混合润滑状态下塑性变形界面微凸体平坦化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑性变形界面广泛存在于金属塑性成形中,此时工件、模具和润滑剂构成了一个复杂的摩擦学系统。论文研究了混合润滑状态下塑性变形界面微凸体平坦化行为,以期更好地理解塑性成形中工件表面形貌的演化和界面摩擦行为,为产品表面质量和界面摩擦性能的控制提供理论依据。
     基于机械流变模型和ISO25178三维表面参数,研究了微凸体平坦化引起的表面形貌变化的表征问题。运用图像数学形态学处理技术,有效地实现了封闭润滑油坑特征和基于机械流变模型的三维表面形貌参数的提取,以及真实接触面积比的确定。
     采用有限元法,建立了模具与工件粗糙表面接触模型,分析了接触压力、基体塑性应变、界面摩擦和微凸体角度等因素对微凸体平坦化的影响。结果表明,真实接触面积比随着基体塑性应变和接触压力的增加而增加;界面滑动摩擦有利于微凸体平坦化,但其促进效应无法与基体塑性应变和接触压力相比;微凸体平坦化阻力随着其角度的增加而增加,但增加趋势逐渐减缓。铝材压缩实验结果证明了有限元模拟的有效性。
     分别在有、无润滑条件下进行了不同表面纹理结构的1050铝材平面应变压缩实验;对表面形貌进行了测量和分析,研究在不同载荷和基体应变条件下微凸体平坦化行为和表面形貌结构的变化;基于封闭润滑油坑演化和微凸体平坦化行为的关联性分析,来理解静态有润滑接触条件下表面纹理结构对微凸体平坦化行为的影响;采用ISO25178三维表面参数和基于机械流变模型的三维表面参数,对工件表面形貌进行了表征,来描述微凸体平坦化引起表面形貌的变化。
     在自制的塑性成形摩擦测试装置上进行了带材拉伸实验,来研究滑动接触条件下不同纹理结构表面的微凸体平坦化行为、表面形貌结构变化以及界面摩擦特性。实验结果显示,摩擦系数表现出压力和速度的依赖性,且与封闭润滑油坑的演化相关联。研究了算术平均偏差、最快衰减自相关长度、表面纹理特征比、表面展开面积比和表面均方根斜率等三维表面参数随名义接触压力和拉伸速度的变化。基于机械流变模型,分析了润滑机制、微凸体平坦化引起表面形貌变化、载荷承载机理和界面摩擦特性间的内在联系,从而揭示了微凸体平坦化行为对界面摩擦的影响;并探讨了最大封闭空面积比表征界面摩擦性能的有效性。
     在考虑塑性变形界面封闭润滑油坑中润滑剂陷入和逃逸行为的条件下,分别建立了静态和滑动有润滑接触过程中规则表面微凸体平坦化的理论模型,分析了接触条件对微凸体平坦化的影响,并初步验证了微凸体平坦化模型的有效性。
     提取封闭润滑油坑特征,并分析封闭润滑油坑的演化和三维表面形貌参数与混合润滑状态下微凸体平坦化行为的关联性,是本论文的主要创新之处。论文研究结果对产品表面质量和界面摩擦性能的控制有理论指导意义。
The plastic deformed interface widely exists in metal forming process, at which the surfacetopography of workpiece and tool, lubricant form a complex system. In this dissertation, in order togain a better understanding of the evolution of workpiece surface topography and to provide atheoretical basis for the control of surface quality of products and the interfacial friction, thebehaviour of asperity flattening of workpiece surface at plastic deformed interface in mixedlubrication regime is studied.
     Based on mechanical-rheological model and the three dimensional surface parameters definedin ISO25178, the characterization of the changes of surface topography resulting from asperityflattening is investigated. Using mathematical morphology image processing technology, theextraction of closed lubricant pockets features and the three dimensional surface parameters derivedfrom mechanical-rheological model and the assessment of real contact area ratio are achievedeffectively.
