Engineering,20(2):155-177.
    [49]YANOMA A, YONETA M, NITTA T, OKUDA K.1988. The performance of a large scale metal hydride heat pump [J]. JSME international journal. Ser.2, Fluids engineering, heat transfer, power, combustion, thermophysical properties,31(4):741-747.
    [50]王如竹.2007.吸附式制冷应用理论与应用[M].北京:科学出版社.
    [51]Kumita M, Meiwa M, Watanabe K, Kodama A.2013. Preparation of calcium chloride-anodized aluminum composite for water vapor sorption [J]. Applied Thermal Engineering,50(2):1564-1569.
    [52]Dellero T, Sarmeo D, Touzain P.1999. A chemical heat pump using carbon fibers as additive. Part I:enhancement of thermal conduction [J]. Applied Thermal Engineering,19(9):991-1000.
    [53]Levitskij E, Aristov YI, Tokarev M, Parmon V.1996. "Chemical Heat Accumulators":A new approach to accumulating low potential heat [J]. Solar Energy Materials and Solar Cells,44(3): 219-235.
    [54]Gong L, Wang R, Xia Z, Chen C.2010. Adsorption equilibrium of water on a composite adsorbent employing lithium chloride in silica gel [J]. Journal of Chemical & Engineering Data, 55(8):2920-2923.
    [55]Gong LX, Wang RZ, Xia ZZ, Lu ZS.2012. Experimental study on an adsorption chiller employing lithium chloride in silica gel and methanol [J]. International Journal Of Refrigeration-revue Internationale Du Froid,35(7):1950-1957.
    [56]Zhu DS, Wu HJ, Wang SW.2006. Experimental study on composite silica gel supported CaCl(2) sorbent for low grade heat storage [J]. International journal of thermal sciences,45(8):804-813.
    [57]Aristov YI, Kovalevskaya YA, Tokarev MM, Paukov IE.2011. Low temperature heat capacity of the system "silica gel-calcium chloride-water" [J]. Journal Of Thermal Analysis and Calorimetry,103(2):773-778.
    [58]Tokarev M, Gordeeva L, Romannikov V, Glaznev I, Aristov Y.2002. New composite sorbent CaCl2 in mesopores for sorption cooling/heating [J]. International Journal Of Thermal Sciences, 41(5):470-474.
    [59]Aristov YI, Tokarev M, Cacciola G, Restuccia G.1996. Selective water sorbents for multiple applications,1. CaCl2 confined in mesopores of silica gel:sorption properties [J]. Reaction Kinetics and Catalysis Letters,59(2):325-333.
    [60]Aristov YI, Tokarev M, Restuccia G, Cacciola G.1996. Selective water sorbents for multiple applications,2. CaCl 2 confined in micropores of silica gel:Sorption properties [J]. Reaction Kinetics and Catalysis Letters,59(2):335-342.
    [61]Aristov YI, Restuccia G, Tokarev MM, Cacciola G.2000. Selective water sorbents for multiple applications,10. Energy storage ability [J]. Reaction Kinetics and Catalysis Letters,69(2):345-353.
    [62]Aristov YI, Gordeeva LG, Pankratiev YD, Plyasova LM, Bikova IV, Freni A, et al.2007. Sorption equilibrium of methanol on new composite sorbents "CaCl2/silica gel" [J]. Adsorption-journal Of The International Adsorption Society,13(2):121-127.
    [63]Ponomarenko IV, Glaznev IS, Gubar AV, Aristov YI, Kirik SD.2010. Synthesis and water sorption properties of a new composite "CaCl2 confined into SBA-15 pores" [J]. Micropor. Mesopor. Mat.,129(1-2):243-250.
    [64]Aristov YI, Gordeeva LG, Pankratiev YD, Plyasova LM, Bikova I, Freni A, et al.2007. Sorption equilibrium of methanol on new composite sorbents "CaCl2/silica gel" [J]. Adsorption-journal Of The International Adsorption Society,13(2):121-127.
    [65]Tso CY, Chao CYH.2012. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems [J]. International Journal Of Refrigeration-revue Internationale Du Froid,35(6):1626-1638.
