对高水平赛艇运动员拉桨技术的神经-肌肉支配特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赛艇运动作为一项较为流行的水上运动,其关键技术环节——拉桨技术的好坏直接影响运动员的比赛成绩。鉴于研究的现状,研究者多从运动学、动力学或生理学等角度出发进行了研究,还没有从电生理学角度对赛艇的关键技术环节进行分析的研究文献可供参阅,因此,本文主要想通过运动学与电生理学(EMG)的综合研究,探讨高水平运动员在ConceptⅡ赛艇测功仪上,完成拉桨技术动作时的神经-肌肉工作特点,旨在找出赛艇运动过程中中枢及外围神经系统与肌肉收缩的相互关系,为今后寻找最佳化的力量训练手段以指导运动员专项训练提供参考。
     本实验选取了上海市水上运动中心的5名健将级赛艇运动员作为实验对象。对运动员在ConceptⅡ赛艇测功仪上完成拉桨技术动作,运用SONY-HDR-FX1E摄像机和BIOVISION表面肌电采集系统进行了同步测试.通过采集8块主要工作肌肉的肌电信号,并结合膝、髋、肘三个关节的角度和角速度变化等运动学参数,综合地分析了在完成拉桨技术动作时,各肌肉的sEMG活动信息,进而推理在测功仪上完成拉桨动作的神经-肌肉支配特征。
     本文通过sEMG与运动学分析,主要得出以下几点结论:
     1对于周期性运动的赛艇来说,在ConceptⅡ测功仪上完成的拉桨技术动作,无论是从运动学还是从肌电的角度分析,各肌肉主要遵循大肌群带动小肌群协调发力的原则,用力顺序基本一致,其在运动过程中建立一种“省力模式”。
     2在赛艇的拉桨技术动作中,身体各环节发力依次表现为:背部肌肉主要是腰侧竖脊肌首先“预激活”,然后才是大腿各肌肉的有力蹬伸以及背部其它相关肌肉用力收缩。随着下肢的蹬伸和躯干的后倒即将结束时,最后才借助手臂上的各肌肉充分发力,以便将腿的蹬伸与上体的“长距离”后倒继续有力的维持下去,完成最后的拉桨,在此期间,膝、髋关节的角度与角速度变化基本一致,该变化主要体现在拉桨的中间阶段,而肘关节的变化趋势与二者不同,其变化主要体现在拉桨周期的60%以后。
     3由关节角速度变化的结果再次明确了ConceptⅡ测功仪上的拉桨从积极蹬腿到背部用力后倒再到屈臂拉桨整个过程都是持续不间断的平稳加力的。
     4腰侧竖脊肌在ConceptⅡ测功仪上的拉桨技术中EMG活动贡献较大,其次为手臂上的肱二头肌EMG活动较强,而下肢各肌肉在拉桨的整个过程中则相比躯干和手臂都要小,尤其是股二头肌和胫骨前肌的EMG活动最小,股直肌在整个过程中,其EMG活动是一直存在的。
     通过本次研究,笔者建议在今后的训练中应该多注意躯干上的腰侧竖脊肌和手臂上的肱二头肌以及下肢的股直肌,腓肠肌内侧头等主要肌肉的训练,针对各肌肉的专门训练方法,选取专项的训练手段,以争取在比赛中取得更优异的成绩。
As a fashionable aquatic sports, the crucial technology track of rowing—pull has a direct impact on tournament results. In the light of the status quo of the project, researchers make a thorough investigation on Kinematics, Kinetics or Physiology generally, while not available references yet. So this paper, from kinematics and electrophysiology this two perspectives, mainly study neuro-muscular characters of higher level athletes when doing pulling of rowing on ConceptⅡ. the purpose of this paper is to find the relationship between center and periphery neural system and muscular contract during ergometer rowing, and make a reference for finding specific training in the future so as to instructor athletes.
     The experiment choose five master sportsmen of rowing in the center of aquatic sports in shanghai as subjects, using camerals of SONY-HDR-FX1E and BIOVISION EMG acquisition system to make an experiment on pull of rowing on Concept II simultaneously, though collecting EMG signal of eight muscles mainly, and combining them with some kinematic paramaters such as angle and angular velocity of knee, hip, elbow etc. The paper make a comprehensive analysis of sEMG information of various muscles, and furtherly infer the neuro-muscular characters of athletes.
     Though comprehensive analysis of sEMG and Kinematics, the paper mainly sum up the following recommendations:
     Firstly, for cyclical movement such as rowing, from whatever kinematic or electromyographic perspective, a variety of muscles will keep a coordination of strike sequence when completing the pull technic of rowing on ConceptⅡ, they will keep to the following principle, that is large Muscle Groups drive small Muscle Groups in exertion.
     Secondly, in the course of pulling, the various body segment show its exertion in turn:the back muscles, for example, erector spinae is preactivated firstly, then muscles from leg and other muscles from back will contract vigorously. As all these contractions are to be end, lastly muscles from elbow will exert enough, so as to maintain the stretch of leg and trunk continuously and complete the final pull. During tis period, the variance between joint angle and angular velocity of knee and hip stay the same basically, it changs mainly in the middle phase of pull. While the variation trend of elbow is different from them, which changs mainly after 60 percent of the time period of pull in rowing.
     Thirdly, from the result of change of angular velocity of three joints, we make certainty that the pull of rowing on ConceptⅡraise power steadily in the whole process, which is from actively stretch of leg to extension of back, and then to bend of elbow.
