近场光学显微成像数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近场光学显微镜是近二十年来发展起来的一种新型超高分辨率的光学显微镜。它利用细小的光学探针探测样品表面隐失波的超高频空间信息,超越经典衍射极限的限制,可对样品表面纳米尺度区域的各种光学信息进行扫描成像,在生命科学、化学及材料科学领域中都有着广泛而重要的应用。
     本文围绕对介观尺度范围的电磁场分布及近场扫描成像过程进行数值模拟而展开,目的在于能从理论上对近场成像过程有清楚的认识,正确地解释实验图像,达到理论与实验结果可比较的效果,从而为新仪器的开发提供理论依据。
     本论文的内容分为三个部分:
     一、为解决近场光学理论计算这样一个复杂的难题,将FDTD方法引入近场光学及成像系统中。首次提出和发展了光子扫描隧道显微镜(PSTM)系统中全内反射条件下入射波的设置方法——三波法,解决了激励源的设置问题。研究并实现了完全匹配层(PML)吸收边界条件的应用。实现了FDTD方法在金属薄膜中的应用,给出了等离子体动力学方程与麦克斯韦差分公式。完善了散射场公式在光子扫描隧道显微镜系统中的应用。较好地解决了数值模拟真实近场光学系统成像问题。
     二、深入研究光子扫描隧道显微系统的物理成像机制。将微扰近似理论和FDTD方法用于PSTM系统中。将微扰近似理论推广应用到多层结构系统中,结合消假像理论,模拟了PSTM系统周期性样品的成像,解决了样品图像偏移问题,进一步完善了微扰近似理论在PSTM系统中的应用。本文还利用FDTD方法,研究和讨论了p-极化波照射条件下样品的近场分布与样品尺寸、厚度和折射率之间的关系。首次模拟演示了光子隧道效应现象。分别模拟裸光纤尖和镀膜金属尖在真实实验条件下扫描成像过程,讨论了扫描工作模式对光学图像及分辨率的影响,取得了与国外文献和实验一致的结果,并应用经典电磁场像-偶极子模型定性地理解PSTM系统成像并进一步解释获得高分辨率图像的机理。
     常规(单光束-非对称照明)光子扫描隧道显微镜(PSTM)对样品的平整度要求很苛刻,仅对折射率均匀、只有形貌起伏的样品或表面很平、只有折射率变化的样品能分别得到形貌和折射率图像,而对于既有形貌起伏又有折射率变化的样品得到的却是二者的混合图像,造成图像解释方面的困难。为了解决这个题,我们介绍了新一代AF/PSTM组合显微镜的原理及AF/PSTM弯光纤尖实现分离形貌和折射率图像的理论
    
    依据,给出AF用STM双功能弯光纤尖共振恒振幅成像模式和AF/PSTM系统其框图,运
    用FDTD方法数值模拟,证明了AF/P STM中处理样品折射率图像的公式是可信的,存
    在一定的比例关系。数值模拟了玻璃基板上MgF:膜的折射率图像并得到与实验相符的
    结果,此外,还给出其它样品的一次扫描获得分离的光学与形貌图像。
     三、发射模式扫描近场光学显微镜(SNOM)能够实现超衍分辨的技术核心是用
    亚波长尺度的光源,在SNOM光探针的设计中最具有挑战的任务是实现两个相互矛盾
    的参数的设计:即在保证足够大的通光效率的同时尽可能地减小光斑尺寸。为了实现
    更窄的光束斑点和更高的输出效率,我们设计一个由高折射率介质构成的、完全镀薄
    贵金属膜的、垂直顶角的四面锥探针尖。由于高折射率芯和薄金属膜,光在芯中传播
    并在金属尖端被转换为表面等离子激元,使输出通光效率加强并得到超小输出光斑。
     最后,本文介绍了将垂直腔表面发射激光器(Vertical一cavity surface一Emitting Laser,
    vCsEL)直接与近场光探针尖祸合,即反射式扫描近场光学显微镜读写头阵列集成(The
    integrated Refleeted Seanning Near-field OPtieal MicroseoPy Reading/Writing Head,
    RSNOM一RWH)的概念设计。给出了实现几个关键技术的可能,如集成RSNOM一RWH
    和它的工作原理,探针头的设计与数值模拟。讨论了实现等间距扫描和超高数据转换
    速率的可能性。
     本论文的研究结果表明:
     1,利用电磁场理论和先进的数值计算方法—时域有限差分方法研究物体表面
    近场区域光与物质相互作用现象,如光的散射、反射、衍射、吸收及光谱等,是非常
    有用的。这对于近场光学基本物理现象的认识,对于正确理解近场光学显微图像所代
    表的物理本质以及新型近场光学显微镜的开发和应用都具有十分重要的意义。
     2.对近场光学显微成像理论和数值的深入研究,有助于有目的地设计和操作实
    验,并将实验结果与理论进行核实比较。
     3.新型光探针的设计为新型仪器的开发与设计打下了坚实的理论基础。
Near- field optical microscope is a new type of super-resolution optical microscope developed for the recent twenty years. It obtains the various optical images of the sample's nanometer surface, transcended the diffraction limit of conventional optical microscope, by using a fine optical-fiber tip probing ultra-high frequency optical information on the sample surface. And it has extensively been applied on life science, chemistry and material science fields.
