纳米碳酸钙填充室温硫化硅橡胶性能及其补强机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅橡胶具有耐高温、耐低温、防潮、绝缘、耐老化等优异性能,被广泛应用于国民经济众多领域,尤其是室温硫化硅橡胶。由于纯室温硫化硅橡胶力学性能较差,因此加入补强填料才具有使用价值。通常采用白炭黑作为补强填料,而碳酸钙在橡胶中仅作为普通的增容填料。随着纳米技术的发展,由于碳酸钙粒子的纳米级超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应,从而可以部分或是全部代替价格昂贵的白炭黑作为橡胶的补强填料。目前大量的研究工作主要集中在纳米碳酸钙填充橡胶的工程应用上,然而对碳酸钙在橡胶中所起的补强作用在国内外都没有进行深入的研究。由于纳米碳酸钙的产生使得碳酸钙自身的结构特点发生了根本的变化,存在粒径大小不同,粒子的形状不同,表面处理剂也有不同。纳米碳酸钙填充室温硫化硅橡胶补强效果与粒子的粒径、晶型、表面活性等因素有关,但是除此之外是否还受其它因素的影响。为了理解纳米碳酸钙的补强特性需要对纳米碳酸钙与室温硫化硅橡胶之间是否存在相互作用以及相互作用的特征进行研究,而且对于纳米碳酸钙在室温硫化硅橡胶中的补强机理是与炭黑或白炭黑的补强机理相似或是完全不同,对此也研究甚少。本论文将针对以上存在的问题对纳米碳酸钙填充脱醇型室温硫化硅橡胶进行深入的研究。
    首先研究了粒径不同、表面处理剂不同的纳米碳酸钙填充室温硫化硅橡胶的拉伸强度、断裂伸长率和定伸模量等力学性能,与纯胶相比都有一定程度的增加,说明纳米碳酸钙填充到室温硫化硅橡胶中明显体现了补强作用。通过三
    
    
    种不同种类纳米碳酸钙填充室温硫化硅橡胶力学性能的比较可知:粒径越小,补强作用也越强;而表面处理剂的差异对纳米碳酸钙在硅橡胶中补强效果影响并不大。除了粒径和表面活性以外,纳米碳酸钙含量的变化对纳米碳酸钙在RTV硅橡胶中补强作用也存在较大的影响,并且分为两个阶段:当纳米碳酸钙的含量低于80 phr时,其最大拉伸应力、断裂伸长率和100%定伸模量与纯硫化胶相比提高较小;当填充量增加至80 phr时,填充胶的力学性能都有较大幅度的增加,表现出明显的补强作用;继续增加填料含量,尽管100%定伸模量有所增加,但最大拉伸应力不再提高且断裂伸长率大大降低。填充量在80 phr填充胶的力学性能达到最佳。故纳米碳酸钙填充到室温硫化硅橡胶体系中具有双重作用,它既可用作提高力学性能的补强剂也可作为降低产品成本的增容剂。而采用气相法二氧化硅补强硅橡胶所需加入较小的填充量,如10%就能达到较明显的补强效果。
    纳米碳酸钙填充室温硫化硅橡胶的应力软化效应也表现出与力学性能相同的变化趋势:与未填充室温硫化硅橡胶应力软化程度相比,纳米碳酸钙填充硫化胶的应力软化程度随着填充量的增加应力软化程度增加。但是当填料含量低于80 phr时,随填料含量的增加应力软化程度增加幅度较小,当填料含量达到80 phr时,应力软化程度有明显的陡升。而气相法二氧化硅填充室温硫化硅橡胶的应力软化效应变化趋势同纳米碳酸钙相反:补强效果越明显,其应力软化程度反而降低。可见纳米碳酸钙与气相法二氧化硅的补强机理有所不同。
    为了弄清纳米碳酸钙在室温硫化硅橡胶中的补强机理,我们对纳米碳酸钙与室温硫化硅橡胶之间的相互作用进行研究,并与气相法二氧化硅与基体的相互作用进行对比。首先研究了纳米碳酸钙填充胶的粘度随填料含量的变化情况,发现在基料中加入不同含量的纳米碳酸钙表现出增粘作用,其粘度随填充量的变化同填充胶的力学性能和应力软化效应变化相同,也存在两个阶段:当填料浓度较低时,填充胶的粘度增加幅度较小;当填料含量增加至80 phr时,其胶体粘度陡增,为未填充胶料的65倍。而粘度的增加有利于纳米粒子团聚体在剪切作用下得以破碎,从而以较小的尺度均匀分散。所以通过SEM观察到对于同种纳米碳酸钙在基体中分散情况与纳米粒子的含量有关,填料含量越高,粒子的分散越均匀,在基体中分散尺度也越小。
    DMA和DSC表征结果说明加入纳米碳酸钙对室温硫化硅橡胶的玻璃化温
    
