太阳电池组件制造和服役过程残余应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的不断减少和能源需求的日益增加,可再生能源,特别是太阳能受到了广泛关注,作为太阳能利用重要组成部分的光伏产业迅速发展。而太阳电池组件在制造过程和服役过程中,由于材料的热膨胀系数不匹配,导致太阳电池组件内部产生残余应力,严重影响了太阳电池组件的使用寿命。
     本文围绕太阳电池组件制造过程电池片碎裂的机理和服役过程残余热应力的演变规律这两个关键问题,采用理论、数值模拟与实验相结合的方法开展研究工作,探索太阳电池片碎裂的机理,提出在太阳电池组件制造过程和服役过程中减少电池片碎裂的措施与方法。主要工作和结论如下:
     1、针对生产太阳电池片三道工序(铸锭、切片和烧结),开展太阳电池片制造过程的残余应力研究。采用有限元分析软件ANSYS对硅锭铸锭过程、切片过程和电极烧结过程进行数值模拟研究,分析了某些工艺参数对硅锭铸锭过程的残余应力的影响,模拟了硅片切割过程中应力的变化规律,并讨论了硅片层厚度和铝背场厚度对电池片弯曲度和残余应力的影响。
     2、针对太阳电池组件焊接过程中存在的问题,运用数值模拟技术分析太阳电池组件焊接工艺中的应力分布情况。讨论了不同的焊接区域对电池片的应力分布的影响,通过改变温度机制、焊接区域和焊条型号,优化出较为合理的焊接位置;分析了温度机制的影响,确定焊接过程合理的焊接温差;模拟不同型号焊条对电池片强度的影响,选出了较为合理的焊条。
     3、建立了太阳电池组件的温度场理论模型和应力场理论模型,分别计算太阳电池组件封装过程的应力场以及稳定服役过程结构的温度场和应力场;获得了太阳电池组件封装过程各层材料的应力分布情况,讨论了封装工艺对太阳电池片最大应力值及应力分布的影响;并与组件封装过程和服役过程热应力的数值结果进行比较,相互验证其模型的有效性,为太阳电池组件的热应力缓和设计奠定基础。
     4、采用平面应变模型分析了太阳电池组件在瞬态热载荷作用下组件热应力分布及演变过程,通过对温度场和应力场瞬态的耦合分析,得到太阳电池组件各层材料的温度和热应力分布及演变规律。找出了太阳电池组件的危险部位,确定了太阳电池组件承受的交变应力幅和应力峰值,为太阳电池组件的疲劳寿命评估奠定基础。通过分析比较工程设计中常用的寿命评估方法,提出适合太阳电池组件的疲劳寿命评估方法;采用小型冲压实验方法对太阳电池片的基本力学性能进行测试,获得太阳电池片的弹性模量和断裂强度等参数;采用经验公式获得材料的疲劳极限和疲劳性能参数,完成了太阳电池组件疲劳寿命的初步评估。
     本文通过理论研究与数值计算相结合,研究了太阳电池组件制造和服役过程残余应力的分布情况,讨论了组件封装过程对电池片产品本身结构的影响,分析了组件在热循环条件下的热应力分布及演变规律,揭示太阳电池片碎裂的机理;建立了太阳电池组件寿命评估方法,分析太阳电池组件疲劳寿命的影响因素,提出改善太阳电池组件疲劳强度和延长组件服役寿命的措施与方法,对太阳电池组件的设计和大规模生产利用具有重要指导意义。
With the decrease of fossil energy and the increase of energy need, reproducible energy, especially solar energy has drawn extensive attention. Potovoltaics technology is developing rapidly as an important way of using solar energy. During the manufacturing and service processing of solar cell module, residual stress produced in internal of solar cell module because of thermal expansion coefficient of materials mismatch, which influenced the life of solar cell module seriously.