     A finite element model for rough surface contact between tool and workpiece is developed.Theeffects of the contact pressure, bulk plastic strain, interfacial friction and asperity angle on asperityflattening are analysed in detail. The results show that the real contact area ratio increases with thecontact pressure and bulk plastic strain. The contribution of interfacial sliding friction to asperityflattening is not comparable to that of bulk plastic strain as well as contact pressure. The resistanceof asperity to flattening increases with increasing asperity angle, but the increasing rate decreases.The experimental results of compression tests on aluminium samples show the validity of the finiteelement simulation.
     A series of plane strain compression tests on aluminium1050sheet specimens with differenttypes of texturing topographies are conducted with lubricantion and without lubricantionrespectively. Measurement and alalysis of the surface topagraphy of the specimens are performed toinvestigate the asperity flattening behaviour and variations of surface microstructure for variousloads and bulk strains. Based on the correlation analysis between the evolution of the closedlubricant pockets and the behaviour of asperity flattening, the effect of surface topography on theasperity flattening in static contact process is discussed. By using the three dimensional surfaceparameters defined in ISO25178and derived from mechanical-rheological model respectively, thecharacterization of surface topography is achieved to describe the changes of surface microgeometryinduced by asperity flattening.
     In order to investigate the asperity flattening behaviour and the changes of surfacemicrostructure as well as the frictional performances at plastic deformed interface in sliding contactprocess, a novel metal forming tribometer is built up and used to perform a series of strip drawingtests.It is found that the coefficient of friction shows a dependence on contact pressure and drawingvelocity when drawing velocity and contact pressure remains constant respectively, which can berelated to the evolution of closed lubricant pockets. The variations of surface microstructure withnominal contact pressure and drawing velocity are characterized by such three dimensional surfaceparameters as arithmetical mean height, the fastest decay autocorrelation length, texture aspect ratio,developed interfacial area ratio and root mean square slope of the surface. Based onmechanical-rheological model, the internal relationship between the lubrication regime, thevariations in the surface microstructure, the load bearing mechanism and the interfacial friction isstudied to reveal the influnce of asperity flattening on the interfacial friction. The applicability of themaximum closed void area ratio for a description of the friction performances in metal formingprocess is analyzed.
     Considering entrapment and escape of liquid lubricant in closed lubricant pockets at plasticdeformed interface, theoretical models for asperity flattening of workpiece surface with a regulararray of wedges for static contact and sliding contact respectively are developed. The effects ofdifferent contact conditions on surface asperity flattening are analyzed in detail. The validity of thetheoretical models of asperity flattening proposed is verified primarily.
     An important innovation in this dissertation is to extract the closed lubricant pockets featuresand to relate three dimensional surface parameters and the evolution of closed lubricant pockets tothe behaviour of asperity flattening at plastic deformed interface in mixed lubrication regime. Studyresults will be beneficial to improve theoretically the control of surface quality of products andinterfacial friction.
引文
[1] Thomas T R.粗糙表面测量、表征及其应用[M].杭州:浙江大学出版社,1987.
    [2] Bruzzone A A G, Costa H L, Lonardo P M, et al. Advances in engineered surfaces for functionalperformance[J]. CIRP Annals-Manufacturing Technology,2008,57(2):750-769.
    [3] Przemyslaw Sadowski, Stanislaw Stupkiewicz. A model of thermal contact conductance at highreal contact area fractions[J].Wear,2010,268(1-2):77-85.
    [4]刘小君,方新燕,刘焜,等.产品性能与加工表面质量设计[J].合肥工业大学学报:自然科学版,2005,28(7):781-783.
    [5] Pierre Montmitonnet. Plasto-hydrodynamic lubrication (PHD)–application of lubricationtheory to metal forming processes[J]. Comptes Rendus de l'Académie des Sciences-Series IV-Physics,2001,2(5):729-737.
    [6] Roizard X, Stebut J.Surface asperity flattening in sheet metal forming—A3-D relocationstylus profilometric study[J].International Journal of Machine Tools and Manufacture,1995,35(2):169–175.
    [7] Huart S, Dubar M, Deltombe R, et al. Asperity deformation, lubricant trapping and iron finesformation mechanism in cold rolling processes[J].Wear,2004,257(5-6):471-480.
    [8] Mahrenholtz O, Bontcheva N, Iankov R.Influence of surface roughness on friction duringmetal forming processes[J].Journal of Materials Processing Technology,2005,159(1):9-16.