    [66]Lu ZS, Wang RZ, Wang LW, Chen CJ.2006. Performance analysis of an adsorption refrigerator using activated carbon in a compound adsorbent [J]. Carbon,44(4):747-752.
    [67]Wang L, Wang R, Lu Z, Chen C, Wang K, Wu J.2006. The performance of two adsorption ice making test units using activated carbon and a carbon composite as adsorbents [J]. Carbon, 44(13):2671-2680.
    [68^ Wang LW, Wang RZ, Xia ZZ, Wu JY.2008. Studies on heat pipe type adsorption ice maker for fishing boats [J]. International Journal Of Refrigeration-revue Internationale Du Froid,31(6): 989-997.
    [69]Fujioka K, Hatanaka K, Hirata Y.2008. Composite reactants of calcium chloride combined with functional carbon materials for chemical heat pumps [J]. Applied Thermal Engineering, 28(4):304-310.
    [70]Lu ZS, Wang RZ, Li TX, Wang LW, Chen CJ.2007. Experimental investigation of a novel multifunction heat pipe solid sorption icemaker for fishing boats using CaC12/activated carbon compound-ammonia [J]. International Journal Of Refrigeration-revue Internationale Du Froid, 30(1):76-85.
    [71]Dellero T, Touzain P.1999. A chemical heat pump using carbon fibers as additive. Part Ⅱ:study of constraint parameters [J]. Applied Thermal Engineering,19(9):1001-1011.
    [72]Tokarev MM, Veselovskaya JV, Yanagi H, Aristov YI.2010. Novel ammonia sorbents "porous matrix modified by active salt" for adsorptive heat transformation:2. Calcium chloride in ACF felt [J]. Applied Thermal Engineering,30(8-9):845-849.
    [73]Veselovskaya J, Tokarev M, Aristov YI.2010. Novel ammonia sorbents "porous matrix modified by active salt" for adsorptive heat transformation:1. Barium chloride in various matrices [J]. Applied Thermal Engineering,30(6):584-589.
    [74]Li T, Wang R, Kiplagat J, Wang L.2009. Performance study of a consolidated manganese chloride-expanded graphite compound for sorption deep-freezing processes [J]. Applied Energy,86(7):1201-1209.
    [75]Wang K, Wu J, Wang R, Wang L.2006. Effective thermal conductivity of expanded graphite-CaCl2 composite adsorbent for chemical adsorption chillers [J]. Energy Conversion and Management,47(13):1902-1912.
    [76]Zajaczkowski B, Krolicki Z, Jezowski A.2010. New type of sorption composite for chemical heat pump and refrigeration systems [J]. Applied Thermal Engineering,30(11):1455-1460.
    [77]Oliveira R, Wang R.2007. A consolidated calcium chloride-expanded graphite compound for use in sorption refrigeration systems [J]. Carbon,45(2):390-396.
    [78]Wang R, Xia Z, Wang L, Lu Z, Li S, Li T, et al.2011. Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy [J]. Energy,36(9):5425-5439.
    [79]Tian B, Jin Z, Wang L, Wang R.2012. Permeability and thermal conductivity of compact chemical and physical adsorbents with expanded natural graphite as host matrix [J]. International Journal Of Heat and Mass Transfer.
    [80]Qliveira R, Wang R, Wang C.2007. Evaluation of the cooling performance of a consolidated expanded graphite-calcium chloride reactive bed for chemisorption icemaker [J]. International Journal of Refrigeration,30(1):103-112.
    [81]Wang K, Wu J, Wang R, Wang L.2006. Composite adsorbent of CaCl2 and expanded graphite for adsorption ice maker on fishing boats [J]. International Journal of Refrigeration,29(2):199-210.
    [82]Mauran S, Prades P, LTiaridon F.1993. Heat and mass transfer in consolidated reacting beds for thermochemical systems [J]. Heat Recovery Systems and CHP,13(4):315-319.
    [83]Aristov YI, Restuccia G, Cacciola G, Parmon V.2002. A family of new working materials for solid sorption air conditioning systems [J]. Applied Thermal Engineering,22(2):191-204.
    [84]Zhang X, Qiu L.2007. Moisture transport and adsorption on silica gel-calcium chloride composite adsorbents [J]. Energy Conversion and Management,48(1):320-326.