    This thesis concentrates on the mesoscopic sample's electromagnetic field distributions and numerical simulations of scanning imaging process of near-field optics. That aims at clarifying near-field imaging process theoretically, providing the scientific basis for correctly interpretation of near-field optical images and developing new class instruments.
    The thesis mainly includes the following three parts:
    1. The finite-difference time-domain method is applied to imaging system of near-field optics, in order to solve the complicated problem about theoretical calculation of near-field optics. The three-wave method under the total internal reflection in PSTM was proposed and developed firstly, resolving the incident source technique problem. The application of Perfectly Matched Layer absorption boundary condition is researched and carried out. It is realized that FDTD method is applied to metal thin film and the dynamics equations for plasma and Maxwell's discretized formulas are presented. Here the scattered field formulas applied to Photon Scanning Tunneling Microscope are perfected. Numerical simulations of the imaging of system of realistic near-field optics are resolved well.
    2. The imaging mechanism of PSTM is explored deeply. The perturbation approach method and Finite-Difference Time-Domain method are applied to PSTM system respectively. The perturbation approach method combined eliminating spurious images theory is extended to the multiplayer system of PSTM. We simulated the imaging of a periodic sample for correcting the shift of the images of the sample. The perturbation approach method applied to PSTM is further perfected. The thesis studied and discussed the near-field distribution depending on scale and the thickness of the sample for p-polarized incident light. The photon tunneling effects are showed firstly. We simulated the scanning imaging process in the realistic experimental
    
    
    conditions for using a bare probe tip and a metallic probe tip respectively. The scanning modes influenced on the images and the resolutions are discussed. The numerical results are consistent with the published articles and the experimental results. The high-resolution PSTM images can be qualitatively understood using dipole model of the classical electromagnetic field.
    The samples are limited for conventional PSTM imaging. The surface topographical images and the refractive index images can only be obtained for the samples of uniformity of the refractive index and topographical surface or flat surface and varied refractive index. The images of the samples of either varied refractive index or topographical surface show their mix images. In order to solve the problem, this paper introduces the principle of a new generation of AF/PSTM and theoretical basis of separated topography and refractive index images, which a bent optical fiber tip does a dither on constant amplitude and scans in constant mean gap mode in AF/PSTM. The diagram of AF/PSTM system is presented. The formula of refractive index imaging is proved by FDTD method. We simulated the images of MgF2 film with holes on optical glass and the results are consistent with the experimental results. Moreover, the images of separated topography and refractive index are presented for one scanning.