    
    度影响较小,但熔点随着含量的增加而明显移向低温,即填料与室温硫化胶分子链的相互作用使得聚二甲基硅氧烷在受限空间下结晶,从而使得高聚物晶体不完善所致;Kraus曲线的变化趋势也显示纳米碳酸钙于室温硫化硅橡胶之间存在着相互作用。为了研究纳米碳酸钙与室温硫化硅橡胶相互作用的本质,采用了IR和动态激光光散射对未硫化胶料进行表征,结果表明纳米碳酸钙表面处理剂的羰基与室温硫化硅橡胶分子链端的羟基发生了化学吸附反应,但是在甲苯特别是在氨气氛下甲苯溶液中遭到破坏。而气相法二氧化硅与室温硫化硅橡胶之间的相互作用较强,二氧化硅与聚二甲基硅氧烷的强相互作用是由于两者的结构相似,并且二氧化硅表面的Si-OH可与聚二甲基硅氧烷的Si-O形成氢键所致。
    而TG测试显示在室温硫化硅橡胶中填充纳米碳酸钙可以提高胶体的耐热性。通过对不同含量纳米碳酸钙填充硫化胶的热降解活化能的计算可知,随着纳米碳酸钙含量的增加热降解活化能增加。主要是在室温硫化硅橡胶中填充纳米碳酸钙的表面处理剂的羰基与硅橡胶末端的硅羟基相互作用而使得残余的羟基数目
Silicone rubbers have taken an important role in a variety of applications for almost 40 years. Among them the moisture-curable room-temperature vulcanizable (RTV) silicone rubber represents one of the largest volume and commercially most successful silicone technologies. The networks have excellent primerless adhesion to substrates, such as, glass, metal, wood, masonry and plastics. Additional benefits include excellent weatherability, durability, electrical insulation, chemical resistance, stability at high temperature. It is well known that fumed silica is the well-reinforcing filler for RTV silicone rubber, for silica filled rubbers show an increase in modulus, hardness, tensile strength, abrasion as well as resistance to fatigue and cracking.
    
    Calcium carbonate has been long time considered as mineral fillers that extended and cheapened the rubbers. Nowadays, nano-calcium carbonate has attracted considerable interest because of its raw materials abundance in nature, low cost compared with fumed silica and the presence of activity by treatment of the surface. The nano-size, larger specific surface area and active points of nano-calcium carbonate make it possible to be used as reinforcing agent just like carbon black or
    
    
    silica. Although a number of investigations have been devoted to the analysis of silica-filled rubber networks, little work has been done on the reinforcement of calcium carbonate filled rubber network. Therefore, it is our purpose in this work to study the relationship of reinforcement RTV silicone rubber by using nano-calcium carbonate and filler characteristics such as filler size, structure, surface activity, and to carry out a systematically investigation on interaction between RTV silicone rubber and nano-calcium carbonate compared with silica filled RTV silicone rubber.
    
    It have been found that there is a simultaneously increase of tensile strength, modulus and elongation of nano-CaCO3 filled RTV silicone rubbers no matter what the kinds of nano-CaCO3 compared with unfilled silicone rubber. The mechanical properties can be improved slightly with increasing the filler content which is lower than 80 phr while these properties of 80 phr nano-CaCO3 filled RTV silicone rubbers greatly increase whereafter little decline with adding more fillers. The same trendence has been observed in the stress-softening effect of different filler content of RTV silicone rubbers. It is concluded that the trend of effect on the reinforcement of the nano-CaCO3 appears two-step.
    
    The dispersion of nano-CaCO3 particles in rubber was studied via SEM after the samples were fractured in liquid nitrogen. It is revealed that the three kinds of nano-CaCO3 can disperse evenly in rubber matrix. The indistinct interface of filler and rubber shows that there has been interaction between filler and rubber. At the same time, the more the content of filler is, the smaller the size of the agglomerate, For viscosity of 80 phr nano-CaCO3 filled rubber is much higher than that of pure rubber, which conduces to the even dispersion of filler in the matrix.
    
