金属纳米粒子有序结构的构筑及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体共振是金属纳米结构非常独特的光学特性,基于纳米结构的表面等离子体共振研究已成为国际上热门研究领域之一,即表面等离子激元学。它包含了广泛的研究内容,如:表面电磁场增强、表面增强光谱、光透射增强、表面等离子体纳米波导、表面等离子体光催化、表面增强的能量转移及选择性光吸收等方面。这类研究展示了巨大的应用前景,有望为新一代的纳米表征技术和传感器技术提供新的原理和方法。这些技术将成为发展超高检测灵敏度的新型表面等离子体、表面增强光谱传感器的基础。基于这种背景下,本论文开展了表面等离子激元学的基础研究,提出了构筑表面等离子共振材料的新方法,把表面等离子共振应用于纳米粒子和纳米粒子阵列的领域中,探索了其在电化学、拉曼增强和荧光增强等方面的应用。
     本论文详细介绍了研究进展,具体研究内容如下:
     1.创立了通过动力学方法,实现了不同形貌纳米粒子的控制合成,并探索了纳米粒子在溶液法合成过程中进化过程的内部因素,发现了纳米粒子可控合成的另一条途径。此外,我们对不同形貌的纳米粒子进行了光学和电化学的初步研究,实现了表面等离子共振的实际应用。
     2.我们创立了通过纳米压印技术同电化学沉积相结合构筑有序纳米粒子阵列的方法。该方法可以原位大面积地合成纳米粒子,可在同一基底上实现不同结构纳米粒子阵列的一次性构筑。利用这种方法,银纳米粒子的有序阵列被高效地构筑出来,其纳米粒子的密度具有可调性。我们系统研究了这种密度可调的特性,揭示了产生这种特性的原因,成功地将其应用至拉曼增强和荧光增强的领域中,并对增强机理进行了研究,取得了的研究成果。
     本论文提出了构筑等离子共振材料的新方法,并实现了等离子共振性质在纳米粒子和纳米粒子阵列领域的应用。基于这些方法可以廉价、高效的大面积构筑等离子共振材料。与传统方法相比,大大降低了生产成本,为等离子共振在光学,电子以及器件和传感领域的应用,奠定了基础。
Surface plasmon resonance is a unique property on metallic nanostructures. Surface plasmon resonance based on Nanostructured system, namely plasmonic optics, becomes one of the focused fields. It contains many research areas: enhanced local field, enhanced emission, enhanced transmission; plasmon waveguide; plasmon photocatalyse; plasmon enhanced energy transfer and selected absorption. Many new phenomena and questions have been found during the research process and many potential applications have been proposed,such as ultrahigh sensitive detection and new kind of sensor based on the enhanced spectra.In our work. Plasmonic nanostructures have been fabricated successfully and its electrochemical property, surface enhanced Ramon scattering and metal enhanced fluoresce o were studied for plasmonc application.
     1. A simple method of controlling gold nanoparticle shapes by dynamic process was proposed and the mechanismof morphological evolution process was also presented. It is an alternative route for synthesis nanoparticle with different shape control. This is the first report on the dynamic process control on the shape of nanoparticles. It is a kind of“green chemistry”method to synthesize the gold nanoparticles. The electrochemical properties and optical properties of the gold nanoparticles with different shapes are studied.
     2. A nonel method of fabricating the arrays of silver nanoparticles (SNPs) on predefined positions by electrochemical deposition (ECD) combined with nanoimprint lithography (NIL). The SNPs assemble, especially the density, can be controlled by varying the pattern design and the preparation conditions. By this approach, various arrays of SNPs with feature size down to sub-micrometer can be fabricated over several square centimeters on one substrate. In this thesis, the density tunable properties are systematically studied and reviewed the inner reason. The SNPs arrays can be applied in detecting and sensing fields and surface-enhanced Raman scatter and metal enhance fluoresce are carefully studied and gained good results.
     Herein we originally demonstrated the methods for fabricating surface plasmon resonance nanostructures. These methods make the Surface plasmon resonance property application in the field of nanoparticle and nanoparticle arrays areas. This may allow a novel and simple route to fabricate large-area surface plasmon resonance materials. Comparing with traditional methods, the low cost is the basement for the Surface plasmon resonance property widely application.
引文
[1] C. Bai, [J].Journal of Nanoparticle Research 2001, 3, 251–256.
    [2] W. Hunt, J. Miner. [J].Met. Mater. Soc. 2004, 56, 13.
    [3]王永康,王立纳米材料科学与技术[M]杭州:浙江大学出版社2002, 7,110.
    [4] U. Kreibig, M .Vollmer Optical properties of metal cluster, [M] Berlikn : Springer-Verlag ,1995, 1-2.
    [5]李小兵,刘竞超纳米粒子与纳米材料. [J].塑料. 1999, 1, 19-22.
    [6]顾宁,付得刚,张海黔纳米技术与应用[M]北京:人民邮电出版社, 2002, 16-18.
    [7] In Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization; Nagarajan, R. .ACS Symposium Series; American Chemical Society: [M] Washington, DC, 2008.
    [8] Dale E. Henneke . nanoparticles produced via laser ablation of microparticles (dissertation) . [M]Austin: the university of texas. 2001.
    [9]蒋惠亮,徐光年,方云等纳米技术与纳米材料(VII) ,无机纳米材料的制备、性能及表征,[J].日用化学工业2004, 1, 57-61.
    [10]盖国胜.超细粉体技术[M]北京:化学工业出版社, 2004, 10-31.
    [11]段学臣,曾真诚,高桂兰,纳米材料制备方法和展望. [J].稀有金属与硬质合金2001, 147, 49.