    [9] Mathieu Renouf, Francesco Massi, Nicolas Fillot,et al. Numerical tribology of a dry contact[J].Tribology International,2011,44(7–8):834-844.
    [10] Maziar Ramezani, Zaidi Mohd Ripin.A friction model for dry contacts during metal-formingprocesses[J].International Journal of Advanced Manufacturing Technology,2010,51(1):93-102.
    [11] Reto Grüebler, Heiko Sprenger, Josef Reissner. Tribological system modelling and simulationin metal forming processes[J]. Journal of Materials Processing Technology,2000,103(1):80-86.
    [12]谢友柏.摩擦学设计主要是摩擦学系统的设计[J].中国机械工程,1999,10(9):968-973.
    [13] Kudo H, Azushima A. Interaction of surface microstructure and Lubricant in metal formingtribology[C]//Proc.2nd Int. Conf. on Adv. Tech. of Plasticity, Stuttgart:1987:373-384.
    [14] Hiroshi Ike. An AFM analysis of surface textures of metal sheets caused by sliding with bulkplastic deformation[J].Wear,1999,224(1):73–88.
    [15] Wilson W R D, Walowit J A. An isothermal hydrodynamic lubrication theory for strip withfront and back tension[C]//Tribology Convention,Institute of Mechanical Engineers, London:1972:164–172.
    [16] Wilson W R D.Mechanics of sheet metal forming[M]. New York:Plenum Press,1978.
    [17] Wilson W R D. Friction and lubrication in bulk metal forming processes[J].Journal of AppliedMetalworking,1978,1(1):7-19.
    [18] Wilson W R D,Hsu T C,Huang X B.A realistic friction model for computer simulation of sheetmetal forming processes[J].Journal of engineering for industry,1995,117(2):202-209.
    [19] Wilson W R D, Lee Weiming. Mechanics of surface roughening in metal forming processes[J].Journal of Manufactureing Science and Engineering,2001,123(2):279-283.
    [20] Kasuga Y, Yamaguchi K, Kato K. Friction and lubrication in the deformation processing ofmetals[J]. Bull.JSME,1968,11(44):344–365.
    [21] Wilson W R D,Siletto J G. Surface roughening in liquid lubricated upsetting[J]. MetalworkingLubrication, ASME, New York,1980:87-94.
    [22] Chen G, Shen H, Hu S. et al. Roughening of the free surfaces of metallic sheets during stretchforming[J]. Materials Science and Engineering: A,1990,128(1):33-38.
    [23] Becker R. Effects of strain localization on surface roughening during sheet forming[J].ActaMaterialia,1998,46(4):1385-1401.
    [24] Osakada K, Oyane M. On the roughening of free surface in deformation processes[J]. Bulletinof JSME,1971,14(68):171–177.
    [25] Groche P, Sch fer R, Justinger H, et al. On the correlation between crystallographic grain sizeand surface evolution in metal forming processes[J]. International Journal of MechanicalSciences,2010,52(3):523-530.
    [26] Sy-Wei Lo, Tzu-Chern Horng. Surface roughening and contact behavior in forming ofaluminum sheet[J].ASME J.Tribol.,1999,121(2):224-233.
    [27] Ratnagar D D, Cheng H S, Schey J A. The surface deformation of aluminum compressed withviscous lubricants[J]. Journal of Tribology,1974,96(4):591-594.
    [28] Sy-Wei Lo, Tze-Chun Yang, Zong-Ming Shih, et al. Effects of surface roughening on asperityflattening[J]. Tribology Letters,2009,35(1):67-75.
    [29] Shih Hua-Chu, Wilson W R D. Effects of contact pressure and strain on friction in sheet-metalforming[J]. Tribology Transactions,1999,42(1):144-151.
    [30] Wilson W R D, Sheu S. Real area of contact and boundary friction in metal forming[J].International Journal Mechanical Science,1988,30(7):475-489.
    [31] Hol J, Cid Alfaro M V, de Rooij M B, Meinders T. Advanced friction modeling for sheet metalforming[J].Wear,2012,286–287:66-78.