    The interaction between nano-CaCO3 and RTV silicone rubber has been characterized by DSC, stress relaxation, DMA, balance swelling and TG. DMA and DSC results showed that the interaction can decrease the melting temperature for filler might hold the rubber molecular chain crystallization for the interaction
    
    
    between filler and rubber. The results of IR and Dynamic Laser Light exhibit that the interactions between filler and rubber are chemical adsorptions, which is consistent with TG results that are revealed that this chemical interaction between nano-CaCO3 and RTV silicone rubber could improve the thermal stability of filled rubbers. Stress relaxation results showed that both the stress relaxation rate and relaxation degree augment, which indicated that the interaction between filler and rubber concludes physical adsorption. The crosslinking degree obtained by balance swelling illustrated that interaction can increase the crosslinking degree and the int
引文
[1] F. W. G. Fearon, History of Silicone Elastomers, High Performance Polymers: Their Origin and Development, Proceedings of the Symposium. Presented at the 91st Meeting of the American Chemical Society., New York, NY, USA 1986, p 381-388
    [2] C. Friedel and J. M. Crafts, Compt. Rend, 1863, 56: 592
    [3] A. Ladenburg, Liebigs Ann Chem., 1872,164: 300
    [4] F. S. Kipping, Pro. Chem. Soc., London, 1904, 20: 15
    [5] E. L. Warrick, O. R. Pierce, K. E. Polmanteer, Silicone Elastomer Developments 1967-1977, Rubber Chemistry and Technology, 1979, v 52: 437-525
    [6] B. Lee, Silicone rubber, Engineering (London) , 1995, vol. 236: 32
    [7] 黄文润,有机硅材料的市场与产品开发, 有机硅材料与应用, 1992,5:1
    [8] 姜宏,大有作为的有机硅产业, 今日科技,2003,vol.4: 40
    [9] E. G. Rochow, USP 2380995, 1941
    [10] M. Shinohara, Sicone Resins: Preparation, Properties and Application, Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, 1974, v 15, p 72
    [11] J. C. weis, Silicone Rubber, Progress of Rubber Technology, 1984, v 46: 85
    [12] 孟祥凤,黄旭攸,对我国有机硅工业现状及其发展的一些看法,有机硅材料,2003,17(3):1
    [13] 李步春,第二届欧洲有机硅节见闻, 有机硅材料,2004,18(2):6
    [14] 傅积赉,发展我国有机硅产业的建议,有机硅材料,2004,18(4):1
    [15] 葛友根,周勤,快速提升中国有机硅工业的整体竞争力,有机硅材料,2002,
    16(5):1
    [16] 张爱霞,周勤,200l一2002年国外有机硅工业进展,有机硅材料,2003,17(1):32
    [17] 辛松民,王一璐,有机硅合成工艺及产品应用,北京,化学工业出版社,2000
    [18] 杜作栋,陈剑华,贝小来,周重光,有机硅化学,北京,高等教育出版社,1990
    [19] 尚颖,有机硅及其应用,化学工程师,2003,94(1):38
    [20] M. J. Scheffler, J. D. Connelly, History of Building Joint Sealant ASTM SPT 1271, 1996: 85
    [21] W. E. Dennis, D. A. Sierawski, D. N. Ingerbrigstoon, Hydrogen Evolving Tendencies of Cable Fillers and Optical Fiber Coatings, Rubber World, 1985, 192(2):26
    
    [22]秦智,国内外化工新材料产业发展现状与趋势, 高桥石化,2003,4:44
    [23] S. H. Kim, E. A. Cherney, and R. H. Hackam, IEEE Transaction on Electrical Insulation, Hydrophobic behavior of insulators coated with RTV silicone rubber 1992, 27(2): 610
    [24] J. P. Cohen Addad, Silica-siloxane mixtures. Investigations into adsorption properties of end-methylated and end-hydroxylated chains,Polymer, 1992, 33(2): 379
    [25] H. Deng, R. Hackam, Impact of weather conditions and formulations on LMW silicone fluid content in RTV silicone rubber coatings, Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report, 1996,vol 2: 437
    [26] 柴国梁,国内外有机硅市场分析报告,中国石油和化工经济分析,2003,vol 9: 44
    [27] J. Schwark, J. Muerller, High performance silicone-coated textiles: Developments and applications, Journal of Coated Fabrics, 1996, v 26: 65
    [28] H. Deng, R. Hackam, Low-molecular weight silicone fluid in RTV silicone rubber coating, IEEE Transactions on Dielectrics and Electrical Insulation, 1999v 6: 84
    [29] J. L. Goudie, M. J. Orbeck, Review of possible degradation mechanisms of silicone elastomers in high voltage insulation application, Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report, 1998, v 1:p 120
    [30] 章基凯 朱颖先.有机硅材料技术发展动向 化学世界, 2003,vol44 :550
    [31] M. E. Fields, Silicone coating projec, IEEE Conference Record of Annual Pulp and Paper Industry Technical Conference, 1995, p 178
    [32] H. Homma, C. L. Mirley, Field and laboratory aging of RTV silicone insulator coatings, IEEE Transactions on Power Delivery, 2000, v 15: p 1298
    [33] A. E. Vlastos, T. Orbeck, Outdoor leakage current monitoring of silicone composite insulators in coastal service condition, IEEE Transactions on Power Delivery, ,1996, v 11:1066
    [34] E. A. Cherney, R. S. Gorur, RTV silicone rubber coatings for outdoor insulators, IEEE Transactions on Dielectrics and Electrical Insulation, 1999,v 6: 605
    [35] 钱伯章,硅酮发展现状,有机硅氟资讯,2003,vol 9: 31
    [36] K. Ramesh, R. W. Tock, R. S. Narayan, C.V. G. Vallabhan, Property evaluation of silicone elastomers used in tension-adhesion joints, Journal of Materials Science Letters, 1995, v 14: 964
    