    [12]刘珍纳米材料制备方法及其研究进展[J].材料科学与工艺, 1998, 3, 104-108.
    [13]张立德纳米材料[M]北京:化学工业出版社, 2000, 39-50.
    [14] P. Ball, L . Garwin [J].Nature . 1992, 355, 76.
    [15]王笃金,吴瑾光.反胶团或微乳液法制备超细颗粒的研究进展.[J].化学通报1995, 9, 1-5.
    [16]于迎涛,张钦辉,徐柏庆一溶液体系中的纳米金属粒子形状控制合成. [J].化学进展2004, 4, 520-526.
    [17]彭剑淳,刘晓达,丁小萍等可见光光潜法评价胶体金粒径及其分布军事医学[J].科学院刊2000, 3, 211-237.
    [18]吴世法近代成像技术与图像处理[M]北京,国防工业出版社, 1997, 294.
    [19] M. Adams, Z. Dogic, S. L. Keller, S. Fraden, [J].Nature 1998, 393, 349.
    [20] N. R. Jana, Angew. [J].Chem. Int. Ed. 2004, 43, 1536.
    [21] M. P. Pileni, Y. Lalatonne, D. Ingert, I. Lisiecki, [J]. A. Courty, Faraday Discuss. 2004, 125, 251.
    [22] T. K. Sau, C. J. Murphy, [J].Langmuir 2005, 21, 2923.
    [23] Z. L. Wang, [J].J. Phys. Chem. B 2000, 104, 1153.
    [24] S.-M. Yang, S.-H. Kim, J.-M. Lim, G.-R. Yi, [J].J. Mater. Chem. 2008, 18, 2177.
    [25] R. Narayanan, M. A. El-Sayed, [J].J. Am. Chem. Soc. 2004, 126, 7194.
    [26] M. Subhramannia, V. K. Pillai, [J].J. Mater. Chem. 2008, 18, 5858.
    [27] R. Xu, D. Wang, J. Zhang, Y. Li, [J].Chem. Asian J. 2006, 1,888.
    [28] R. J. Chimentao, I. Kirm, F. Medina, X. Rodriguez, Y. Cesteros, P. Salagre, J. E. Sueiras, J. L. G. Fierro, [J].Appl. Surf. Sci. 2005, 252, 793.
    [29] T. K. Sau, C. J. Murphy, [J].J. Am. Chem. Soc. 2004, 126, 8648.
    [30] A. Demortiere, P. Launois, N. Goubet, P.-A. Albouy, C. Petit,[J].J. Phys. Chem. B 2008, 112, 14583.
    [31] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, [J].Science 1996, 272, 1924.
    [32] D. Seo, J. C. Park, H. Song, [J].J. Am. Chem. Soc. 2006, 128, 14863.
    [33] F.-R. Fan, D.-Y. Liu, Y.-F. Wu, S. Duan, Z.-X. Xie, Z.-Y. Jiang, Z.-Q. Tian, [J].J. Am. Chem. Soc. 2008, 130, 6949.
    [34] S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, [J].Nat. Mater. 2007, 6, 692.
    [35] H. Song, F. Kim, S. Connor, G. A. Somorjai, P. Yang, [J].J. Phys. Chem. B 2005, 109, 188.
    [36] S. H. Im, Y. T. Lee, B. Wiley, Y. Xia, Angew. [J].Chem. Int. Ed. 2005, 44, 2154.
    [37] S. E. Skrabalak, L. Au, X. Li, Y. Xia, [J].Nat. Protoc. 2007, 2, 2182.
    [38] W. Niu, Z.-Y. Li, L. Shi, X. Liu, H. Li, S. Han, J. Chen, G. Xu, [J].Cryst. Growth Des. 2008, 8, 4440.
    [39] D. Seo, C. I. Yoo, J. C. Park, S.M. Park, S. Ryu, H. Song, [J].Angew. Chem. Int. Ed. 2008, 120, 775.
    [40] H. Lee, S. E. Habas, G. A. Somorjai, P. Yang, [J].J. Am. Chem. Soc. 2008, 130, 5406.
    [41] T. K. Sau, C. J. Murphy, [J].Langmuir 2004, 20, 6414.
    [42] M. Grzelczak, J. Perez-Juste, B. Rodriguez-Gonzalez, L. M. Liz-Marzan, [J]. J. Mater. Chem. 2006, 16, 3946.
    [43] N. R. Jana, L. Gearheart, C. J. Murphy, [J].Chem. Commun. 2001, 617.
    [44] K. K. Caswell, C. M. Bender, C. J. Murphy, [J].Nano Lett. 2003,3, 667.
    [45] F. Kim, K. Sohn, J. Wu, J. Huang, [J].J. Am. Chem. Soc. 2008, 130, 14442.
    [46] S. E. Hunyadi, C. J. Murphy, [J].J. Mater. Chem. 2006, 16, 3929.
    [47] O. Krichevski, G. Markovich, [J].Langmuir 2007, 23, 1496.
    [48] Q. Zhao, L. Hou, R. Huang, S. Li, Mater. [J].Chem. Phys. 2004, 85, 180.
    [49] C.-J. Huang, P.-H. Chiu, Y.-H. Wang, C.-F. Yang, [J].J. Colloid Interface Sci. 2006, 303, 430.
    [50] M. Li, Z. S. Zhang, X. Zhang, K. Y. Li, X. F. Yu, [J].Opt. Express 2008, 16, 14288.
    [51] D. Seo, C. I. Yoo, I. S. Chung, S.M. Park, S. Ryu, H. Song, [J].J. Phys. Chem. C 2008, 112, 2469.
    [52] B. Pietrobon, V. Kitaev, [J].Chem. Mater. 2008, 20, 5186.