    [32]鲍登F P,泰伯D.固体的摩擦和润滑[M].北京:机械工业出版社,1982.
    [33] Courtney-Pratt J S, Eisner E. The effect of a tangential force on the contact of metallic bodies[J].Proc. R. Soc. Lond. A,1957,238(1215):529–549.
    [34] Philippe Stempflé, Olivier Pantalé, Toufik Djilali, et al. Evaluation of the real contact area inthree-body dry friction by micro-thermal analysis[J].Tribology International,2010,43(10):1794-1805.
    [35] Baratunde A Cola, Jun Xu, Timothy S Fisher. Contact mechanics and thermal conductance ofcarbon nanotube array interfaces[J].International Journal of Heat and Mass Transfer,2009,52(15-16):3490-3503.
    [36] Sutcliffe M P F. Surface asperity deformation in metal forming processes[J]. InternationalJournal Mechanical Science,1988,30(11):847-868.
    [37] Makinouchi A, Ike H, Hayashi A. Surface flattening mechanism in the presence of bulk plasticdeformation of workpiece[C]//Proceedings of the1986Japanese Spring Conference onTechnology of Plasticity, Tokyo:1986:127-130.
    [38] Korzekwa D A,Dawson P R,Wilson W R D.Surface asperity deformation during sheetforming[J]. International Journal Mechanical Science,1992,34(7):521-539.
    [39] Stupkiewicz S, Mroz Z. Phenomenological model of real contact area evolution with accountfor bulk plastic deformation in metal forming[J]. International Journal of Plasticity,2003,19(3):323-344.
    [40] Lu C, Wei D, Jiang Z, et al. Experimental and theoretical investigation of the asperity flatteningprocess under large bulk strain[J]. Proceedings of the Institution of Mechanical Engineers, PartJ: Journal of Engineering Tribology,2008,222(3):271-278.
    [41] Li H J, Jiang Z Y, Wei D B, et al. Study on surface asperity flattening during uniaxial planarcompression[J]. Wear,2011,271(9-10):1778-1784.
    [42] Sutcliffe M P F. Flattening of random rough surfaces in metal forming[J]. ASME J. Tribol.,1999,121:433–440.
    [43] Ma B, Tieu A K, Lu C, et al. A finite-element simulation of asperity flattening in metalforming[J]. Journal of Materials Processing Technology,2002,130–131:450-455.
    [44] Kimura Y, Childs T H C. Surface asperity deformation under bulk plastic strainingconditions[J].International Journal of Mechanical Sciences,1999,41(3):283-307.
    [45] Przemyslaw Sadowski, Stanislaw Stupkiewicz, Combined effect of friction and macroscopicdeformation on asperity flattening[J]. Tribology International,2010;43(9):1735-1741.
    [46]胡兆稳,刘焜,王伟,等.塑性成形表面微凸体平坦化行为研究[J].润滑与密封,2013,38(2):9-13.
    [47] Kudo H. A note on the role of microscopically trapped lubricant at the tool-work interface[J].Int.J. Mech. Sci.,1965,7(5):383–388.
    [48] Oyane M, Osakada K.The mechanism of lubricant trapping under dynamic compression[J], Bull.JSME1969,12(49):149–155.
    [49] Azushima A,Tanaka T.Lubricant behavior trapped within pockets on workpiece surface inlubricated upsetting by means of direct fluorescence observartion technique[J].CIRPAnnals-Manufacturing Technology,2000,49(1):165–168.
    [50] Ahmed R,Sutcliffe M P F. An experimental investigation of surface pit evolution duringcold-rolling or drawing of dtainless dteel dtrip[J].Journal of Tribology,2001,123(1):1-7.
    [51] Akira Azushima,Shigeo Kuba,Shoujirou Tani,et al. Direct observation of asperity deformationof specimens with random rough surfaces in upsetting and indentation processes[J].Wear,2006,260(3):258–264.
    [52] Stanis aw Kucharski,Grzegorz Starzyński,Anna Bartoszewicz. Prediction of surface roughnessin metal forming with liquid lubricant[J].Tribology International,2010,43(1-2):29-39.
    [53] Sobis T,Engel U,Geiger M. A theoretical study on wear simulation in metal formingprocesses[J]. J. Mater. Process. Technol,1992,34(1-4):33-40.