    [37] N. Harui, T. Aqawa, Novel ambient temperature curable two-component waterborne silicone-acrylic coatings,Journal of Coatings Technology, 1998, v 70: 73
    [38] 陈宪宏 李伟 黄凯兵 黄翠华, 有机硅在公路上的应用,有机硅材料, 2003,vol17: 20
    [39] D. T. Liles, N. E. Shephard, Silicone rubber latex sealants, ASTM Special Technical Publication, 1992, n 1200, p 280
    [40] R. S. Rajeev, A. K. Bhattacharya, A. K. Bhowmick, S. K. De, Recycling of Silicone Rubber Waste: Effect of Ground Silicone Rubber Vulcanizate Powder on the Properties of Silicone Rubber, Polymer Engineering and Science, 2003, v 43: 279
    [41] S. B. Lin, Addition-cured silicone adhesive technology: Vinyl silicone crosslinker, Journal of Applied Polymer Science, 1994, v 54: 2135
    [42] Q. Wang, W. Gao, Z. M. Xie, Highly thermally conductive room-temperature-vulcanized silicone rubber and silicone grease, Journal of Applied Polymer Science, 2003, v 89:2397
    [43]R. W. Tock, R. Keshavariai, Physical-chemical changes in silicone elastomers used for building sealants, ASTM Special Technical Publication, Science and Technology of Building Seals, Sealants, Glazing, and Waterproofing: Fifth Volume, 1996, n 1271: 113
    [44] B. C. Copley, Dynamic Mechanical Properties of Silocone Pressure-sensitive Adhesives, Polymer Science and Technology, 1984, v 29: 257
    [45] L. Molnar, A. Huba, Measurement of dynamic properties of silicone rubbers, Periodica Polytechnica, Mechanical Engineering, 2001, v 45: 87
    [46] R. W. Tock, M. V. R. N. Dinivahi, C. H. Chew, Viscoelastic Properties of Structural Silicone Rrubber Sealants, Advances in Polymer Technology, 1988, v 8: 317
    [47] M. Baile, S. E. Fuson, Silicone Sealants and Adhesives for Aerospace/defense Applications, International SAMPE Symposium and Exhibition, 34th International SAMPE Symposium and Exhibition - Tomorrow's Materials: Reno, NV, USA, 1989, v 34: 1681
    [48] J. E. Dietlein, Silicone Sealants as Adhesives. Technical Paper - Society of Manufacturing Engineers, 1984: 8
    [49] E. R. Salmon, NEW TWO COMPONENT R. T. V. Silicone Adhesives for Electronics & Aerospace Industries, Technical Paper - Society of Manufacturing Engineers, 1984, 5
    [50] W. J. Schoenherr, Silicone Structural Glazing: New Demands for Adhersives, Papers Presented at the 1985 Fall Seminar of the Adhesive and Sealant Council. Designing with
    