     Focused on the two key issues, the fragmentation mechanics of cell in the manufacturing process and the evolution of residual thermal stress in service process of solar cell module, the paper investigated the mechanics of cell fragmentation and proposed some measures to reduce the cell fragmentation through three aspects contained theory, numerical simulation and experiment. The main works and conclusions are summary as follow:
     1. The residual stress produced in the manufacturing process of solar cell module was investigated aimed at the three processes (ingot casting, slicing and sintering) for solar cell production. Numerical simulation was carried on the ingot casting of silicon, slicing and the electrodes sintering process by finite element analysis software ANSYS, analyzing the effect of some crafts parameters on the residual stress, simulating the evolution of stress in the silicon slicing process, discussing the effect of silicon thickness and aluminum-alloyed back surface field thickness on cell flexural value and residual stress.
     2. Stress distribution in the welding process of solar cell module was analyzed by using numerical simulation aimed to the problem in the welding process of solar cell module. The effect of welding location on stress distribution of solar cell was discussed. By changing the temperature mechanism, welding location and welding rod type, suitable welding location was obtained; the effect of temperature mechanism was analyzed and suitable welding temperature was choosed; the effect of different types of welding rods on the intensity of cell was simulated and suitable welding rod was obtained.
     3. The theory model of temperature field and stress field in solar cell module was built. The stress field in packaging process of solar cell module and temperature field in service were calculated respectively. The stress distribution of each layer material in packaging process of solar cell module was obtained. The effect of packaging technique on max stress value and stress distribution of solar cell was discussed. The validity of model was confirmed by comparing the thermal stress of theory model with results of numerical simulation, which lay the foundation for thermal stress relaxation design of solar cell module.
     4. The thermal stress distribution and evolution of solar cell module under the transient thermal loads were analyzed by plane strain model. The temperature and thermal stress distribution was obtained by the transient temperature field and stress field coupling analysis. The dangerous area of solar cell module was identified, and alternating stress amplitude and the stress peak on solar cell module was obtained, which lay foundation for the fatigue life evaluation of solar cell module. The suitable fatigue life evaluation method was proposed by comparing life evaluation method commonly used in engineering design. The basic mechanics performance of solar cell was tested by small punch method, and elastic modulus and ultimate strength was obtained. The fatigue limit and fatigue performance parameters of material were obtained by empirical formula. The fatigue life elementary evaluation of solar cell module was finished.
     In summary, in this work we investigated the residual stress distribution of solar cell module in manufacturing and service process, discussed the effect of packaging process on the structure of solar cell, analyzed the thermal stress distribution and evolution of solar cell module on the thermal cycle, revealed the fragmentation mechanism of solar cells, built the life evaluation method of solar cell module, analyzed the factors on fatigue life, gave some measures and method to improve the fatigue intensity and service life of solar cell module. The work has important guiding significance to the design and large scale production of solar cell module.
引文
[1]李申生,世界范围的常规能源危机[J],太阳能,2003(2),P15-19.
    [2]牛冲槐,伍朝江,我国煤炭能源供求紧张局势分析与对策[J],中国能源,2007,26(2),P34-37.
    [3]魏光谱,太阳能利用与阳光经济[J],上海电力,2006(4),P45-51.
    [4]王志明.在线太阳电池测试系统关键技术研究[D],上海:上海大学,2009,p1-2.
    [5]谢建.太阳能利用技术[M].北京:中国农业大学出版社,1999:13-16.
    [6]施正荣.晶体硅太阳能电池的现状和发展[C].中国第七届光伏会议论文集.中国杭州,2002:23-26.
    [7]刘祖明.晶体硅太阳电池及其电子辐照研究[D].四川大学博士论文,2002:60-61.
    [8]刘恩科,朱秉升,罗晋生,等.半导体物理学(第4版).北京:国防工业出版,1999.
    [9]陈庭金.多晶硅太阳电池的表面与界面复合.太阳能学报,2000,21(2):133-139.
    [10]申兰先.薄晶体硅太阳电池及其电极系统的研究[D].云南师范大学硕士论文,2006:23-25.
    [11]M.A.Green,J.Zhao, A.Wang,S.R.Wengham, IEEE Trans.Electron Dev.,Photovoltaics Special Issue,46(10),Oct.1999,p1940-1947.