    [1]Wassink E.1959. Efficiency of Light Energy Conversion in Plant Growth [J]. Plant Physiology, 34(3):356.
    [2]Raschke K.1960. Heat transfer between the plant and the environment [J]. Annual Review of Plant Physiology,11(1):111-126.
    [3]Monteith J.1965. Evaporation and environment, in Symp. Soc. Exp. Biol.
    [4]Jones HG.1992. Plants and microclimate:a quantitative approach to environmental plant physiology [M]:Cambridge University Press.
    [5]Campbell GS, Norman JM.1998. Introduction to environmental biophysics [M]:Springer Verlag.
    [6]刘森元,黄远锋.1983.天空有效温度的探讨[J].太阳能学报,4(1):64-68.
    [7]Boulard T, Wang S.2002. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel [J]. Computers and Electronics In Agriculture,34(1):173-190.
    [8]Yang Y, Liu Z, Hu B, Man Y, Wu W.2010. Bionic Composite Material Simulating the Optical Spectra of Plant Leaves [J]. Journal of Bionic Engineering,7:S43-S49.
    [9]Jarvis P.1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field [J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,273(927):593-610.
    [10]Kim J, Verma SB.1991. Modeling canopy stomatal conductance in a temperate grassland ecosystem [J]. Agricultural and Forest Meteorology,55(1):149-166.
    [11]C TN, D SE, T G.1985. The response of stomatal and leaf gas exchange to vapor pressure deficits and soil water content in the mesospheric herbaceous species Helianthus annuus [J]. Oecologin,65:348-355.
    [12]Hofstra G, Hesketh J.1969. The effect of temperature on stomatal aperture in different species [J]. Canadian Journal of Botany,47(8):1307-1310.
    [1]Wang L, Wang R, Wu J, Wang K, Wang S.2004. Adsorption ice makers for fishing boats driven by the exhaust heat from diesel engine:choice of adsorption pair [J]. Energy Conversion and Management,45(13):2043-2057.
    [2]Oliveira R, Wang R.2007. A consolidated calcium chloride-expanded graphite compound for use in sorption refrigeration systems [J]. Carbon,45(2):390-396.
    [3]Wang L, Chen L, Wang HL, Liao DL.2009. The adsorption refrigeration characteristics of alkaline-earth metal chlorides and its composite adsorbents [J]. Renewable Energy,34(4):1016-1023.
    [4]Lemmini F, Errougani A.2005. Building and experimentation of a solar powered adsorption refrigerator [J]. Renewable Energy,30(13):1989-2003.
    [5]Lu ZS, Wang RZ, Wang LW, Chen CJ.2006. Performance analysis of an adsorption refrigerator using activated carbon in a compound adsorbent [J]. Carbon,44(4):747-752.
    [6]Wang S, Wang R.2005. Recent developments of refrigeration technology in fishing vessels [J]. Renewable Energy,30(4):589-600.
    [7]Wang DC, Li YH, Li D, Xia YZ, Zhang JP.2010. A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems [J]. Renew. Sust. Energ. Rev.,14(1):344-353.
    [8]Tso CY, Chao CYH.2012. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems [J]. International Journal Of Refrigeration-revue Internationale Du Froid,35(6):1626-1638.
    [9]Levitskij E, Aristov YI, Tokarev M, Parmon V.1996. "Chemical Heat Accumulators":A new approach to accumulating low potential heat [J]. Solar Energy Materials and Solar Cells,44(3): 219-235.
    [10]Tokarev MM, Veselovskaya JV, Yanagi H, Aristov YI.2010. Novel ammonia sorbents "porous matrix modified by active salt" for adsorptive heat transformation:2. Calcium chloride in ACF felt [J]. Applied Thermal Engineering,30(8-9):845-849.
    [11]Grekova AD, Veselovskaya JV, Tokarev MM, Gordeeva LG.2012. Novel ammonia sorbents "porous matrix modified by active salt" for adsorptive heat transformation:5. Designing the composite adsorbent for ice makers [J]. Applied Thermal Engineering,37:80-86.
    [12]Gong L, Wang R, Xia Z, Chen C.2010. Adsorption equilibrium of water on a composite adsorbent employing lithium chloride in silica gel [J]. Journal of Chemical & Engineering Data, 55(8):2920-2923.
