用户名: 密码: 验证码:
排球4号位强攻助跑起跳技术的运动生物力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用遥测肌电测试仪一部、常速DV摄像机两部、同步信号发生器一台对五名优秀男子排球运动员的排球4号位强攻助跑起跳动作进行了现场测试,运用专门的分析软件对肌电和摄像进行解析处理,结合运动解剖学、运动生理学、运动训练学、运动生物力学等多学科知识,不仅可以客观地反映出有利于助跑起跳技术的各项运动学参数值及适宜范围,而且可以发现此技术动作的诸多基本规律,比如可以用来分析某肌肉或肌群在不同时程,以及不同肌肉在同一时程的肌电变化特征等,以期为教学和训练提供参考。
     研究结果:(一)运动学(1)助跑的最后一步——研究对象最后一步的步幅占其各自总助跑距离的比例近乎50%;(2)重心最低点时刻——研究对象右膝关节角度平均值为134.935°;研究对象中杜**的左右髋角及肩角最小,且在重心最低点至双脚离地这一阶段左侧肘关节垂直速度的变化幅度最大;(3)起跳离地时刻——密**和杜**在起跳离地瞬间的速度参数值相对较大且重心腾起角相对较小;(4)起跳阶段——研究对象中仅王**在起跳缓冲的过程中其左侧下肢参与缓冲,且参与缓冲时间短,时间仅为0.02s,在蹬伸的过程中其左侧下肢全程参与蹬伸;密**的水平速度损失率较其他人要小,数值为53.573%。(二)肌肉力学(1)助跑的最后一步——右肱二头肌表现的非常兴奋,放电强烈,数值为420uvs;右侧下肢肌群的积分肌电值要小于相对应的左侧下肢肌群;(2)缓冲阶段——右肱二头肌兴奋程度较高,放电较强,积分肌电值达到486uvs;右侧下肢肌群的放电强度比左侧下肢肌群要大,但呈非显著性差异;“重心最低点时刻”绝大部分肌肉都表现出积分肌电值趋向于处于或接近零线的特点;(3)蹬伸阶段——右肱二头肌积分肌电值最大,为516uvs,右竖脊肌次之,为510uvs;右侧下肢肌群放电量平均水平比左侧下肢肌群要小,但呈非显著性差异;(4)助跑的最后一步和起跳全程——右肱二头肌的积分肌电值最大,数值为461uvs,其次是右竖脊肌,数值为409uvs;左侧下肢肌群中除股二头肌的放电量比右侧下肢的股二头肌要小外,其他三块肌肉均比右侧对应肌肉要大,但呈非显著性差异。
     本文的研究对象都是接受多年专业训练且参加过全国大学生排球联赛的专业运动员,他们的技术娴熟、动作规范,肌肉活动协调而经济,因此他们的测试数值可以揭示排球4号位强攻助跑起跳技术的基本规律。
This thesis tests on the 4-bit of Volleyball storm’s techniques of run-up and jump offive elite male volleyball players by a set of telemetry EMG tester, 2 constant speed DVcameras and a sync signal generator. To use of specialized analysis software to parseEMG and video processing, combined with sports anatomy, exercise physiology, sportstraining, science, sports biomechanics and other multi-disciplinary knowledge. Not onlycan reflect the parameter values and proper range of run-up and jump techniquesobjectively but also can find many of the basic laws of 4-bit of Volleyball storm. Forexample, people can use the result to analysis the EMG of a particular muscle or musclegroup at different time range, as well as different muscles at the same time-variationwith a view to provide reference for teaching and training.
     Research results: (一)Kinematics (1) The last step of run-up—the research objects’last stride occupy 50% of total run-up distance. (2) The moment of gravities’lowestcenter—the mean angles of the research object’s right knee are 134.935°. The researchobject’s Du’s left and right angles of hip joints and shoulder are mini, the elbow’sgreatest magnitude of vertical velocity change is appeared in the process of gravities’lowest center and both of his feet leave the ground. (3) The moment of jumping to leaveground—instantaneous jumping to leave ground, the parameter of velocity of Mi andDu are larger than other objects, but their gravity off angle are smaller. (4) Jumpstage—Wang is the only research objects whose left lower limb involves in buffering,the participating time is just 0.02s. And his left lower limb involves in stretch during theentire process. Mi’s loss rate of horizontal speed is smaller than others, value is 53.573%.(二)Mechanics of muscle(1) The last step of run-up—the performance of the rightbiceps brachii is very excited, discharge strong value for 420uvs; the right lowerextremity muscle EMG values of the integral corresponding to the left to be less than thelower limb muscles. (2) Buffer stage—right biceps brachii owns a higher degree ofexcitement and discharge a strong, integrated EMG, the value reaches 486uvs. Strengthratio of the discharge of right lower limb muscles are lower than left lower limb muscles.The difference between the right and the left lower limb muscles is without significant.At the center of gravity moment of the lowest point, the vast majority muscles haveshown the characteristics of IEMG values tend to be at or near the zero line of the. (3)Stretch stage—the right biceps brachii owns the largest IEMG values of 516uvs,followed by the right erector spinae IEMG values of 510uvs. The average level ofdischarge of the right lower limb muscles are smaller than the left lower limb muscles.The difference is without significant.(4) The whole process of the last step of run-up andjump stage—the IEMG values of right biceps brachii is the largest one which value is461uvs ,followed by the right erector spinae IEMG values of 409uvs. In addition to thedischarge biceps femoris is smaller than the right side of the lower extremities the otherthree muscles are larger than those in the right side of the corresponding muscles. Thedifference is without significant.