    [12]蒋荣华,肖顺珍.硅基太阳能电池与材料.产业论坛,2003(7):8-13.
    [13]宋慧瑾.CdT太阳电池的不同金属背电极及封装特性研究.四川大学硕士学位论文,2006
    [14]J. Zhao, A. Wang&M. Green, et al.. Appl. Phys. Lett.,1998,73 (14):1991-1993
    [15]J.Zhao, A.Wang, M. A. Green.24.7% Efficiency PERT Silicon Solar Cells[A].23-A-2-3, 11th International PV Science and Engineering Conference[C],1999.
    [16]R. Hill. PV Cells and Modules. Renewable Energy World,1998,1(1):22
    [17]赵玉文,江希年编.第26届IEEE国际光伏专家会议情况介绍.北京市太阳能研究所.1997年论文集,1998.6:59
    [18]Slaoui A, Moma R. Silicon C. Thin film:a promising approach for photovoltaic J. Mater. Res., 1998,13(10):2763
    [19]Zheng G F, Zhang W, Shi Z et al..Nigh efficiency frift-field thin film silicon solar cell grown on electronically inactive substrates. Solar Energy Mater.& Solar Cells,1998,51(1):95
    [20]耿新华等.薄膜太阳电池的研究进展.物理,1999,28(2):96-102
    [21]Photovoltaics for the 21st Century, Proc. Electrochem. Soc., PV 99-11,eds. V. K. Kapur, R. D. McConnell&D. Carlxon, et al.-Symposium on "Basic Research Opportunities", org:J. Benner, S. K Deb&R. D. McConnell,1999, p.201-300
    [22]D. E.Carlson, "Semiconductor device having a body of amorphous silicon," U. S. Patent 4,064, 521,1997.
    [23]D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell,,'Applied Physics Letter,28, pp.671(1976)
    [24]D. L. Staebler and C. R. Wronski,31,292 (1977).
    [25]沈辉,曾祖勤.太阳能光伏发电技术.化学工业出版社,2005
    [26]翁政军.太阳电池组件自然通风冷却和电热联用的数值模拟研究.东华大学硕士学位论文,2008
    [27]魏风,朱宝玉等,太阳电池应用和研究的发展[J],光伏与工程,2003(2),P55-56.
    [28]德、美、日等发达国家太阳能利用状况一览[J],东北电力技术,2005(7),P23-28.
    [29]沈浑,舒碧芬,国内外太阳电池的发展与应用[J],光伏与工程,2005(10),P42-43.
    [30]王永东,太阳电池光学性质研究[D],上海:上海交通大学,2001,p19-19.
    [31]WeiGuang-Pu,Therapiddevelopmentofphotovoltaicindustryinchina[C],PVSEC-17,Dec,2007, japan.P567-569.
    [32]敖建平,孙国忠,我国太阳电池研究和产业现状分析[J],2001(3):P19-19.
    [33]杨军.太阳能光伏发电前景展望.沿海企业与科技,2005,(8):110-112
    [34]赵玉文.我国太阳能利用技术的发展概况和趋势.农村电气化,2004,(9):11-12
    [35]郑家贵,张静全,蔡伟等ZnTe:Cu薄膜的制备及其性能.半导体学报2001,22(2):171-175
    [36]冯良桓,蔡伟,郑家贵等.中国第六届光伏会议论文集.中国昆明,2000.10.14-17:110-113
    [37]信息产业部电子205所计量站测试报告.2003.1.7
    [38]中国科学院太阳光伏发电系统和风力发电系统质量检测中心测试报告.2005,3
    [39]张静全博士论文.磅化福及相关化合物多晶薄膜与磅化锅太阳电池研究.2002.11.
    [40]Ran Y Kim. Dimensional stabiliy of composite in a space thermal environment[J]. Compsites Science and Technology,2000,60:2601-2608.
    [41]Tenney D.Sykes QBowles D. Space environmental effects on materials for Space Applications[C],1982,6(1):1632-1987.