    [13]Gordeeva LG, Freni A, Restuccia G, Aristov YI.2007. Influence of characteristics of methanol sorbents "salts in mesoporous silica" on the performance of adsorptive air conditioning cycle [J]. Industrial & Engineering Chemistry Research,46(9):2747-2752.
    [14]Ostrovskii NM, Chumakova NA, Bukhavtsova NM, Vernikovskaya NV, Aristov YI.2007. Modeling of the limiting step of water sorption by composite sorbents of the "calcium chloride in porous matrix" type [J]. Theoretical Foundations Of Chemical Engineering,41(1):83-90.
    [15]Zhang X, Qiu L.2007. Moisture transport and adsorption on silica gel-calcium chloride composite adsorbents [J]. Energy Conversion and Management,48(1):320-326.
    [16]Ponomarenko IV, Glaznev IS, Gubar AV, Aristov YI, Kirik SD.2010. Synthesis and water sorption properties of a new composite "CaCl2 confined into SBA-15 pores" [J]. Micropor. Mesopor. Mat.,129(1-2):243-250.
    [17]Veselovskaya J, Tokarev M, Aristov YI.2010. Novel ammonia sorbents "porous matrix modified by active salt" for adsorptive heat transformation:1. Barium chloride in various matrices [J]. Applied Thermal Engineering,30(6):584-589.
    [18]Kumita M, Mei wa M, Watanabe K, Kodama A.2013. Preparation of calcium chloride-anodized aluminum composite for water vapor sorption [J]. Applied Thermal Engineering,50(2):1564-1569.
    [19]Jia Y, Thomas K.2000. Adsorption of cadmium ions on oxygen surface sites in activated carbon [J]. Langmuir,16(3):1114-1122.
    [20]Jia YF, Xiao B, Thomas KM.2002. Adsorption of metal ions on nitrogen surface functional groups in activated carbons [J], Langmuir,18(2):470-478.
    [21]Boehm H.1994. Some aspects of the surface chemistry of carbon blacks and other carbons [J]. Carbon,32(5):759-769.
    [22]Giles C, MacEwan T, Nakhwa S, Smith D.1960.786. Studies in adsorption. Part Ⅺ. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids [J]. J. Chem. Soc., (0):3973-3993.
    [23]Polanyi M.1914. General discussion, The adsorption of gases by solids [J]. Verh Deutsch Phys,16:1012.
    [24]Dubinin M.1975. Progress in surface and membrane science [M]. New York:Academic Press. 1-70.
    [25]Rosene MR, Manes M.1977. Application of Polanyi adsorption potential theory to adsorption from solution on activated carbon.9. competitive adsorption of ternary solid solutes from water solution [J]. J. Phys. Chem.,81(17):1646-1650.
    [26]Greenbank M, Manes M.1981. Application of the Polanyi adsorption potential-theory to adsorption from solution on activated carbon.11. adsorption of organic liquid-mixtures from water solution [J]. J. Phys. Chem.,85(21):3050-3059.
    [27]Unlu N, Ersoz M.2006. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions [J]. Journal Of Hazardous Materials,136(2):272-280.
    [28]Kilislioglu A, Bilgin B.2003. Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin [J]. Applied Radiation and Isotopes,58(2):155-160.
    [29]Dubinin MM.1960. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces [J]. Chem. Revs.,60:235-241.
    [30]Teng Y, Wang R, Wu J.1997. Study of the fundamentals of adsorption systems [J]. Applied Thermal Engineering,17(4):327-338.
    [31]Kolokolov DI, Stepanov AG, Glaznev IS, Aristov YI, Plazanet M, Jobic H.2009. Water dynamics in bulk and dispersed in silica CaCl2 hydrates studied by neutron scattering methods [J]. Microporous and Mesoporous Materials,125(1):46-50.
    [32]Fujioka K, Hatanaka K, Hirata Y.2008. Composite reactants of calcium chloride combined with functional carbon materials for chemical heat pumps [J]. Applied Thermal Engineering, 28(4):304-310.
    [33]Li T, Wang R, Kiplagat J, Wang L.2009. Performance study of a consolidated manganese chloride-expanded graphite compound for sorption deep-freezing processes [J]. Applied Energy,86(7):14201-1209.