     The research objects of this study are university students who have accepted formany years professional training which participated in the National Volleyball League ofprofessional athletes. Their skilled, standardized, and muscle coordination of activitiesand economically, so they can reveal the fundamental values of the test on the 4-bit ofVolleyball storm’s techniques of run-up and jump.
引文
[1]虞重干.排球运动[M].北京:人民体育出版社,1999.
    [2]李世明.浅析运动技术生物力学分析的指导论[J].山西师大体育学院学报,2004,6(2).
    [3]崔玉鹏,洪峰.表面肌电图在人体运动研究中的应用[J].首都体育学院学报,2005,17(1).
    [4]王红英.优秀男排运动员沙滩排球扣球技术的运动学比较研究[J].上海体育学院学报,1996,20(2).
    [5]王红英,施达生,缪志红.沙滩排球与室内排球扣球技术的运动学比较研究[J].上海体育学院学报.1995,19.
    [6]刘桂英.排球扣球技术的力学分析[J].通化师院学报,1999(2).
    [7]李世明.沙滩排球上步扣球踏跳阶段的时相特征[J].北京体育大学学报.2004,27(9).
    [8]李世明.对优秀男排运动员沙滩排球扣球起跳动作的运动学分析[J].福建体育科技,2004,23(4).
    [9]李世明,郭荣,刘学贞.对沙滩、室内排球扣球起跳阶段时相特征的比较研究[J].体育科研,2004,25(1).
    [10]张清华,华立君,陈钢.男子排球上步扣球起跳技术的生物力学分析[J].体育科学研究,2008,12(2).
    [11]付强,邹亮畴,朱征宇.广东男排队员后排强攻技术动作的运动学研究[J].上海体育学院学报,2004,28(3).
    [12]顾伟农,郭荣,付强.张翔和奥斯瓦尔多前、后排扣球技术三维运动学特征的对比分析[J].成都体育学院学报,2003,29(2).
    [13]李毅钧,郭荣,张欢等.中外优秀男排选手前排扣球技术的三维运动学比较研究[J].西安体育学院学报,2000,17(3).
    [14]白海波.世界优秀女排强攻手扣球技术特征[J].沈阳体育学院学报,1997,1(1).
    [15]李世明,刘学贞,许全盛.沙滩排球与室内排球扣球起跳阶段人体重心运动特征的生物力学对比研究[J].中国体育科技,2002,38(2).
    [16]龚雅丽,姜冠军,赵文娟等.我国部分优秀女排队员4号位扣球技术环节的运动学分析[J].西安体育学院学报,1997,14(4).
    [17]侯春俤.女子排球优秀强攻选手扣球技术的运动学模型[J].湖北体育科技,2005,24(1).
    [18]吴忠仁.排球扣球技术的运动生物力学浅析[J].南都学坛(自然科学版),1997,17(6).
    [19]李世明,刘学贞.沙滩排球扣球起跳动作协调性特征的运动生物力学研究[J].西安体育学院学报,2002,19(1).
    [20]李世明,刘学贞,许全盛.沙滩排球扣球起跳阶段人体环节运动的生物力学特征[J].西安体育学院学报,2001,22(3).
    [21]李世明.沙滩与室内排球扣球起跳阶段力、冲量及功率指标的对比研究[J].山东体育学院学报,2004,20(3).
    [22]王力晨.对我国优秀青年女排队员四号位强攻技术的运动学分析——兼与国内外优秀选手比较之研究[J].北京体育大学学报,1996,19(增刊).
    [23]刘东辉.从肌肉工作原理分析排球的支线扣球原理[J].山东师范大学学报(自然科学版),2008,23(1).
    [24]丁海勇,林世行.女子沙滩排球跳发球空中击球技术的分析[J].武汉体育学院学报,2006,40(4).
    [25]牛健壮.吊环悬垂后摆类动作的生物力学特征[J].体育科学,1997,17(1).
    [26]牛健壮,吕向明,徐国富等.测力系统在竞技体操吊环5个动作中的应用[J].体育科学,2000,20(5).
    [27]牛健壮.对吊环悬垂后摆类动作后摆浪时机的探讨[J].中国体育科技,1991,27(6).
    [28]牛健壮,苏正富,陈钟等.吊环悬垂后摆类动作肌群用力的顺序、时程及时差的研究[J].武汉体育学院学报,1993 (1).
    [29]牛健壮,陈钟,何明丽.吊环悬垂后摆振浪中肌群用力模式的研究[J].中国体育科技,1992,28(8).
    [30]何玲,张健.排球后排扣球主要技术环节的生物力学分析[J].成都体育学院学报.1999;25(4).
    [31]周家颖,高琴心,徐利峰.跳伸着地前下肢所测肌肉的表面肌电活动特征研究[J].西安体育学院学报,2008,25(6).
    [32]杨静宜等.股四头肌等速向心收缩肌电图测定与分析[J].北京体育大学学报,1996,19(2).
    [33]李毅钧,樊国庆.三维摄像方法在排球技术研究中的应用[J].西安体育学报,2000,17(2).
    [34]张原.400m跑下肢肌电活动规律探讨[J].武汉体育学院学报,2008,42(6).
    [35]陈晓光,许亮.对排球扣球中腕关节击球动作的高速录像分析[J].体育科学研究,2003,7(2).
    [36]刘海斌,刘晓明.从三维体育观看运动生物力学研究[J].吉林体育学院学报,2004,20(2).
    [37]丛湖平.体育统计[M].北京:高等教育出版社,2005.
    [38]吕新颖.运动生理学[M].南京:南京大学出版社,2002.
    [39]胡声宇.运动解剖学[M].北京:人民体育出版社,2003.
    [40]苏品.运动生物力学[M].北京:人民体育出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700