    
    Today's Engineering Adhesives and Sealants., Dearborn, MI, USA Adhesive & Sealant Council, 1985: 95
    [51] Comparison of European and U. S. Testing/Qualification Procedures for Structural Glazing Silicone Sealants, ASTM Special Technical Publication, 1990, n 1069: 67
    [52] Q. Yuan, Y. F. Li, G. Q. Li, Vulcanization kinetics of silicone rubber, Chinese Journal of Polymer Science (English Edition), 1988, v 6: 353
    [53] P. Vondracek, A. N. Gent, Slow Decompositioon of Silicone Rubber, J Appl. Polym. Sci., V 27, 1982: 4517
    [54] B. Vanwert, S. W. Wilson, One-part Thermal-cure Silicone Adhesives, National Electronic 1996, v 2: 797
    [55] R. W. Tock, Temperature and moisture effects on the engineering properties of silicone sealants, Symposium on Building Sealants: Materials, Properties, and Performance, Jan 31-Feb 1 90, Fort Lauderdale, FL, USA ,ASTM Special Technical Publication, 1990, n 1069: 167
    [56] B. F. De, Silicone Sealants and Structural Adhesives, International Journal of Adhesion and Adhesives, 2001, v 21: 411
    [57] R. Kosfeld, M. Hess, Physical Chemical Characterization of Silicone Rubbers. Conference Internationale du Caoutchouc 82., Paris, Fr 1982: 4
    [58] L. D. Carbary, Structural Silicone Sealant Requirements for Attaching Stone Panels for Exterior Applications, ASTM Special Technical Publication, 1990, n 1069: 53
    [59] W. S. Gutowski, Adhesive Properties of Silicone Sealants, ASTM Special Technical Publication, 1990, n 1069 : 174
    [60] R. Keshavarial, R. W. Tock, Changes in Crosslink Density of Structural Silicone Sealants Due to Ozone and Moisture, Polymer-Plastics Technology and Engineering, 1994, v 33: 397
    [61] R. A. Winn, P. Redinger, K. Williams, RTV Silicone Adhesives for Medical Devices, Technical Papers, Regional Technical Conference - Society of Plastics Engineers, 1986: 25
    [62] Wacker在法国的纺织技术展上推出有机硅粘接剂,有机硅材料2003,vol.17: 48
    [63] D. Finney, Silicone usage expanding in European automotive applications, Rubber World, 1990, v 202: 33
    [64] 汽车密封条技术创新趋势 有机硅氟资讯,2003,vol.4: 21
    
    [65] D. Finney, Silicone Usage Expanding in European Automotive Applications, Rubber World, 1990, v 202: 33-37
    [66] H. W. Winnan, Why Use Silicone Rubbers? Automotive Engineer (London), 1984, vol.9: 41
    [67] 高新来 王跃林 李和昌 李万华 潘慧铭,脱酰胺型RTV硅橡胶的研究,有机硅材料,2003,vol.17:7
    [68] 牟建海 解德良 姜标,单组分硅酮建筑密封胶的研制,化工科技市场.2003,vol. 26: 0-23,10
    [69] K. F. Chang, L. B. Sandberg, Structural behavior of silicone bonded glass block panels
    STM Special Technical Publication, Science and Technology of Building Seals, Sealants, Glazing, and Waterproofing: Fifth Volume, 1996, n 1271: 126
    [70] L. D. Fiedler, T. J. Hebda, E. M. Kucinski, H. M. Lee, Advances in Silicone Engine Gasket Sealing, Rubber World, 1996, vol. 213: 3
    [71] A. P. Cerra, Development of A New Accelerated Adhesion Test for Silicone Sealants, Journal of Testing & Evaluation, 1995, vol. 23: 370
    [72] K. E. Polmanteer, Silicone Rubber Technology Review, Meeting - American Chemical Society, Rubber Division,, 1981, 1: 64
    [73] A. R. Friedel, Silicone rubber sealants/adhesives, Assembly and Fastener Eng, 1970, vol. 8:39
    [74] S. Spell, J. M. Klosowshi, Silicone Sealants For Use in Concrete Construction, Publication SP - American Concrete Institute, 1981: 217-235
    [75] V. S. Gutowski, L. Russell, A. Cerra, Adhesion of Silicone Sealants to Organic-coated Aluminum,ASTM Special Technical Publication, 1992, n 1200:144
    [76] 周卫清,RTV有机硅密封胶的耐介质性,有机硅材料,2002, vol.16: 4
    [77] 黄月文 刘伟区,有机硅建筑材料 广州化学,2001,26(1): 57
    [78] 周勤 官长志1998—1999年国内有机硅技术进展,有机硅材料及应用.1999,vol.13:16-22
    [79] 梁金兰, GE东芝有机硅公司在中国建第二家合资厂, 现代橡胶技术.2003,Vol.29:54
    [80] 王盟 王德峰 宋晓颖 徐志义, 工程胶粘剂在工程车辆传动系统中的应用, 机械工程师.2003, vol.7: 78
    [81] 高新来 王跃林,一种低模量室温硫化硅橡胶的制备及性能,特种橡胶制
    