    [34]Oliveira R, Wang R.2007. A consolidated calcium chloride-expanded graphite compound for use in sorption refrigeration systems [J]. Carbon,45(2):390-396.
    [1]Kumita M, Meiwa M, Watanabe K, Kodama A.2013. Preparation of calcium chloride-anodized aluminum composite for water vapor sorption [J]. Applied Thermal Engineering,50(2):1564-1569.
    [2]Linnow K, Steiger M.2007. Determination of equilibrium humidities using temperature and humidity controlled X-ray diffraction (RHARD) [J]. Analytica Chimica Acta,583(1):197-201.
    [3]Morillon V, Debeaufort F, Jose J, Tharrault JF, Capelle M, Blond G, et al.1999. Water vapour pressure above saturated salt solutions at low temperatures [J]. Fluid Phase Equilibria,155(2): 297-309.
    [4]Ewing WW.1927. Calcium Nitrate. II. The vapor pressure-temperature relations of the binary system calcium nitrate-water [J]. Journal Of The American Chemical Society,49:1963.
    [5]Do D, Do H.2000. A model for water adsorption in activated carbon [J]. Carbon,38(5):767-773.
    [6]Teng Y, Wang R, Wu J.1997. Study of the fundamentals of adsorption systems [J]. Applied Thermal Engineering,17(4):327-338.
    [7]Glaznev I, Ponomarenko I, Kirik S, Aristov Y.2011. Composites CaCl2/SBA-15 for adsorptive transformation of low temperature heat:Pore size effect [J]. International Journal of Refrigeration,34(5):1244-1250.
    [8]Veselovskaya J, Tokarev M, Aristov YI.2010. Novel ammonia sorbents "porous matrix modified by active salt" for adsorptive heat transformation:1. Barium chloride in various matrices [J]. Applied Thermal Engineering,30(6):584-589.
    [9]Aristov YI, Gordeeva LG, Pankratiev YD, Plyasova LM, Bikova I, Freni A, et al.2007. Sorption equilibrium of methanol on new composite sorbents "CaCl2/silica gel" [J]. Adsorption-journal Of The International Adsorption Society,13(2):121-127.
    [10]Ponomarenko IV, Glaznev IS, Gubar AV, Aristov YI, Kirik SD.2010. Synthesis and water sorption properties of a new composite "CaCl2 confined into SBA-15 pores" [J]. Micropor. Mesopor. Mat.,129(1-2):243-250.
    [11]Kolokolov DI, Glaznev IS, Aristov YI, Stepanov AG, Jobic H.2008. Water dynamics in bulk and dispersed in silica CaC12 hydrates studied by 2H NMR [J]. The Journal of Physical Chemistry C,112(33):12853-12860.
    [12]Kolokolov DI, Stepanov AG, Glaznev IS, Aristov YI, Plazanet M, Jobic H.2009. Water dynamics in bulk and dispersed in silica CaCl2 hydrates studied by neutron scattering methods [J]. Microporous and Mesoporous Materials,125(1):46-50.
    [13]Zhang X, Qiu L.2007. Moisture transport and adsorption on silica gel-calcium chloride composite adsorbents [J]. Energy Conversion and Management,48(1):320-326.
    [14]Conde MR.2004. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design [J]. International Journal Of Thermal Sciences,43(4):367-382.
    [15]M.H. K.1949. Chemical Thermodynamics [M]. Moscow.
    [16]王如竹,王丽伟,吴静怡.2007.吸附式制冷理论与应用[M].北京:科学出版社.
    [17]Dawoud B, Aristov Y.2003. Experimental study on the kinetics of water vapor sorption on selective water sorbents, silica gel and alumina under typical operating conditions of sorption heat pumps [J]. Int. J. Heat Mass. Tran.,46(2):273-281.
    [18]刘业凤.2003.空气取水用复合吸附剂的吸附性能及吸附动力学特性研究[D]:上海:上海交通大学.
    [19]Palyvos J.2008. A survey of wind convection coefficient correlations for building envelope energy systems'modeling [J]. Applied Thermal Engineering,28(8):801-808.
    [20]葛新石,叶宏.2007.传热和传质基本原理[M].北京:化学工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700