    3. The key element of scanning near-field optical microscopy (SNOM) breaking the diffraction limit to realize super resolution is the light source of sub-wavelength scale. The most challenge work is the design of optical probe in SNOM to realize two contrary demands: higher throughput and smaller light spot siz
引文
[1]E. H. Synge, A suggested method for extending microscopic resolution into the ultra-microscopic region, Phil Mag. 1928, 6, 356-362
    [2]E. A. Ash, G. Nicholls, Super-resolution aperture scanning microscope, Nature, 1972, 237, 510-512
    [3]D. W. Pohl, D. Denk, M. Lanz, Optical microscopy: Image recording with resolution λ/20, Appl. Phys. Lett., 1984, 44, 651-653
    [4]R. C. Reddick, R. J. Warmack, T. L. Ferrell, New form of scanning optical microscopy, Phys. Rev. B, 1989, 39, 767-770
    [5]D. Courjon, K. Sarageddine, M. Spajer, Scanning tunneling optical microscopy, Opt. Commun., 1989, 71, 23-28
    [6]E. Betzig, J. K. Trauman, T. D. Harris, T. S. Weiner, R. L. Kostelak, Breaking the diffraction barrier: Optical microscopy on a nanometric scale, Science, 1991,251, 1468-1470
    [7]E. Betzig, P. L. Finn, T. S. Weiner, Combined shear force and near-field scarming optical microscopy, Appl. Phys. Lett., 1992, 60, 2484-2486
    [8]E. Betzig, R. J. Chichester, Single molecules observed by near-field scanning optical microscopy, Science, 1993,262, 1422-1425
    [9]S. Kawata, T. Tani, Optically driven particles in an evanescent field along a channeled waveguide. Opt. Lett., 1996, 21, 1768-1770
    [10]D. Barchiesi, D. Van Labeke, Application of Mie scattering of evanescent waves to scanning tunneling optical microscope theory, J. Mod Pot., 1993, 40,
    
    1239-1254
    [11]H. A. Bethe, Theory of diffraction by small holes, Phys. Rep., 1944, 66, 163-182
    [12]C. J. Bouwkamp, On Bethe's theory of diffraction by small holes, Philips Research Reports, 1950, 5, 321-332
    [13]E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, Near-field diffraction by a slit: implications for superresolution microscopy. Appl. Opt., 1986, 25, 1890-1900
    [14]A. Roberts, Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen, J. Opt. Soc. Am. A 4, 1987, 1970-1983
    [15]A. Roberts, Small hole coupling of radiation into a near-field probe. J. Appl. Phys., 1992, 70, 4045-4049
    [16]D. Van Labeke and D. Barchiesi, Scanning-tunneling optical microscopy: a theoretical macroscopic approach, J. Opt. Soc. Am. A 9, 1992, 732-739
    [17]D. Van Labeke and D. Barchiesi, Probes for scanng tunneling optical micrscopy: a theoreticl comparison, J. Opt. Soc. Am. A 10, 1993, 2193-2201
    [18]G. S. Agarwal, Intergal equation treatment of scattering from rough surfaces, Phys. Rev.,B14, 1976, 846-848
    [19]F. Toijo, A. Marvin, V. Celli and N. R. Hill, Optical properties of rough surfaces: General theory and the small roughness limit, Phys. Rev. B 15, 1977, 5618
    [20]D. Barchiesi, and D. Van Labeke, A perturbative diffraction theory of a multilayer system: applications to near-field optical microscopy SNOM and STOM, Ultramicroscopy, 1995, 57, 196-203
    [21]D. Barchiesi, A 3-D multilayer model of scattering by nanostructures. Application to the optimization of thin coated nano-sources, Opt. Commun., 1996, 126, 7-13
    [22]D. Van Labeke, F. I. Baida, and J-M Vigoureux, A theoretical study of near-field detection and excitation of surface plasmons, Ultramicroscopy, 1998, 71, 351-359
    [23]F. I. Baida, D. Van Labeke, and J-M Vigoureux, Theoretical study of near-field surface plasmons excitation, propagation and diffraction, Opt. Commun., 1999, 171,317-331
    [24]王晓秋,简国树,吴世法,潘石,多层系统周期性样品PSTM消假像微扰近似,电子显微学报,2001,20,654-657
    [25]C. Hanfer, The Gerenalized Multiple Multipole Technique for Computational Electromagnetics, 1990, Artech, Boston
    
    
    [26]L. Novotny and C. Hanfer, Light propagation in a cylindrical waveguide with a complex, metallic dielectric function, Phys. Rew. B 50, 1994, 4094-4109
    [27]L. Novotny, D. W. Pohl and P. Regli, Near-field, far-field and imaging properties of the two-dimensional-aperture scanning near-field optical microscope, J. Opt. Soc. Am. A, 1994, 11, 1768-1779