    [42]Welford W T, Winston R. The optics of nonimaging concentrators. Academic Press, New York, 1978.132-138.
    [43]O'Neill M J. Inflatable lenses for space photovoltaic concentrator arrays.26 th IEEE Photovoltaic Specialists Conference,1997.853-856.
    [44]Spence B R, Jones P A, Eskenazi M 1, et all The scarlet array for high power GEO satellites. 26 th IEEE Photovoltaic Specialists Conference,1997.1027-1030.
    [45]Lorenzo E,Luque A. Fresnel lens analysis for solar energy applications. Appl Opt,1982,20 (17):2941-2945.
    [46]Kurtz S R, O Neill M J. Estimating and controlling chromatic aberration losses for two2junction two2terminal devices in refractive concentraor systems.25 th IEEE Photovoltaic Specialists Conference,1996.361-364.
    [47]Eskenazi M I, Murphy DM, Ralph EL, et al. Testing of dual2 junction scarlet modules and cells plus lessons learned.26 th IEEE Photovoltaic Specialists Conference,1997.831-834.
    [48]周永溶.半导体材料[D].北京:北京理工大学出版社.1992.8.121-132.
    [49]陈治明,王建农.半导体器件的材料物理学基础.北京:科学出版社,1999.
    [50]刘恩科,朱秉升,罗晋生,等.半导体物理学(第4版).北京:国防工业出版,1999.
    [51]陈庭金.多晶硅太阳电池的表面与界面复合.太阳能学报,2000,21(2):133-139.
    [52]安其霖,曹国琛,等.太阳电池原理与工艺.上海:上海科技出版社,1984.
    [53]刘宏.西北地区首条晶体硅太阳电池组件封装生产线.青海科技,2005
    [54]周永溶.半导体材料[D].北京:北京理工大学出版社.1992.8.121-132.
    [55]陈治明,王建农.半导体器件的材料物理学基础.北京:科学出版社,1999.
    [56]Zheng W C. Optical plastics and applications. Beijing:Geological Press,1993.74-82.
    [57]沈学础.半导体光学性质,北京:科学出版社,1992,417-427.
    [58]杨始艳,谢择民.空间级室温硫化硅橡胶[J].有机硅材料,2000,14(3):3-6.
    [59]Whipple C L,Thome J A. Performance of elastomeric sili2 cones in ablative and space environments [J]. Rubber Chem And Technol,1966,39(1):247.
    [60]Pollard H E et al. Technical aspects of the in telsat V so2 lar assay[A]. Conference Record of the Sixteenth IEEE Photovoltaic Specialists Conference[C],1982:31-35.
    [61]J I Kleiman,R C Tennyson (eds). Protection of Materials and Structures from the Low Orbit Space Environment[M]. Printed in the Netherlands,1999,107-119.
    [62]李军勇,梁宗存,赵汝强.晶体硅太阳电池旁路结分析.第十届中国太阳能光伏会议论文集[C].2008,110-114.
    [63]郭志球.各向同性腐蚀法制备太阳电池用多晶硅片绒面[D].华南理工大学硕士学位论文,2006.
    [64]许欣翔.多晶硅太阳电池表面织构化工艺的研究[D].中山大学硕士学位论文,2007.
    [65]童靖宇,刘向鹏,张超等.CAST2000卫星太阳电池阵基板原子氧防护技术研究[J].装备环境工程,2008,5(6),72-75
    [66]白羽,杨德庄,何世禹等.空间粉尘环境因素对航天器材料损伤的研究动态[J].材料科学与工艺,2005,13(1),49-53
    [67]唐欣欣.空间质子和电子引起的星内器件辐射损伤模拟研究[D].上海大学硕士学位论文,2008.
    [68]王宇鑫.硅基半导体中微观缺陷和电子结构对材料光电性能的影响[D].广西大学硕士学位论文,2008.
    [69]胡震宇,何世禹,杨德庄.质子与热循环协同效应对硅太阳电池电性能的影响[J].太阳能学报,2004,25(6),799-803
    [70]卢智恒,姚强.平板式太阳能电热联用面板[J].太阳能学报,2006,27(6),545-553
    [71]安其霖,曹国琛,等.太阳电池原理与工艺.上海:上海科技出版社,1984.