    
    品.2001,vol.22: 1
    [82] 崔孟忠 张爱霞, 用无机—有机硅在位填充法制备RTV硅橡胶, 有机硅材料, 2001,vol.15: 11
    [83] 邹德荣, 纳米碳酸钙对RTV硅橡胶性能的影响有机硅材料, 2002, vol.16: 7
    [84] 张丽新 杨士勤,真空热循环对空间级缩合型硅橡胶拉伸性能的影响,材料工程,2002,vol.4: 12
    [85] 徐宇 徐泽明, 耐酸RTV硅橡胶密封剂的研制, 有机硅材料, 2001, vol.15: 20
    [86] 薛纪东 曾红英,广研牌硅酮密封胶在汽车发动机上的应用研究,化学与粘合.2002, vol.1: 38
    [87] G. Kraus, Reinforcement of Elastomers” Chapter 4, Interscience Publishers, 1965.
    [88] S. Ross, On Physical Adsorption, John Wiley, 1964
    [89] C. L. Chow, K. Y. Sze, Effects of crack propagation and strain rate on fracture resistance of carbon black reinforced rubber, Theoretical and Applied Fracture Mechanics, 1989, vol. 11: 47
    [90] E. M. Dannenberg, E. Papirer, J. R. Donnet, Effect of Surface Chemical Surface Chemical Interaction on The Properties of Carbon Black Reinforced rubbers, Avtomaticheskaya Svarka, 1975, p 121-128
    [91] Wijayarathna, B.; Chang, W. V.; Salovey, R., Effects of Processing Variables on The Mechanical Properties of Carbon Black Filled Rubber, Rubber Chemistry and Technology, 1978, vol. 57: 1006
    [92] J. M. Funt, Dynamic Testing and Reinforcement of Rubber, Swedish Inst of Rubber Technology, 1986, vol. 1: 265
    [93] Le Bras, Jean; Papirer, Eugene, Filler-Elastomer Chemical Link and The Reinforcement of Rubber, Journal of Applied Polymer Science, 1978, vol.22: 525-531
    [94] J. Le Bras, E. Papirer, Filler-Elastomer Chemical Link and The Reinforcement of Rubber, Rubber Chemistry and Technology, 1979, vol52: 43
    [95] Hepburn, Claude, Filler Reinforcement of Rubber, Plastics and Rubber International, vol. 9, 1984: 11
    [96] Ogunniyi, David S., Filler Reinforcement in Rubber, Elastomerics, 1988, vol. 120: 24
    [97] E. M. Dannenberg , Effects of Surface Chemical Interactions on The Properties of
    
    
    Filler-Reinforced Rubbers. Rubber Chemistry and Technology, 1975, vol.48: 410
    [98] H. G. Kilian, M. Strauss, W. Hamm, Universal properties in filler-loaded rubbers, Rubber Chemistry and Technology, 1994, vol. 67: 1
    [98] A. A. Gusev, M. G. Rozman, Numerical search for morphologies providing ultra high elastic stiffness in filled rubber, Computational and Theoretical Polymer Science, 1999, vol. 9: 335
    [99] E. M. Dannenberg, Bound Rubber and Carbon Black Reinforcement, Rubber Chemistry and Technology, 1986, vol. 59: 512-524
    [100] G. R. Hamed, S. Hatfield, On the role of bound rubber in carbon-black reinforcemen, Rubber Chemistry and Technology, , 1989, vol. 62: 143
    [101] Z. Rigbi, Reinforcement of Rubber By Carbon Black, Rubber Chemistry and Technology, , 1982, vol. 55: 1180
    [102] B. L. Lee, Reinforcement of Uncured and Cured Rubber Composites and Its Relationship to Dispersive Mixing EM Dash An Interpretation of Cure Meter Rheographs of Carbon Black Loaded SBR and cis-Polybutadiene Compounds, Rubber Chemistry and Technology, 1979, vol. 52: 1019
    [103] J. B. Donnet, T. K. Wang, Surface organisation of carbon black and its implication on rubber reinforcement, Progress in Rubber and Plastics Technology, 1995, vol. 11: 261
    [104] N. Nakajima, Strain-rate amplification of carbon-black-filled rubber compound, Rubber Chemistry and Technology, 1988, vol. 61: 938
    [105] S. C. George, S. Thomas, Carbon-black-filled SBR composites: The effect of rubber-filler interaction on transport, Journal of Macromolecular Science - Physics, 2000, vol. 39 (B): p 175
    [106] J. B. Donnet, T. K. Wang, M. J. Wang, Study of surface activity of carbon black by inverse gas chromatography. Part II. Effect of carbon black thermal treatment on its surface characteristics and rubber reinforcement, Kautschuk und Gummi Kunststoffe, 1993, vol. 46: 86
    [107] J. A. Ayala, W. M. Hess, F. D. Kistler, G. A. Joyce, Carbon Black -elastomer interaction, Rubber Chemistry and Technology, 1991, vol. 64: 19
    [108] D. Goritz, H. Raab, J. Frohlich, P. G. Marier, Surface structure of carbon black and
    