    [28]K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's eqution in isotropic media, IEEE Trans. Antennas Propagat., 1966, AP-14, 302-307,
    [29]D. A. Christensn, Analysis of near-field tip patters including object interaction using finite-difference time-domain calculations, Ultramicroscopy, 1995, 57, 189-195
    [30]H. Furukawa, and S. Kawata, Local field enhancement with an apertureless near-field-microscoye probe, Opt. Commun., 1998, 148, 221-224
    [31]H. Sasaki, and Y. Sasaki, Imaging of refractive index change by the reflection-mode scattering-type scanning near-field optical microscope: Simulation and observations, J. Appl. Phys., 1999, 85, 2026-2030
    [32]H. Nakamura, T. Saiki, H. Kambe, and K. Sawada, FDTD simulation of tapered structure of near-field fiber probe, Comput. Phys. Commun., 2001, 142, 464-467
    [33]G. Parent, D. Van Labeke, and F. I. Baida, Theoretical study of transient phenomena in near-field optics, J. Microscopy, 2001, 202, 296-306
    [34]R. M üller, and C. Lienau, Three-dimentional analysis of light propagation through uncoared near-field fibre probes, J. Microscopy, 2001, 202, 339-346
    [35]F. I. Baida, D. Van Labeke, and Y. Pagani, Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes, Opt. Commun., 2003, 225, 241-252
    [36]Dereux A., and Pohl D., The 90 degree prism edge as a model SNOM probe: near-field photon tunneling, and far-field properties, Near-field optics (NATO ASI Series E242) ed, D. Pohl and D. Courjon (Dordrecht: Kluwer), 1993, 189-198
    [37]Girard C., Bouju X., and Dereux A., Optical near-field detection and local spectroscopy of a surface: a self-consistent theoretical study, Near-field optics (NATO ASI Series E242) ed, D. Pohl and D. Courjon (Dordrecht: Kluwer), 1993, 199-208
    [38]O. J. F. Martin, A. Dereux, and C. Girard, Iterative scheme for computing exactly
    
    the total field propagating in dielectric structures of arbitrary shape, J. Opt. Soc. Am. A, 1994, 11, 1073-1080
    [39]O. J. F. Martin, C. Girard, and A. Dereux, Generalized field propagator for electromagnetic scattering and light confinement, Phys. Rev. Lett., 1995, 74, 526-529
    [40]M. Paulus, and O. J. F. Martin, Light propagation and scattering in stratified media: a Green's tensor approach, J. Opt. Soc. Am. A, 2001, 18, 854-861
    [41]M. Paulus, and O. J. F. Martin, Green's tensor technique for scattering in two-dimensional stratified media, Phys. Rev. E, 2001, 63, 066615-1-8
    [42]S. Madsen, S. I. Bozhevoluyi, and J. M. Hvam, Sub-wavelength imaging by depolarization in reflection near-field optical microscope using an uncoated fiber probe, Opt. Commun., 1998, 146, 277-284
    [43]Y. Zenhausern, Y. Martin, and H. K. Wickramasinghe, Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution, Science, 1995, 269, 1083-1085
    [44]Bachelot R., Gleyzes, P., Boccara, A.C., Apertureless near field optical microscopy by local perturbation of a diffraction spot, Ultramicroscopy, 1995, 61, 111-116
    [45]R. C. Reddick, R. J. Warmack, T. L. Ferrel, Photon scanning tunneling microscopy, Rev. Sc.i Instrum., 1990, 61, 3669-3677
    [46]J. M. Vigoureux, C. Girard, and D. Courjon, General principles of scanning tunneling optical microscopy, Opt. Lett., 1989, 14, 1039-1041
    [47]M. Ohtsu, Progress of high-resolution photon scanning tunneling microscope due to a nanometric fiber probe, J. Lightwave Technol., 1995, 13, 1200-1221
    [48]M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, and M. Ohtsu, Imaging of biological samples by a collection-mode photon scanning tunneling microscope, Opt. Commun., 1996, 124, 9-15
    [49]R. U. Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, and M. Ohtsu, Observation of subcellular structure of neurons by an illumination mode near-field optical microscope under an optical feedback contral, Optic. Rev. B, 1996, 6, 463-467
    [50]M. Naya, R. Micheletto, S. Mononobe, R. U. Maheswari, and M. Ohtsu, Near-field optical imaging of flagellar filaments of salmonella in water with
    