    [72]J.J.Sturcbecher,J.C.Larue,The mini-flasher:a solar array test system[J],Solar Energy Materials and Solar Cells 36,1994,P91-98.
    [73]F.Nagamine,R.Shimokawa,M.suzuki and T.Abe,New solar simulator for multi-junction cell measurement[J],O-7803-1220-1/93 1993 IEEE,P686-689.
    [74]Bhushan L.sopori,C.Marshall and K.Emery,Mixing Optical Beams for Solar Simulation-A New Approach,0160-8371/90/0000-1116 1990 IEEE.P1116-1120.
    [75]Bhushan L.sopori and Craig Marshall,Design of A Fiber Optic Based Solar Simulator[J], CH2953-8/91/0000-0783 1991 IEEE,P 783-788.
    [76]Klaus Heidler,Axel Schonecker etc,Progress in the Measurement of Multi-Junction Devices at ISE[J],CH2953-8/91/0000-0430 1991 IEEE,P430-435.
    [77]J.D.Alamo etal,Operating limits of Al-alloyed high-low junctions for BSF solar cells,Solid-State Electron.,vol.24,pp.415-420,1981.
    [78]J..A.Amick,F.J.Bottari,and J.Hanoka,The effect of aluminum thickness on solar cell performance,J.Electrochem.Soc,vol.141,ppl577-1585.1994.
    [79]K. Adolf Miinzer, Konstantin T. Holdermann, Reinhold E. Schlosser. Thin Monocrystalline Silicon Solar Cells. IEEE TRANSACTIONS ON ELECTRON DEVICES. (1999) 46(10): 2055-2061.
    [80]Richard M. Swanson. Developments in Silicon Solar Cells. IEEE International Electron Devices Meeting,10-12 Dec.2007, P359-362.
    [81]G P Willeke. Thin crystalline silicon solar cells. Solar Energy Materials&Solar Cells, (2002), 72:191-200.
    [82]张丽新,杨士勤,何世禹.热循环中太阳电池胶接结构中热错配应力的温度分布和调整[J].太阳能学报,2002,23(3),297-300.
    [83]郝延明,蔡宏琨,周严.温度交变环境对薄膜太阳电池相关层材料性能的影响[C].第五届中国功能材料及其应用学术会议论文集Ⅱ,2004,1870-1872.
    [84]孙国辉,晏石林,陈刚.太阳电池电极与铝背场烧结过程的数值模拟分析[J].系统仿真学报,2008,20(22):6103-6105.
    [85]秦伟,李莉,叶铸玉,吕刚,何世禹.真空热循环对环氧结构胶粘剂拉伸剪切性能的影响[J].失效分析与预防,2008,(01),7-9.
    [86]秦文波,程惠尔,李鹏.航天器刚性基板太阳电池阵在轨热分析[J].哈尔滨工业大学学报,2008,40(5),827-831
    [87]郭其威,张美艳,唐国安.太阳能电池阵地面模态试验的重力影响及其校正方案[J].振动与冲击,2008,27(12),44-46.
    [88]王晓燕,耿洪滨,何世禹等.热循环作用下太阳电池板单元结构寿命预测[J].太阳能学报,2007,28(6),583-586.
    [89]王晓燕,耿洪滨,何世禹,杨德庄.热循环下太阳电池板单元结构热应力演变规律研究[J].太阳能学报,2007,28(4),345-350.
    [90]王晓燕,耿洪滨.弹性性能对太阳电池板应力的影响[C].全国第八届热疲劳学术会议论文集,2004,14-20.
    [91]王晓燕,耿洪滨,何世禹等.材料热膨胀系数对太阳电池板应力的影响[J].航天器环境工程,2006,23(1),34-38.
    [92]王晓燕,何世禹,郑双.太阳电池板结构应力-应变状态分析[J].太阳能学报,2005,26(5),631-634.