    [54] Mizuno T, Okamoto M. Effects of lubricant viscosity at pressure and sliding velocity onlubricating conditions in the compression-friction test on sheet metals[J].Journal ofTribology,1982,104(1):53–59.
    [55] Kudo H, Tsubouchi M, Takada H, et al. An investigation into plasto-hydrodynamic lubricationwith a cold sheet drawing test[J].CIRP Annals-Manufacturing Technology,1982,31(1):175-180.
    [56] Azushima A,Tsubouchi M,Kudo H, et al.Experimental confirmation of themicro-plasto-hydrodynamic lubrication mechanism at the interface between workpiece andforming Die[J]. J. JSTP,1989,30(347):1631-1638.
    [57] Azushima A,Tsubouchi M,Kudo H.Direct observation of lubricant behaviors under themicro-PHL at the interface between workpiece and die[C]//Adv. Technol. Plas., Proc.,3rdInternational Conference on Technology of Plasticity, Kyoto:1990,1:551–556.
    [58] Azushima A, Uda M, Kudo H. An interpretation of the speed dependence of the coefficient offriction under the micro-pHL condition in sheet drawing[J]. CIRP Annals-ManufacturingTechnology,1991,40(1):227-230.
    [59] Azushima A,Kudo H.Direct observation of contact behaviour to interpret the pressuredependence of the coefficient of friction in sheet metal forming[J].CIRP Annals-Manufacturing Technology,1995,44(1):209-212.
    [60] Bech J, Bay N, Eriksen M. A study of mechanisms of liquid lubrication in metal forming[J].CIRP Annals-Manufacturing Technology,1998,47(1):221-226.
    [61] Bech J, Bay N, Eriksen M. Entrapment and escape of liquid lubricant in metal forming[J]. Wear,1999,232(2):134-139.
    [62] S rensen C G, Bech J I, Andreasen J L, et al. A basic study of the influence of surfacetopography on mechanisms of liquid lubrication in metal forming[J].CIRP Annals-Manufacturing Technology,1999,48(1):203-208.
    [63] Shimizu I, Bech J I, Andreasen J L, et al. Influence of workpiece surface topography on themechanisms of liquid lubrication in strip drawing[J]. Journal of Tribology,2000,123(2):290-294.
    [64] Sy-Wei Lo, Tzu-Chern Horng. Lubricant permeation from micro oil pits under Intimate contactcondition[J]. Journal of Tribology,1999,121(4):633-638.
    [65] Zhrgang Wang, Kuniaki Dohda, Younghoon Jeong. FEM simulation of surface smoothing inthe ironing process[J].Journal of Materials Processing Technology,2001,113(1-3):705-709.
    [66]王志刚.超高精度表面的塑性加工技术[J].锻压技术,2003,2:1-4.
    [67] Dohda K,Wang Z. Effects of average lubricant velocity and sliding velocity on friction behaviorin mild steel sheet forming[J]. Journal of Tribology,1998,120(4):724-728.
    [68] Wang Z, Kondo K, Mori T. A consideration of optimum conditions for surface smoothing basedon lubricating mechanisms in ironing process[J]. Trans. ASME J. Eng. Ind.,1995,117(3):351–356.
    [69] Azushima A.FEM analysis of hydrostatic pressure generated within lubricant entrapped intopocket on work-piece surface in upsetting process[J].Journal of Tribology,2000,122(4):822-827.
    [70] Le H R, Sutcliffe M P F. Finite element modelling of the evolution of surface pits in metalforming processes[J]. Journal of Materials Processing Technology,2004;145(3):391–396.
    [71] Stephany A, Le H R, Sutcliffe M P F. An efficient finite element model of surface pit reductionon stainless steel in metal forming processes[J]. Journal of Materials Processing Technology,2005,170(1-2):310-316.
    [72] Lo S W, Tsai S D. Real-time observation of the evolution of contact area under boundarylubrication in sliding contact[J]. Journal of Tribology,2002,124(2):229-238.
    [73] Lo S W, Yang T S. A new mechanism of asperity flattening in sliding contact-the role of toolelastic microwedge[J]. Journal of Tribology,2003,125(4):713–719.