    
    reinforcement, Rubber Chemistry and Technology, 1999, vol.72: 929
    [109] S. Wolff, M. J. Wang, Filler-elastomer interactions. Part IV. The effect of the surface energies of fillers on elastomer reinforcement, Rubber Chemistry and Technology, 1992, vol. 65: 329
    [110] S. S. Choi, C. Nah, B. W. Jo, Properties of natural rubber composites reinforced with silica or carbon black: Influence of cure accelerator content and filler dispersion, Polymer International, 2003, vol. 52: 1382
    [111] S. Kaufman, W. P. Slichter, D. D. Davis, Nuclear magnetic resonance study of rubber- carbon black interactions, Rubber Chem. Technol., 1971, vol. 44: 843
    [112] K. N. Pandey, D. K. Setua, G. N. Mathur, Material behaviour: Fracture topography of rubber surfaces: An SEM study, Polymer Testing, 2003, vol. 22: 353
    [113] M. Kluppel, Hyperelasticity and Stress Softening of Filler Reinforced Polymer Networks, Macromolecular Symposia, 2003, vol.200: 31
    [114] K. Murakami, S. Lio, T. Tanahashi, S. Kohjiya, K. Kajiwara, Y. Ikeda, Reinforcement of NR by silica generated in situ: Comparison with carbon black stock, KGK-Kautschuk und Gummi Kunststoffe, 2001, vol. 54: 668
    [115] B. B. Boonstra, H. Cochrane, E. M. Dannenberg, Reinforcement of Silicone Rubber By Particulate Silica, Rubber Chemistry and Technology, 1975, vol. 48: 558
    [116] C. C. Payne, Colloidal Silica for Rubber Reinforcement, Rubber World, v 194, 1986: 36
    [117] S.Kohjiya, Y. Ikeda, In situ formation of particulate silica in natural rubber matrix by the sol-gel reaction, Journal of Sol-Gel Science and Technology, 2003, vol. 26: 495
    [118] A. I. Medalia, Filler Aggregates and Their Effect on Reinforcement, Rubber Chemistry and Technology, 1974, vol. 47 : 411
    [119] A. Blume, Analytical properties of silica - a key for understanding silica reinforcement, KGK-Kautschuk und Gummi Kunststoffe, 2000, vol. 53: 7
    [120] A. Voet, J. C. Morawski, J. B. Donnet, Reinforcement of Elastomers By Silica, IEEE Journal of Quantum Electronics, 1979, vol.49: 241
    [121] S. Wolff, Reinforcing and Vulcanization Effects of Silane Si69 in Silica-Filled Compounds, Kautschuk und Gummi Kunststoffe, 1981, vol. 34: 280
    [122] N. L. Hewitt, Reinforcement NR and Polyisoprene With Silica, European Rubber Journal,
    
    
    1978, vol. 160: 11
    [123] A. Blume, Analytical properties of silica - a key for understanding silica reinforcement, KGK-Kautschuk und Gummi Kunststoffe, 2000, vol. 53: 7
    [124] Y. C. Qu, Z. Z. Yu, A. Vidal, J. B. Donnet, Effects of alkylation of silica filler on rubber reinforcement, Rubber Chemistry and Technology, 1994, vol. 67: 834
    [125] P. Mele, S. Marceau, D. Brown, N. D. Alberola, Reinforcement effects in fractal-structure-filled rubber, Polymer, 2002, vol. 43: 5577
    [126] M. B. Plavsic, N. L. Lazic, Nanostructure of silica fillers and reinforcement of SBR elastomers - A fractal approach, Materials Science Forum, 2002, vol. 413: 213
    [127] F. Schon, W. Gronski, Filler networking of silica and organoclay in rubber composites: Reinforcement and dynamic-mechanical properties, KGK-Kautschuk und Gummi Kunststoffe, 2003, vol. 56: 166
    [128] A. S. Hashim, N. Kawabata, S. Kohjiya, Silica reinforcement of epoxidized natural rubber by the sol-gel method, Journal of Sol-Gel Science and Technology, 1995, vol. 5: 211
    [129] P. K. Pal, S. K. De, Effect of Reinforcing Silica on Vulcanization, Network Structure, and Technical Properties of Natural Rubber, Rubber Chemistry and Technology, 1982, vol. 55: 1370
    [130] N. L. Hewitt, Reinforcing NR and Polyisoprene With Silica, European Rubber Journal, 1978, vol. 160: 11
    [131] 段先健,张立群,伍社毛等,用溶胶-凝胶法原位生成SiO2增强橡胶,合成橡胶工业,2000,23(3):148
    [132] 宁凯军,王小平,贾德民,白炭黑的特性及其在胎面胶中的应用,合成橡胶工业,2000,24(3)182
    [133] Y. Bomal, R. P. Recherches, Influence of Specific Surface Area and Quantity of Precipitated Silica On The Properties of A Precipitated Silica Filled Natural Rubber, Rubb. Chem. Technol., 1993, vol. 66: 685
    [134] E. M. Dannenberg, Effects of Surface Chemical Interactions On the Properties of Filler Reinforced Rubbers, Rubber Chemistry and Technology, 1975, vol. 48: 410
    [135] A. F. Blanchad, Applied Science of Rubber, London, 1961
    [136] F. Bueche, Reinforcement of Elastomers, Interscience Publishers, 1965
    