    [53] A. Sanchez-Iglesias, I. Pastoriza-Santos, J. Perez-Juste, B. Rodr? guez-Gonzalez, F. J. Garc?a de Abajo, L. M. Liz-Marzan, [J].Adv. Mater. 2006, 18, 2529.
    [54] J. A. Ascencio, M. Perez, M. Jose-Yacaman, [J].Surf. Sci. 2000, 447, 73.
    [55] K. Kwon, K. Y. Lee, Y. W. Lee, M. Kim, J. Heo, S. J. Ahn, S. W. Han, [J].J. Phys. Chem. C 2007, 111, 1161.
    [56] M. Zhou, S. Chen, S. Zhao, [J].J. Phys. Chem. B 2006, 110, 4510.
    [57] J. M. Petroski, Z. L. Wang, T. C. Green, M. A. El-Sayed, [J].J. Phys. Chem. B 1998, 102, 3316.
    [58] F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, [J].Angew. Chem. Int. Ed. 2004, 43, 3673.
    [59] C. Cao, S. Park, S. J. Sim, [J].J. Colloid Interface Sci. 2008, 322, 152.
    [60] C. Li, K. L. Shuford, Q.-H. Park, W. Cai, Y. Li, E. J. Lee, S. O. Cho, [J].Angew. Chem. Int. Ed. 2007, 46, 3264.
    [61] Y. Ma, Q. Kuang, Z. Jiang, Z. Xie, R. Huang, L. Zheng, [J].Angew. Chem. Int. Ed. 2008, 47, 8901.
    [62] D. Aherne, D.M. Ledwith,M. Gara, J.M. Kelly, [J].Adv. Funct.Mater. 2008, 18, 2005.
    [63] V. Bastys, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, R. Vaisnoras, L. M. Liz-Marzan, [J].Adv. Funct. Mater. 2006, 16, 766.
    [64] B. K. Jena, C. R. Raj, [J].J. Phys. Chem. C 2007, 111, 15146.
    [65] A. Callegari, D. Tonti, M. Chergui, [J]. Nano Lett. 2003, 3, 1565.
    [66] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, [J].Science 2001, 294, 1901.
    [67] R. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, [J].Nature 2003, 425, 487.
    [68] M. Maillard, P. Huang, L. Brus, [J].Nano Lett. 2003, 3, 1611.
    [69] J. E. Millstone, G. S. Metraux, C. A. Mirkin, [J].Adv. Funct. Mater. 2006, 16, 1209.
    [70] X. Wu, P. L. Redmond, H. Liu, Y. Chen, M. Steigerwald, L. Brus, [J].J. Am. Chem. Soc. 2008, 130, 9500.
    [71] J. Burgin, M. Liu, P. Guyot-Sionnest, [J].J. Phys. Chem. C 2008, 112, 19279.
    [72] J. L. Burt, J. L. Elechiguerra, J. Reyes-Gasga, J. Martin Montejano- Carrizales, M. Jose-Yacaman, [J].J. Cryst. Growth 2005, 285, 681.
    [73] C. Nehl, H. Liao, J. Hafner, [J].Nano Lett. 2006, 6, 683.
    [74] P. S. Kumar, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, F. J. G. de Abajo, L. M. Liz-Marzan, [J].Nanotechnol. 2008, 19, 015606.
    [75] H.M. Chen, C. F.Hsin, R.-S. Liu, J.-F. Lee, L.-Y. Jang, [J].J. Phys. Chem. C 2007, 111, 5909.
    [76] O. M. Bakr, B. H. Wunsch, F. Stellacci, [J].Chem. Mater. 2006, 18, 3297.
    [77] J. Chen, T. Herricks, Y. Xia, [J].Angew. Chem. Int. Ed. 2005, 117, 2645.
    [78] C.H. Kuo, M. H. Huang, [J].Langmuir 2005, 21, 2012.
    [79] H. Liang, J. Hu, A. Cao, Y. Mu, L. Wan, [J].J. Nanosci. Nanotechnol. 2006, 6, 2031.
    [80] M. Tsuji, P. Jiang, S. Hikino, S. Lim, R. Yano, S.-M. Jang, S.-H. Yoon, N. Ishigami, X. Tang, K. S. N. Kamarudin, [J].Colloids Surf. A 2008, 317, 23.
    [81] A. K. Salem, M. Chen, J. Hayden, K. W. Leong, P. C. Searson, [J].Nano Lett. 2004, 4, 1163.
    [82] D. Seo, C. I. Yoo, J. Jung, H. Song, [J].J. Am. Chem. Soc. 2008, 130, 2940.
    [83] J. Hu, Y. Zhang, B. Liu, J. Liu, H. Zhou, Y. Xu, Y. Jiang, Z. Yang, Z.-Q. Tian, [J].J. Am. Chem. Soc. 2004, 126, 9470.
    [84] I. A. Banerjee, L. Yu, H. Matsui, [J].Nano Lett. 2003, 3,283.
    [85] H. Matsui, S. Pan, G. E. Douberly, [J].J. Phys. Chem. B 2001, 105, 1683.
    [86] A. M. Schwartzberg, T. Y. Olson, C. E. Talley, J. Z. Zhang,[J].J. Phys. Chem. C 2007, 111, 16080.
    [87] M. S. Bakshi, F. Possmayer, N. O. Petersen, [J].J. Phys. Chem. C 2007, 111, 14113.
    [88] R. Gunawidjaja, S. Peleshanko, H. Ko, V. V. Tsukruk, [J].Adv.Mater. 2008, 20, 1544.
    [89] S. Guo, E. Wang, [J].J. Colloid Interface Sci. 2007, 315,795.