    [93]杨林华,范宁.太阳电池紫外加速寿命试验技术研究[J].光学技术,2007,33(1),89-91,94.
    [94]黄小融,郑家贵,蔡伟,冯良桓,蔡亚平,武莉莉,黎兵,李卫,鄢强,冷文建,蔡道林.温度循环下CdS/CdTe太阳电池稳定性的研究[J].半导体光电,2004,25(1):16-18.
    [95]高禹,杨德庄,何世禹.真空热循环对M40J/环氧复合材料力学性能的影响[J].材料研究学报, 2004,(05),529-536.
    [96]高禹,李志君,杨德庄,何世禹,覃耀春.真空热循环对单向M40J/5228A复合材料质损率和线膨胀系数的影响[J].复合材料学报,2004,(06),108-113.
    [97]张丽新,杨士勤,何世禹.航天器太阳电池用硅橡胶质子辐照损伤效应[J].太阳能学报,2003,24(6),851-855.
    [98]张丽新,杨士勤,何世禹.太阳能电池胶接结构在真空热循环下粘接性能研究[J].中国胶粘剂,2002,(04),1-3.
    [99]金恂叔.太阳电池板的常压热循环试验和试验设备[J].国际太空,2001,(09),22-23.
    [100]郭其威,唐国安,张美艳.基于Matlab-Nastran联合仿真的电池阵模态优化设计[C].第二届上海航天科技论坛暨上海市宇航学会2007年学术年会论文集,2007,17-23.
    [101]邵燕瑛,太阳电池组件封装技术的探讨,能源工程[J],2008,32-34
    [102]陈维,沈辉,秦红.太阳电池组件户外性能测试,电源技术[J],2006,768-770
    [103]何志坚.金刚石圆锯片锯齿疲劳寿命分析及优化研究.广西大学硕士学位论文,2008.
    [104]姚卫星.结构疲劳寿命分析.国防工业出版社,2003.1
    [105]赵少汴.局部应力应变法及其设计数据.机械设计,2000,2(2):1-3
    [106]储佳章,李长海.机械强度有限寿命专家工作站的技术特色.中国机械工程.1997,8(3):10-14
    [107]徐人平,李淑兰,彭建平等.局部应力-应变法可靠性估算.现代机械,1998(1):33-37
    [108]姚卫星.金属材料疲劳行为的应力场强法描述.固体力学学报.1997,18(1):38-48
    [109]李洪升,周承方.工程断裂力学.大连:大连理工大学出版社.1990
    [110]冯西桥,何树延.表面裂纹疲劳扩展的一种损伤力学方法.清华大学学报.1997,37(5):78-82
    [111]Baik JM, Kameda J, Buck O. Small punch test evaluation of intergranular embrittlement of an alloy steel. Script Mitallurgica,1983 17:1443-1447
    [112]X Mao, H Takahashi, T Kodaira. Use of subsized specimen for evaluation the strength and fracture toughness of irradiated 2.25cr-1mo steel. Journal of Engineering Materials and Technology,1992.114:168-171
    [113]X Mao, J Kameda. Small punch technique for measurement of material degradation of irradiated ferritic alloys. Journal of Material Science,1991.26:2436-3440
    [114]Brookfield DJ, Li W, Rodgers B, et al. Material properties from small specimens using the punch and bulge test. Journal of Strain Analysis for Engineering Design,1999.34 (6):423-435
    [115]陈刚.小型冲压蠕变试验方法研究[D].武汉:武汉理工大学,2006
    [116]罗红花,陈刚,翟鹏程.材料弹性模量小型冲压实验测试的理论公式.武汉理工大学学报.2006,28(2):23-25
    [117]L.M. Zhang, J.F. Li, R. Watanabe et al. High-temperature ductility of TiC as evaluated by small punch testing and the effect of Cr3C2 additive. Functionally Graded Materials 1996, I. Shiota and M.Y. Miyamoto, Eds., Elsevier Science B.V.,1997:111-116
    [118]周传月,郑红霞,罗慧强等.MSC. Fatigue疲劳分析应用与实例,北京:科学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700