    [74] Sy-Wei Lo, Bo-Qi Zhou, Ching-Feng Fang, et al. In situ observation of microwedge effect onliquid lubrication[J]. Journal of Tribology,2004,126(4):690-696.
    [75] Lo S W, Yang T S. A microwedge model of sliding contact in boundary/mixed lubrication[J].Wear,2006,261(10):1163-1173.
    [76] Tung-Sheng Yang. Prediction of surface topography in lubricated sheet metal forming[J].International Journal of Machine Tools and Manufacture,2008,48(7-8):768-777.
    [77] Greenwood J A, Williamson J B P. Contact of nominally flat surfaces[J]. Proc. Roy. Soc. Lond.,1966, A295:300-319.
    [78]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    [79] McCool J I. Predicting microfracture in ceramics via a microcontact model[J]. ASME Journalof Tribology,1986,108(3):380-386.
    [80] Jeng Y R, Peng, S R. Elastic plastic contact behavior considering asperity interactions forsurfaces with various height distributions[J]. J. Tribol.,2006,128(2):245-251.
    [81] Chang W R, Etsion I, Bogy D B. An elastic–plastic model for the contact of rough surfaces[J].ASME J. Tribol.,1987,109(2):257-263.
    [82]赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触力学模型[J].机械工程学报,2007,43(3):95-101.
    [83] Halling J, Nuri K. Elastic plastic contact of surfaces considering ellipsoidal asperities ofwork-hardening multi-phase materials[J].Tribology International,1991,24(5):311-319.
    [84] Ciavarella M, Greenwood J A, Paggi M. Elastic–plastic adhesive contact of rough surfaces withasymmetric distribution of asperity heights[J]. Wear,2008,265(3-4):729-734.
    [85]杨楠,陈大融,孔宪梅.多粗糙峰弹塑性接触的有限元分析[J].摩擦学学报,2000,20(3):202-206.
    [86]刘天祥,刘更,谢琴,等.二维自适应粗糙表面弹塑性接触模型[J].机械工程学报,2007,43(9):91-95.
    [87] Saoussen Belghith, Salah Mezlini, Hedi Belhadj Salah, et al. Modeling of contact betweenrough surfaces using homogenisation technique[J].Comptes Rendus Mécanique,2010,338(1):48–61.
    [88] Buczkowski R, Kleiber M. Statistical models of rough surfaces for finite element3D-contactanalysis[J].Archives of Computational Methods in Engineering,2009,16(4):399-424.
    [89] Sayles K S. Basic principles of rough surface contact analysis using numerical methods[J].Tribology International,1996,29(8):639-650.
    [90] Tian X, Bhushan B. A numerical three-dimensional model for the contact of rough surfaces byvariational principle[J]. ASME Journal of Tribology,1996,118(1):33–42.
    [91] Robert L, Jackson, Jeffery L, et al. A multi-scale model for contact between rough surfaces[J].Wear,2006,261(11-12):1337–1347.
    [92] Jackson R L, Ashurst W R, Flowers G T, et al. The effect of initial connector insertions onelectrical contact resistance[C]//Electrical contacts-2007, the53rd ieee holm conference onPittsburgh, PA:2007:17-24.
    [93] Majumdar A, Bhushan B. Fractal model of elastic–plastic contact between rough surfaces[J].ASME Journal of Tribology,1991,113(1):1–11.
    [94] Pfestorf M,Engel U,Geiger M.3D-surface parameters and their application on deterministictextured metal sheets[J]. International Journal of Machine Tools and Manufacture,1998,88(5-6):607-614.
    [95] Weidel S,Engel U.Surface characterization in forming processes by functional3D parameters[J].The International Journal of Advanced Manufacturing Technology,2007,33(1-2):130–136.
    [96] Batalha G F, Stipkovic Filho M.Quantitative characterization of the surface topography of coldrolled sheets-new approaches and possibilities[J].Journal of Materials Processing Technology,2001,113(1–3):732-738.
    [97] International Organisation for Standardization. ISO/TS CD25178-2-2006Geometricalproduct specifications (GPS)–surface texture:areal–Part2:terms,definition and surface textureparameters[S]. Geneva:International Organisation for Standardization,2007.