    [90] M. Hu, H. Petrova, A. R. Sekkinen, [J].J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, G. V. Hartland, [J].J. Phys. Chem. B 2006, 110, 19923.
    [91] J. Sharma, Y. Tai, T. Imae, [J].J. Phys. Chem. C 2008, 112, 17033.
    [92] K. Naoe, C. Petit, M. P. Pileni, [J].Langmuir 2008, 24, 2792.
    [93] R. Klajn, A. Pinchuk, G. C. Schatz, B. A. Grzybowski, [J].Angew. Chem. Int. Ed. 2007, 46, 8363.
    [94] Z. Li, V. Ravaine, S. Ravaine, P. Garrigue, A. Kuhn, [J].Adv. Funct.Mater. 2007, 17, 618.
    [95] G. Lu, C. Li, G. Shi, [J].Chem. Mater. 2007, 19, 3433.
    [95] Y. Sun, L. Zhang, H. Zhou, Y. Zhu, E. Sutter, Y. Ji, M. H. Rafailovich, J. C. Sokolov, [J].Chem. Mater. 2007, 19, 2065.
    [97] D. Suzuki, H. Kawaguchi, [J].Colloid Polym. Sci. 2006, 284, 1471.
    [98] N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z. L.Wang, [J].Science 2007, 316, 732.
    [99] H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander,N. J. Halas, Proc. [J].Natl. Acad. Sci. 2006, 103, 10856.
    [100] H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, [J].Nano Lett. 2006, 6, 827.
    [101] Q. Wu, C. Zhang, F. Li, [J].Mater. Lett. 2005, 59, 3672.
    [102] S. Yang, R. Zhang, Q. Wang, B. Ding, Y. Wang, [J]. Colloids Surf. A 2007, 311, 174179.
    [103] K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, J. Huang [J].ACS Nano 2009 , 3, 2191–2198
    [104] X. Liu, R. Huang, J. Zhu, [J].Chem. Mater. 2008, 20, 192.
    [105] D. O. Yener, J. Sindel, C. A. Randall, J. H. Adair, [J].Langmuir 2002, 18, 8692.
    [106] G. Wei, H. Zhou, Z. Liu, Y. Song, L. Wang, L. Sun, Z. Li, [J].J. Phys. Chem. B 2005, 109, 8738.
    [107] J. Zhang, H. Liu, Z. Wang, N. Ming, [J].Adv. Funct. Mater. 2007, 17, 3295.
    [108] Y. Sun, B. Mayers, Y. Xia, [J].Adv. Mater. 2003, 15, 641.
    [109] B. Mayers, X. Jiang, D. Sunderland, B. Cattle, Y. Xia, [J].J. Am. Chem. Soc. 2003, 125, 13364.
    [110] J. H. Song, Y. Wu, B. Messer, H. Kind, P. Yang, [J].J. Am. Chem. Soc. 2001, 123, 10397.
    [111] Y. Yin, C. Erdonmez, S. Aloni, A. P. Alivisatos, [J].J. Am. Chem. Soc. 2006, 128, 12671.
    [112] C. R. Martin, [J].Chem. Mater. 1996, 8, 1739.
    [113] J.-S. Yu, J. Y. Kim, S. Lee, J. K. N. Mbindyo, B. R. Martin, T. E. Mallouk, [J].Chem. Commun. 2000, 2445.
    [114] C. K. Preston, M. Moskovits, [J].J. Phys. Chem. 1993, 97, 8495.
    [115] E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, C. A.Mirkin,[J].J. Phys. Chem. B 2006, 110, 2150.
    [116] J. Wang, [J].J. Mater. Chem. 2008, 18, 4017.
    [117] J.-G. Wang, M.-L. Tian, T. E. Mallouk, M. H. W. Chan, [J].Nano Lett. 2004, 4, 1313.
    [118] S. Yang, T. Zhang, L. Zhang, Q. Wang, R. Zhang, B. Ding, [J].Nanotechnol.2006, 17, 5639.
    [119] Y. Niidome, K. Nishioka, H. Kawasaki, S. Yamada, [J].Chem. Commun. 2003, 2376.
    [120] O. R. Miranda, N. R. Dollahon, T. S. Ahmadi, [J].Cryst. Growth Des. 2006, 6, 2747.
    [121] Y. Niidome, K. Nishioka, H. Kawasaki, S. Yamada, [J].Colloids Surf. A 2005, 258, 161.
    [122] C. Xue, C. A. Mirkin, [J].Angew. Chem. Int. Ed. 2007, 46, 2036.
    [123] X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, J. R. Lombardi, [J].J. Phys. Chem. C 2007, 111, 14962.
    [124] J. L. Gardea-Torresdey, J. G. Parsons, E. Gomez, J. Peralta-Videa, H. E. Troiani, P. Santiago, M. J. Yacaman, [J].Nano Lett. 2002, 2, 397.
    [125] S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, [J].Nat. Mater. 2004, 3, 482.
    [126] S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, [J].Bio- technol. Prog. 2006, 22, 577.
    [127] P. Mukherjee, A. Ahmad, D.Mandal, S. Senapati, S. R. Sainkar,M. I. Khan, R. Ramani, R. Parischa, P. V. Ajayakumar, M. Alam, M. Sastry, R. Kumar, [J].Angew. Chem. Int. Ed. 2001, 40, 3585.
    [128] T. L. Riddin, M. Gericke, C. G. Whiteley, [J].Nanotechnol. 2006, 17, 3482.
    [129] R. R. Naik, S. J. Stringer, G. Agarwal, S. E. Jones, M. O. Stone, [J].Nat. Mater. 2002, 1, 169.