    [137] B. B. Boonstra, Abrasion resistance of pre- stressed and stressed rubber vulcanizates, J Appl Polym Sci, 1970, vol. 14: 11
    [138] 藤本邦彦,日本ゴム协会志,1964,37(8):602
    [139] K. Ogawa, T. Vogt, M. Ullmsnn, S. Johnson, Elastic Properties of Nanoparticle Chain Aggregates of TiO2, Al2O3 and Fe2O3 Generated By Laser Ablation, Journal of Applied Physics, 2000, vol. 87: 63
    [140] G. Huber, T. A. Wiligis, T. Mainz, Universal Properties of Filled Rubbers: Mechanism For Reinforcement On Different Length Scales, Elastomerer und Kundtdtoffe, 1996, vol. 49: 102
    [141] A. V. Walle, Claude Tricot and Montreal. Modeling Carbon Black Reinforcement in Rubber Compounds, Kauschuk Gummi Kundtdtoffe, 1996, 49: 172
    [142] H. G. Kilian, M. Strauss, W. Hamm, Universal Properties of Filler-Loaded Rubbers, Rubb. Chem. Technol., 1994, vol. 67: 1
    [143] D. S. Oqunniyi, Calcium carbonates as fillers in rubbers, Plastics and Rubber International, 1989, vol. 14: 22
    [144] D. A. Skelhorn, Calcium Carbonate’s Application in Rubber, Rubber World, 1997, vol. 216: 32
    [145] 孙峰,卢晓,超细碳酸钙超充粉末丁苯橡胶的制备,合成橡胶工业,2001,vol.24: 262
    [146] 杨眉,沈上越,碳酸钙表面改性及充填丁苯橡胶试验研究,矿物岩石,2001,vol. 21: 19
    [147] 杨眉,沈上越,轻质碳酸钙表面改性及充填丁苯橡胶,合成橡胶工业,2001,vol. 21: 271
    [148] 马晶,李青山,杨占国,李超,张维兴,纳米碳酸钙的性能与应用,化工时刊,2002
    Vol. 7: 11
    [149] 邹德荣,毛晓明,徐泽明,施树桥,纳米碳酸钙对丁腈橡胶性能影响研究,弹性体,2002,vol. 11: 21
    [150] 王成云,龚丽安,纳米碳酸钙在橡胶高性能化改性中的应用,化工时刊,2002,vol. 10: 6
    [151] 邹德荣,纳米碳酸钙对RTV硅橡胶性能的影晌,有机硅材料,2001,vol. 16:7
    [152] 黄家明,涂学忠, 碳酸钙在我国橡胶工业中的应用和发展,橡胶工业,2003,vol. 50: 186
    
    [153] 何祖常, 黄永炎, 超细碳酸钙的改性和补强性能鉴定,炭黑工业,2001,vol. 3: 39
    [154] 王炼石,洪少颖,周奕雨,超细碳酸钙填充型粉末NB的研究 ,材料导报,2002,vol. 16: 68
    [155] 王跃林,伍青,杜荣昵,王勇,高小铃,傅强,纳米碳酸钙在硅酮密封胶中的增强作用,高等学校化学学报,2002,vol. 23: 2011
    [156] 申正辉,纳米碳酸钙在橡胶行业中的应用,化工新型材料,2003,vol. 31: 49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700