    [98] Woo K L, Thomas T R. Contact of rough surfaces: A review of experimental work[J].Wear,1980,58(2):331-340.
    [99] Geiger M, Engel U, Vollertsen F. In situ ultrasonic measurement of the real contact area in bulkmetal forming[J]. CIRP Annals-Manufacturing Technology,1992,41(1):255–258.
    [100] Kim J Y, Baltazar A, Rokhlin S I. Ultrasonic assessment of rough surface contact betweensolids from elastoplastic loading–unloading hysteresis cycle[J]. Journal of the Mechanics andPhysics of Solids,2004,52(8):1911-1934.
    [101] Pau M,Aymerich F,Ginesu F. Distribution of contact pressure in wheel-rail contact area[J].Wear,2002,253(1-2):265-274.
    [102]冼亮,秦力,郑林庆.应用光全反射法及图像处理技术研究真实接触面积[J].摩擦学学报,1992,12(2):110-115.
    [103] Ovcharenko A, Halperin G, Etsion I, et al. A novel test rig for in situ and real time opticalmeasurement of the contact area evolution during pre-sliding of a spherical contact[J].TribologyLetters,2006,23(1):55-63.
    [104] Masao Eguchi,Takashi Shibamiya,Takashi Yamamoto. Measurement of real contact area andanalysis of stick slip region[J].Tribology International,2009,42(11–12):1781–1791.
    [105] Azushima A,Yoneyama S,Yamaguchi T,Kudo H.Direct observation of microcontact behaviorat the interface between tool and workpiece in lubricated upsetting[J].CIRPAnnals-Manufacturing Technology,1996,45(1):205-210.
    [106] Etsion I,Levinson O,Halperin G,et al. Experimental investigation of the elastic–plastic contactarea and static friction of a sphere on flat[J]. Journal of Tribology,2005,127(1):47–50.
    [107]王家文,李仰军. MATLAB7.0图形图像处理[M].北京:国防工业出版社,2006.
    [108]崔屹.图像处理与分析——数学形态学方法及应用[M].北京:科学出版社,2002.
    [109] Belotserkovets A, Dubois A, Dubar M, et al.2D asperity deformation of stainless steel strip incold rolling[J]. International Journal of Material Forming,2008,1(Supplement1):351-354.
    [110]朱作鑫,孙建林,高雅,等.热轧变形区润滑条件与板带钢表面质量关系试验研究[J].机械工程学报,2012,48(2):133-137.
    [111] Tabor D.Junction growth in metallic friction: the role of combined stresses and surfacecontamination[J]. Proc. R. Soc. Lond.,1959,251:378–393.
    [112] Hiroshi Ike.Surface deformation vs. bulk plastic deformation-a key for microscopic control ofsurfaces in metal forming[J].Journal of Materials Processing Technology,2003,138(1–3):250-255.
    [113]郭正华,李志刚,黄重九,等.塑性成形过程摩擦测试的研究进展[J].塑性工程学报,2004,11(3):1-6.
    [114] Roizard X,Pothier J M,Hihn J Y,et al. Experimental device for tribological measurementaspects in deep drawing process[J].Journal of Materials Processing Technology,2009,209(3):1220-1230.
    [115] Stahlmann J,Nicodemus E R,Sharma S C,et al.Surface roughness evolution in FEAsimulations of bulk metal forming process[J]. Wear,2012,288(1):78-87.
    [116] Wang Zhitong, Yang Mingjiang. Laser-guided discharge texturing for cold mill roller[J].Journal of Materials Processing Technology,2011,211(11):1678-1683.
    [117] Azushima A.In situ3D measurement of lubrication behavior at interface between tool andworkpiece by direct fluorescence observation technique[J].2006,Wear260:243-248.
    [118] Weidel S, Engel U.Characterisation of the flattening behaviour of modelled asperities[J].Wear,2009,266(5–6):596-599.
    [119] Weidel S,Engel U,Merklein M,et al. Basic investigations on boundary lubrication in metalforming processes by in situ observation of the real contact area[J]. Production Engineering2010,4(2-3):107-114.