    [130] R. Chern, X. Liu, and C. Chang [J].Phys. Rev. E 2007,76, 016609.
    [131] I. Romero, J. Aizpurua,. G. W. Bryant, F. J. G. de Abajo [J].Optics Express, 2006,14, 9988-9999.
    [132] L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, M. Ka [J].Appl. Phys. Lett. 2001,78,802-804.
    [133] H. G. Craighead, G. A. Niklasson, [J].Appl. Phys. Lett. 1984, 44, 1134–1136.
    [134] W. Gotschy, K. Vonmetz, A. Leitner, F.R. Aussenegg, [J].Appl. Phys. B 1996,63, 381–384.
    [135] R. L. Seliger, R. L. Kubena, R. D. Olney, J. W.Ward, V. Wang, [J].J. Vac. Sci. Technol. 1979,16, 1610–1612.
    [136] N.W. Liu, A. Datta, C.Y. Liu, Y.L. Wang, [J].Appl. Phys. Lett. 2003, 82, 1281-1283.
    [137] V. Santhanam, R. P. Andres [J].Nano Lett. 2004, 4, 41.
    [138] L. A. Porter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak [J].Nano lett. 2002, 2, 1369.
    [139] W. C. Hung, W. H. Cheng, M. S. Tsai, W. C. Chung, I. M. Jiang, P. Yeh [J].Appl. Phys. Lett. 2008, 93, 061109.
    [140] H. Kim, H. Shin, J. Ha, M. Lee, K.S. Lim, [J].J. Appl. Phys. 2007, 102, 083505.
    [141] R. Maoz, S. R. Cohen, J. Sagiv [J].Adv. Mater. 1999, 11, 55.
    [142] J. C. Garno, C. D. Zangmeister, J. D. Batteas [J].Langmuir 2007, 23, 7874.
    [143] J. X. Huang, F. Kim, A. R. Tao, S. Connor, P. D. Yang [J].Nat. Mater. 2005, 4, 896.
    [144] M. Shimomura, T. Sawadaishi [J].Curr. Opin. Colloid Interface Sci. 2001, 6, 11.
    [145] E. Matijevic, [J].Acc. Chem. Res. 1981, 14, 22.
    [146] P. Zijlstra, J. W. M. Chon, M. Gu, [J].Nature 2009, 459,410.
    [147] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, [J].Science 1997, 277, 1078.
    [148] P. C. Chen, S. C. Mwakwari, A. K. Oyelere, [J].Nanotechnol, Sci. Appl. 2008, 1,45.
    [149] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, [J].Nat. Mater. 2008, 7, 442.
    [150] J. Burgin, M. Liu, P. Guyot-Sionnest, [J].J. Phys. Chem. C 2008, 112, 19279.
    [151] C. D. Chen, S. F. Cheng, L. K. Chau, C. Wang, Biosens. [J].Bioelectron. 2007, 22, 926.
    [152] E. Andrade Sales, B. Benhamida, V. Caizergues, J.-P. Lagier, F. Fie′vet, F. Bozon-Verduraz, [J]. Appl. Catal. A 1998, 172, 273.
    [153] D. Astruc, F. Lu, J. R. Aranzaes, [J].Angew. Chem. Int. Ed. 2005, 44, 7852.
    [154] M. Isao, [J].J. Chem. Eng. Jpn. 2005, 38, 535.
    [155] O. Crespo-Biel, B. J. Ravoo, J. Huskens, D. N. Reinhoudt, [J].Dalton Trans.2006, 2737.
    [156] S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, [J].Adv. Mater. 2007, 19, 3177.
    [157] Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, [J].Angew. Chem. Int. Ed. 2008, 48, 60.
    [158] A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day,N. Kotov, S. Ashkenazi, [J].J. Appl. Phys. 2007, 102. 064701.
    [159] C.F. Bohren, D.R. Huffman (1983) Absorption and Scattering of Light by Small Particles. John Wiley and Sons, Inc., [M] New York, pp 530.
    [160] K. Aslan, J. R. Lakowicz, C. D. Geddes, [J].Current Opinion in Chemical Biology 2005, 9:538–544.
    [161] M.W. Docter, I.T. Young, V.G. Kutchoukov, A. Bossche, P. Alkemade, Y. Garini [J].SPIE 2005, 5703, 18–126.
    [162] J. R. Lakowicz [J].Plasmonics 2006, 1, 5–33.
    [1] Y. N. Xia, N. J. Halas, [J].Mater. Res. Soc. Bull. 2005, 30, 338.
    [2] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz, [J].J. Chem. Phys. 2002, 116, 6755.
    [3] C. J. Murphy, [J].Science 2002, 298, 2139.
    [4] P. V. Kamat, [J].J. Phys.Chem. B 2002, 106, 7729.
    [5] M. A. El-Sayed, [J].Acc. Chem. Res. 2001, 34, 257.
    [6] C. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed, [J].Chem. Rev. 2005, 105, 1025.
    [7] N. L. Rosi, C. A. Mirkin, [J].Chem. Rev. 2005, 105, 1547.
    [8] A. R. Tao, S. Habas, P. D. Yang, [J].Small 2008, 4, 310.
    [9] S. J. Guo, E. K. Wang, [J].Anal. Chim. Acta 2007, 598, 181.
    [10] C. L. Nehl, H. W. Liao, J. H. Hafner, [J].Nano Lett. 2006, 6, 683.
    [11] K. L. McGilvray, M. R. Decan, D. S. Wang, J. C. Scaiano, [J].J. Am. Chem. Soc. 2006, 128, 15980.
    [12] F. Kim, J. H. Song, P. D. Yang, [J].J. Am. Chem. Soc. 2002, 124, 14316.