    optical feedback contral, Appl. Opt. 1997, 36, 1681-1683
    [51]Uma Maheswari R., S. Mononobe, K. Yoshida, M. Yoshimoto, and M. Ohtsu, Nanometer level resolving near field optical microscope under optical feedback in the observation of a single-string Deoxyribo Nucleic Acid, Jpn.J. Appl. Phys., 1999, 38, 6713-6720
    [52]吴世法,姚骏恩,简国树,和郭宁,光子扫描隧道显微镜的进展,光学学报,1998,18,191-198
    [53]姚骏恩,吴世法,高崧等,一种纳米分辨率近场光学显微镜—光子扫描隧道显微镜,电子显微学报,1997,16,223-228
    [54]Shifa Wu, Photon scanning tunneling microscopy now and in the future, Scanning, 1995, 17, 18-22
    [55]Shifa Wu, Jian Zhang, Yinli Li, Wei Sun, Kai Xu, Yuqi Huang, and Shi Pan, The development of AF/PSTM, Proc. SPIE, 2002, 4923, 21-25
    [56]Shi Pan, Wei Sun, Yinli Li, Yi Zhang, Shifa Wu, and Guoshu Jian, The primary application of AF/PSTM in the imaging of biologic sample, Proc. SPIE, 2002, 4923, 36-39
    [57]Dunn R. C., Allen E. V., Joyce, S. A., Anderson G. A., and Xie X. S., Near-field fluorescent imaging of single protein, Ultramicroscopy, 1995, 57, 113-117
    [58]S. I. Boshevolnyi, I. I. Smolganinov, and O. Keller, Correlation between optical and topographical images from an external reflection near-field microscope with shear force feedback, Appl. Optics, 1995, 34, 3793-3799
    [59]A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, R. M. Simmons, Single-molecule biomechanics with optical methods, Science, 1999, 238, 1689-1693
    [60]Gimzewski J. K., Joachimc C., Nanoscale science of single molecules using local probes, Science, 1999, 238, 1683-1688
    [61]Betzig E, Trautman J. K., Wolfe R., E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. -H. Chang, Near-field magneto-optics and high density data storage, Appl. Phys. Lett., 1992, 61, 142-144
    [62]B. D.Terris, H. J. Mamin, D. Rugar, Near-field optical data storage, Appl. Phys. Lett., 1996, 68, 141-143
    [63]Takashi Nakano, Yuzo Yamakawa, Junji Tominaga, and Nobufumi Atoda,
    
    Near-field optical simulation of super-resolution near-field structure disks, Jpn. J. Appl. Phys., 2001, 40 (part1 3B) 1531-1535
    [64]Liu Wei-Chih, Wen Cheng-Yen, Chen Kuei-Hsien, Wei Chih Lin, and Din Ping Tsai, Near-field images of the AgO_x-type super-resolution near-field structure, Appl. Phys. Lett., 2001, 78, 685-687
    [65]Rogers J. K., Seiferth F., and Vang-Lraran, Near field probe microscopy of porous silicon: Observation of spectral shifts in photoluminescence of small particles, Appl. Phys. Lett., 1995, 66, 3260-3262
    [66]Grober R. D., Harris T. D., Trautman J. K., Betzig E., et al, Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy, Appl. Phys. Lett., 1994, 64, 1421-1423
    [67]P. J. Moger, K. Walzer, and M. Hietschold, Modification of the optical properties of liquid crystals using near-field scanning optical microscopy, Appl. Phys. Lett., 1995, 67, 2129-2131
    [68]J. Massavell, N. Garcia, and A. Zlatkin, Nanowriting on ferroelectric surface with a scanning near-field optical microscope, Opt. Lett., 1996, 21, 12-14
    [69]Hamano Mitsuo, and Irle Mashiro, Rewritable near-field optical recording on photochromic thin films, Jpn. J. Appl. Phys. 1996, 35, 1764-1767
    [70]张树霖,近场光学显微镜及其应用,北京:科学出版社,2000,114-156
    [71]D. Pahlka, F. Poser, E. Steimetz, M. Pristovsek, N. Esser, and W. Richter, Photoluminescence Scanning Near-Field Optical Microscopy on Ⅲ-Ⅴ Quantum Dots, Physca Status Sol.(a), 1998, 170, 401-410
    [72]I. Manhe, J. Lorbacher, JL. Spithoven, F. Heinrichsdorff, and M. Dahne-Prietsch, SNOM-induced photoluminescence of individual InGaAs quanum dots using etched metal-coated fibre, Surface and Interface Analysis, 1999, 27, 491-494
    [73]D. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films, Chem. Phys. Lett. 1998, 283, 381-385
    [74]A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, High-resolution near-field Raman microscopy of single-walled Carbon Nanotubes, Phys. Rev. Lett., 2003, 90, 095503-1-4
    [75]A. Hartschuh, N. Anderson, and L. Novotny, Near-field Raman spectroscopy using a sharp metal tip, J. Microscopy, 2003, 210, 234-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700