    [120] Patir N, Cheng H S.An average flow model for determining effects of three-dimensionalroughness on partial hydrodynamic lubrication[J].J. Tribol.,1978,100(1),12-17.
    [121] Balbach R,Lange K.Influence of various surface microstructures on the tribology in aluminumsheet metal forming[J].Ann.CIRP,1987,36(1):181-184.
    [122] Schmoeckel D,Prier M,Staeves J. Topography deformation of sheet metal during the formingprocess and its influence on friction[J].CIRP Annals-Manufacturing Technology,1997,46(1):175-178.
    [123] Skarpelos P,Morris Jr J W.The effect of surface morphology on friction during forming ofelectrogalvanized sheet steel[J].Wear,1997,212(2):165-172.
    [124] Rasp W, Wichern C M. Effects of surface-topography directionality and lubrication conditionon frictional behaviour during plastic deformation[J]. Journal of Materials ProcessingTechnology,2002,125–126:379-386.
    [125]刘小君.基于数学形态学的三维表面形貌表征研究[D].合肥:合肥工业大学,2007.
    [126] Zhou Rui, Cao Jian, Wang Q Jane, et al. Effect of EDT surface texturing on tribologicalbehavior of aluminum sheet[J].Journal of Materials Processing Technology,2011,211(10):1643-1649.
    [127] Payen G R, Felder E, Repoux M, et al. Influence of contact pressure and boundary films on thefrictional behaviour and on the roughness changes of galvanized steel sheets. Wear,2012,276-277:48-52.
    [128] Costa1H L, Hutchings I M.Effects of die surface patterning on lubrication in strip drawing[J].Journal of Materials Processing Technology,2009,209(3):1175-1180.
    [129] Kirkhorn L, Bushlya V,Andersson M, et al. The influence of tool steel microstructure onfriction in sheet metal forming[J].Wear,2013,In Press.
    [130] Azushima A,Miyamoto J,Kudo H.Effect of surface topography of workpiece on pressuredependence of coefficient of friction in Sheet Metal Forming[J]. CIRP Annals-ManufacturingTechnology,1998,47(1):479-482.
    [131] Wilson W R D. Mixed Lubrication in Metal Forming[J].Advanced Technology of Plasticity,1990,4:1667-1676.
    [132] Sutcliffe M P F,Johnson K L. Lubrication in cold strip rolling in the mixed regime[J].Proceedings of the Institution of Mechanical Engineers,Part B: Journal of EngineeringManufacture,1990,204(4):249-261.
    [133] Sheu S,Wilson W R D. Mixed lubrication of strip rolling[J].Tribology Transactions,1994,37(3):483-493.
    [134] Wilson W R D,DER-FORM Chang. Low speed mixed lubrication of bulk metal formingprocesses[J]. Journal of Tribology,1996,118(1):83-89.
    [135] Wilson W R D,Serope Kalpakjian. Low-speed mixed lubrication of metal-formingprocesses[J].CIRP Annals-Manufacturing Technology,1995,44(1):205-208.
    [136] Lo S W.A Study on the flow phenomena in the mixed lubrication regime by porous mediummodel[J]. Journal of Tribology,1994,116(3):640–647.
    [137] Riu D,Azushima A, Shima T.Behavior of hydrostatic pressure of lubricant trapped in surfacepocket on workpiece at upsetting process[J].J.Tapan Soc. Technol. Of Plasticity.,1993,34:1240-1245.
    [138] Le H R, Sutcliffe M P F. The role of lubricant entrapment in the evolution of surface pits inmetal forming[C]//The Colloquium on Friction and Wear in Metal Forming, Valenciennes,France:2002:47–54.
    [139] Lo S W, Wilson W R D. A theoretical model of micro-pool lubrication in metal forming[J].Journal of Tribology,1999(121):731–738.
    [140] Sutcliffe M P F,Le H R,Ahmed R. Modelling of micro-pit evolution in rolling or stripdrawing[J]. Journal of Tribology,2001(123):791–798.
    [141] Le H R, Sutcliffe M P F.Evolution of surface pits on stainless steel strip in cold rolling andstrip drawing[J]. Journal of Tribology,2003,125:384-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700