    [13] C. Xue, J. E. Millstone, S. Y. Li, C. A. Mirkin, [J].Angew. Chem.-In. Ed. 2007, 46, 8436.
    [14] C. Xue, C. A. Mirkin, [J].Angew. Chem.-In. Ed. 2007, 46, 2036.
    [15] M. Zhou, S. H. Chen, S. Y. Zhao, [J].J. Phys. Chem. B 2006, 110, 4510.
    [16] G. S. Metraux, C. A. Mirkin, [J].Adv. Mater. 2005, 17, 412.
    [17] Y. Tian, H. Q. Liu, G. H. Zhao, T. Tatsuma, [J].J. Phys. Chemi. B 2006, 110, 23478.
    [18] M. Tsuji, N. Miyamae, M. Hashimoto, M. Nishio, S. Hikino, N. Ishigami, I. Tanaka, [J].Coll. Sur. 2007, 302, 587.
    [19] C. J. Murphy, T. K. San, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, T. Li, [J].J. Phys. Chem. B 2005, 109, 13857.
    [20] S. H. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carroll, [J].J. Am. Chem. Soc. 2003, 125, 16186.
    [21] J. Xu, S. Y. Li, J. Weng, X. F. Wang, Z. M. Zhou, K. Yang, M. Litt, X. Chen, Q. Cui, M. Y. Cao, Q. Q. Zhang, [J].Adv. Fun. Mater. 2008, 18, 277.
    [22] F. Kim, S. Connor, H. Song, T. Kuykendall, P. D. Yang, [J].Angew. Chem.-In. Ed. 2004, 43, 3673.
    [23] Y. Chen, X. Gu, C. G. Nie, Z. Y. Jiang, Z. X. Xie, C. J. Lin, [J].Chem. Comm. 2005, 4181.
    [24] D. Seo, J. C. Park, H. Song, [J].J. Am. Chem. Soc. 2006, 128, 14863.
    [25] J. H. Zhang, H. Y. Liu, Z. L. Wang, N. B. Ming, [J].Adv. Fun. Mater. 2007, 17, 3295.
    [26] X. S. Kou, S. Z. Zhang, Z. Yang, C. K. Tsung, G. D. Stucky, L. D. Sun, J. F. Wang, C. H. Yan, [J].J. Am. Chem. Soc. 2007, 129, 6402.
    [27] J. P. Xie, J. Y. Lee, D. I. C. Wang, [J].Chem. Mater. 2007, 19, 2823.
    [28] T. H. Ha, H. J. Koo, B. H. Chung, [J].J. Phys. Chem. C 2007, 111, 1123.
    [29] J. L. Burt, J. L. Elechiguerra, J. Reyes-Gasga, J. M. Montejano-Carrizales, M. Jose-Yacaman, [J].J. Crys. Grow. 2005, 285, 681.
    [30] J. E. Millstone, G. S. Metraux, C. A. Mirkin, [J].Adv. Fun.Mater. 2006, 16, 1209.
    [31] M. Yamamoto, Y. Kashiwagi, T. Sakata, H. Mori, M. Nakamoto, [J].Chem. Mater. 2005, 17, 5391.
    [32] J. Q. Hu, Q. Chen, Z. X. Xie, G. B. Han, R. H. Wang, B. Ren, Y. Zhang, Z. L. Yang, Z. Q. Tian, [J].Adv. Fun. Mater. 2004, 14, 183.
    [33] S. H. Zhang, Z. Y. Jiang, Z. X. Xie, X. Xu, R. B. Huang, L. S. Zheng, J. Phys. Chem. B 2005, 109, 9416.
    [34] Y. G. Sun, Y. N. Xia, [J].Science 2002, 298, 2176.
    [35] B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, Y. A. Xia, [J].J. Phys. Chem. B 2006, 110, 15666.
    [36] R. Narayanan, M. A. El-Sayed, [J].J. Am. Chem. Soc. 2004, 126, 7194.
    [37] M. Subhramannia, V. K. Pillai, [J].J. Mater. Chem. 2008, 18, 5858.
    [38] Y. Y. Ma, Q. Kuang, Z. Y. Jiang, Z. X. Xie, R. B. Huang, L. S. Zheng, [J].Angew. Chem.-In.Ed. 2008, 47, 8901.
    [39] A.Sanchez-Iglesias, I. Pastoriza-Santos, J. Perez-Juste, B. Rodriguez -Gonzalez, F. J. G. de Abajo, L. M. Liz-Marzan, [J].Adv. Mater. 2006, 18, 2529.
    [40] T. K. Sau, A. L. Rogach, [J].Adv. Mater., 22, 1781.
    [41] C. J. Huang, P. H. Chiu, Y. H. Wang, K. L. Chen, J. J. Linn, C. F. Yang, [J].J. Electrochem. Soc. 2006, 153, D193.
    [42] G. Frens, [J].Science 1973, 241, 20.
    [43] L. M. Liz-Marzan, [J].Langmuir 2006, 22, 32.
    [44] M. A. El-Sayed, [J].Acc. Chem. Res. 2001, 34, 257.
    [45] W. K. Lee, S. H. Cha, K. H. Kim, B. W. Kim, J. C. Lee, [J].J. Solid State Chemistry 2009, 182, 3243.
    [46] A. Hamelin, [J]. J. of Electroanal. Chem. 1996, 407, 1.
    [1] K. A. Willets, R. P. Van Duyne [J].Annu. Rev. Phy. Chem. 2007, 58, 267.
    [2] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, G. A. A. Requicha [J].Nat. Mater. 2003, 2, 229.
    [3] S. L. Zou, G. C. Schatz [J].Phys. Rev. B 2006, 74, 125111.
    [4] A. J. Haes, R. P. Van Duyne [J].J. Am. Chem. Soc. 2002, 124, 10596.
    [5] A. Kaminska, O. Inya-Agha, R. J. Forster, T. E. Keyes Phys. [J].Chem. Chem. Phys. 2008, 10, 4172.
    [6] B. L. Broglin, A. Andreu, N. Dhussa, J. A. Heath, J. Gerst, B. Dudley, D. Holland, M. El-Kouedi [J].Langmuir 2007, 23, 4563.
    [7] J. Malicka, I. Gryczynski, J. R. Lakowicz [J].Anal. Chem. 2003, 75, 4408.
    [8] J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C. D. Geddes, [J].J. Phys. D 2003, 36, R240.
    [9] X. Y. Miao, B. K. Wilson, L. Y. Lin [J].Appl. Phys. Lett. 2008, 92, 124108.
    [10] L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, A. Polman, [J].Phys. Rev. B 2005, 71, 235408.
    [11] M. K. Corbierre, J. Beerens, R. B. Lennox [J].Chem. Mater. 2005, 17, 5774.
    [12] M. Werts, M. Lambert, J. P. Bourgoin, M. Brust [J].Nano Lett. 2002, 2, 43.
    [13] V. Santhanam, R. P. Andres [J].Nano Lett. 2004, 4, 41.
    [14] L. A. Porter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak [J].Nano lett. 2002, 2, 1369.
    [15] D. H. Yin, S. Horiuchi, M. Morita, A. Takahara, Langmuir 2005,21, 9352.
    [16] J. Y. Lee, D. H. Yin, S. Horiuchi, [J].Chem. Mater. 2005,17, 5498.
    [17] W. C. Hung, W. H. Cheng, M. S. Tsai, W. C. Chung, I. M. Jiang, P. Yeh [J].Appl. Phys. Lett. 2008, 93, 061109.
    [18] H. Kim, H. J.ShinHa, M. Lee, K.S. Lim J. [J].Appl. Phys. 2007, 102, 083505.
    [19] R. Maoz, S. R. Cohen, J. Sagiv [J].Adv. Mater. 1999, 11, 55.
    [20] J. C. Garno, C. D. Zangmeister, J. D. Batteas [J].Langmuir 2007, 23, 7874.
    [21] J. X. Huang, F. Kim, A. R. Tao, S. Connor, P. D. Yang [J].Nat. Mater. 2005, 4, 896.
    [22] M. Shimomura, T. Sawadaishi [J].Curr. Opin. Colloid Interface Sci. 2001, 6, 11.
    [23] E. Menke, J. Thompson, M. A. Xiang, L. C.Yang, R. M. Penner[J].Nat. Mater. 2006, 5, 914.
    [24] M. Z. Zhang, S. Lenhert, M. Wang, L. F. Chi, N. Lu, H. Fuchs, N. B. Ming, [J].Adv. Mater. 2004, 16, 409.
    [25] S. Y. Chou, P. R. Krauss, P. J. Renstrom [J].Appl. Phys. Lett. 1995, 67, 3114.
    [26] W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, R. Baets [J].J. Sel. Top. Quant. Electron. 2002, 8, 928.
    [27] B. Dong, N. Lu, M. Zelsmann, N.Kehagias, H. Fuchs, T..Sotomayor, L. F. Chi, [J].Adv. Funct. Mater. 2006, 16, 1937.
    [28] S. Mehdizadeh, J. O. Dukovic, P. C. Andricacos, L. T. Romankiw, H. Y. Cheh [J].J. Electrochem. Soc. 1992, 139, 78.
    [29] Y. Lu. G. L. Liu, L. P.Lee [J].Nano Lett. 2005, 5, 5.
    [30] M. Quinten [J].Appl. Phys. B 2001, 73, 245.
    [31] N. Felidj, J. Aubard, G. J. Levi, [J].Chem. Phys. 1999, 111, 1195.
    [1] P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, R. Rinaldi, [J].Nat. Nanotechnol. 2006, 1, 126.
    [2] S. Malynych, G. Chumanov, [J].J. Microscopy-Oxford 2008, 229, 567.
    [3] E. M. Goldys, A. Barnett, F. Xie, K. Drozdowicz-Tomsia, I. Gryczynski, E. G. Matveeva, Z. Gryczynski, T. Shtoyko, [J].Appl. Phys. A: Mater. Sci. Process. 2007, 89, 265.
    [4] K. Aslan, J. R. Lakowicz, C. D. Geddes, [J].Curr. Opin. Chem. Biol. 2005, 9, 538.
    [5] K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, C. D. Geddes, [J].Curr. Opin. Chem. Biol. 2005, 16, 55.
    [6] J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, K. Nowaczyk, [J].Analyst (Cambridge, U. K.) 2008, 133, 1308.
    [7] J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. A. Zhang, R. Badugu, J. Huang, [J].J. Fluorescence 2004, 14, 425.
    [8] K. Aslan, J. Huang, G. M. Wilson, C. D. Geddes, [J].J. Am. Chem. Soc. 2006, 128, 4206.
    [9] J. Malicka, I. Gryczynski, J. R. Lakowicz, [J].Biochem. Biophys. Res. Commun. 2003, 306, 213.
    [10] E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, J. R. Lakowicz, [J].Anal. Biochem. 2004, 334, 303.
    [11] M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, J. R. Lakowicz, [J].Anal. Chem. 2009, 81, 1397.
    [12] H. Szmacinski, K. Ray, J. R. Lakowicz, [J].Anal. Biochem. 2009, 385, 358.
    [13] V. Reboud, N. Kehagias, M. Zelsmann, C. Schuster, M. Fink, F. Reuther, G. Gruetzner, C. M. S. Torres, [J].Opt. Express 2007, 15, 7190.
    [14] J. R. Lakowicz, [J].Anal. Biochem. 2005, 337, 171.
    [15] S. S. Shankar, L. Rizzello, R. Cingolani, R. Rinaldi, P. P. Pompa [J].ACS Nano 2009, 3, 893.
    [16] W. A. Weimer, M. J. Dyer, [J].Appl. Phys. Lett. 2001, 79, 3164.
    [17] J. P. Kottmann, O. J. F. Martin, [J].Opt. Express 2001, 8, 655.
    [18] R. Gupta, M. J. Dyer, W. A. Weimer, [J].J. Appl. Phys. 2002, 92, 5264.
    [19] W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, [J].Opt. Comm. 2003, 220, 137.
    [20] K. Li, M. I. Stockman, D. J. Bergman, [J].Phys. Rev. Lett. 2003, 91, 227402.
    [21] S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah, R. J. Phaneuf, [J].Adv. Mater. 2008, 20, 1424.
    [22] J. R. Lakowicz, [J].Plasmonics 2006, 1, 5.
    [23] S. Enoch, R. Quidant, G. Badenes, [J].Opt. Express 2004, 12, 3422.
    [24] T. D. Corrigan,S. Guo,R. J. Phaneuf, H. Szmacinski, [J].J. Fluorescence 2005, 15, 777.
    [25] X. M. Liu, H. Xia, W. Gao, L. Ye, Y. Mu, Q. Su, Y. Ren, Eur. [J].J. Inorg. Chem. 2006, 1216.
    [26] Y. Ren, X. M. Liu, H. Xia, L. Ye, Y. Mu, Eur. [J].J. Inorg. Chem. 2007, 1808.
    [27] Draine, B.T., & Flatau, P.J., "User Guide to the Discrete Dipole Approximation Code [M] DDSCAT 7.0",http://arXiv.org/abs/0809.0337v5, 2008.
    [28] Palik, Edward D. Handbook of Optical Constants of Solids. [M] ACADEMIC PRESS, 1998.
    [29] B. J. Yang, N. Lu, C. Y. Huang, D. P. Qi, G. Shi, H. B. Xu, X. D. Chen, B. Dong, W. Song, B. Zhao, L. F. Chi, [J].Langmuir 2009, 25, 55.
    [30] J. Y. Hao, N. Lu, Q. Wu, W. Hu, X. D. Chen, H. Y. Zhang, Y. Wu, Y. Wang, L. F. Chi, [J].Langmuir 2008, 24, 5315
    [31] J. Malicka, I. Gryczynski, J. R. Lakowicz, [J].Biopolymers 2004, 74, 263.
    [32] J. R. Lakowicz, [J].Anal. Biochem. 2001, 298, 1.
    [33] J. R. Lakowicz, Y. B. Shen, S. D'Auria, J. Malicka, J. Y. Fang, Z. Gryczynski, I. Gryczynski, [J].Anal. Biochem. 2002, 301, 261.
    [34] J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D'Auria, I. Gryczynski, [J]. Biochem. Biophys. Res. Commun. 2001, 286, 875.
    [35] I. Gryczynski, J. Malicka, Y. B. Shen, Z. Gryczynski, J. R. Lakowicz, [J].J. Phys. Chem. B 2002, 106, 2191.
    [36] C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, J. R. Lakowicz, [J].J. Phys. Chem. A 2003, 107, 3443.
    [37] C. D. Geddes, J. R. Lakowicz, [J].J. Fluorescence 2002, 12, 121.
    [38] J. Malicka, I. Gryczynski, J. Y. Fang, J. R. Lakowicz, [J].Anal. Biochem. 2003, 317, 136.
    [1] H. Atwater [J].SPIE Newsroom. 2002, DOI: 10.1117/2.5200207.0001
    [2] M.L. Brongersma, et al [J].Phys. Rev. B 2000, 62, R16356
    [3] S.A. Maier et al [J].Adv. mater. 2001,13, 1501
    [4] M. Chowdhury, J. M. Catchmark, J. R. Lakowicz, [J].App. Phys. Let. 2007, 91, 103118
    [5] W. Srituravaich, N. Fang, Ch. Sun, Q. Luo, and X. Zhang, [J].Nano Lett. 2004, 4, 1085-1088
    [6] A. V. Zayats, I. I. Smolyaninov, [J].Optics Letters 2006, 31, 398-400
    [7] Doctor, [M].Proc SPIE 2005, 5703, 118-126
    [8] Z.J. Sun,H.K. Kim [J].App. Phys. Let., 2004, 85, 642-644
    [9] D.Z. Lin, C.K. Chang, Y.C. Chen, D.L. Yang, M.W. Lin J.T. Yeh, J.M. Liu, C.H. Kuan, C.S Yeh, C.K. Lee [J].Optics Express 2006, 14, 3503-3511
    [10] B.Wang and G. P. Wang [J].App. Phys. Let., 2006, 88, 013114
    [11] H. Zhang, G. Wang, D. Chen, X. Lv, and J. Li [J].Chem. Mater. 2008, 20, 6543–6549
    [12] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. HumphryBaker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel [J].J. Am. Chem. Soc. 1993,115, 6382–6390.
    [13] B. O’Regan, M. Gratzel [J].Nature 1991, 353, 737–739.
    [14] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann [J].Chem. Res. 1995, 95, 69–96.
    [15] A. J. Bard, M. A Fox [J].Acc. Chem. Res. 1995, 28, 141–145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700