     Lastly, erector spinae makes a bigger contribution to the pull of rowing, compared with any other tested muscles, then biceps brachii of arms and lastly muscles of lower limb,especially biceps femoris and anterior tibialis have the smallest impact,while the activity of rectus femoris exists in the whole process.
     Though the study, the author suggest that in the future training, athletes should pay more attention to main muscles such as erector spinae, biceps brachii and rectus femoris, medial head of gastrocnemius etc, further more, in view of different training of various muscles, the trainer should choose specialtraining methods in order to achieve outstanding performances in the competition.
引文
[1]杨军.赛艇运动员张秀云几个生化指标的特点及选材分析[J].湖北体育科技,1994,51(2):14-15.
    [2]张林,黄汝从.BUN和Hb对赛艇运动员不同训练期的生化检测与评定[J].山东体育学院学报,1995,26
    [3]杜忠林.运动生理学优秀赛艇运动员血色素的分析[J].湖北体育科技,2001,20(2):22-24.
    [4]季培.益气养血中草药对女子赛艇运动员血色素的影响[J].广州体育学院报,2000,20(2):66-69
    [5]张清等.中国体育教练员岗位培训教材,-北京:人民体育出版社,1999,71-75.
    [6]曲峰.运动员表面肌电信号与分形[J].北京:北京体育大学出版社,2008(8):18-29.
    [7]王健.sEMG信号分析及其应用研究进展[J].体育科学,2000,20(4):52-60.
    8 Raymond C.H. Application of surface electromyography in assessing muscle recruitment patterns in a six-minute continuous rowing effort.Journal of strength and conditioning research,2007,21 (3),724-730.
    [10]田石榴.负重超等长力量训练的神经肌肉适应机制研究.上海体育学院.2009,6:(54-58).
    [11] Sale DG. Neural adaption to resistance training. [J]. Med Sci Sports Exerc,1998,20:135-145.
    [12]刘宇.肌力与肌力诊断的生物力学基础[J].台湾师大体育研究.1996,2:151-179.
    [13] Semmler JG & Enoka RM. Neural contrations to changes in muscles strength[A].In, Komi PV.Strength and power in sports [M].IOC medical Commission 2000.
    [14]冯炜权.运动生物化学研究进展.-北京:北京体育大学出社,2006,7(333-358).
    [1]张清等.中国体育教练员岗位培训教材,-北京:人民体育出版社,1999,71-75.
    [2]杨军.赛艇运动员张秀云几个生化指标的特点及选材分析(J].湖北体育科技,1994,51(2):14-15.
    [3]张林,黄汝从.BUN和Hb对赛艇运动员不同训练期的生化检测与评定(J)山东体育学院学报,1995,26
    [4]杜忠林.运动生理学优秀赛艇运动员血色素的分析(J].湖北体育科技,2001,20(2):22-24.
    [5]季培.益气养血中草药对女子赛艇运动员血色素的影响(J].广州体育学院报,2000,20(2):66-69.
    [6]黄锵,范婕等.模拟划船(六分钟全力运动)的某些生理学特征(J].上海科研所运动医学研究室,1993,28-32.
    [7]封飞虎,刘新黎.不同水平赛艇运动员2000m模拟划中心功能及血乳酸的变化(J).湖北体育科技,1999,3:36-39.
    [8]刘锡梅,刘建红.心率、血乳酸在赛艇科学化训练中的应用探讨[J].武汉体育学院学报,2001,35(3):45-46.
    [9]徐国栋,陈思,刘方.肌氧含量的近红外无损监测及其在赛艇训练中的应用(J].武汉体育学院学报,2003,37(2):40-42.
    [10]姜文凯,郑东海,丁宁炜等,女子2000米赛艇运动员不同训练周期中有氧和无氧代谢能力变化,体育科学,1992,5(12):53-55.
    [11]姜文凯,丁宁伟.男子赛艇运动员与训练有关的有氧无氧能力和激素变化(J].山东体育学院学报,1994,22(2):49-53.
    [12]J‘宁炜,姜文凯.男子赛艇和皮划艇运动员心功能差异的超声心动图表现(J].山东体育学院学报,1995,26(2):23-26.
    [13]Hagerman FC, Staron RS. Seasonal variables among physiological variables in elite oarsmen. Can J Appl Sport Sci 1983 Sep,8(3):143.
    [14]Mahler DA,Nelson WN, Hagerman FC. Mechanical and physiological evaluation of exercise performance in elite national rowers. JAMA 1984 Jul 27,252(4):496-9.
    [15]Vervoorn C,Quist AM,Vermulst LJ,Erich WB,de Vries WR,Thijssen JH. The behavior of the plasma free testosterone/cortisol ratio during a season of elite rowing training. Int. J Sports Med 1991 Jun; 12(3):257-63.
    [16]杜忠林.中国国家赛艇运动员身体成分的分析(J].湖北体育科技,2003,22(4):458
    [17]何卫龙.优秀男子赛艇运动员体能特征及其生理参数与成绩关系研究(M)华南师范大学,2004,2-3.
    [18]王允明.赛艇位移之流体力学理论浅析[J].武汉休育学院学报,1994年第2期
    [19]何海峰,郑伟涛等.赛艇技术的力学原理及测试分析[J].武汉休育学院学报,2005,39(4):75-78.
    [20]葛新发,郑伟涛等.赛艇动力学及流体动力性能和快速性能研究(J).武汉体育学院学报,1999,34(6):81-84.
    [21]黄胜初,葛新发等.划船动力学方程的建立(J).武汉休育学院学报,2000,33(5):40-42
    [22]陈小平.力量训练的发展动向与趋势[J].体育科学,2004,24(9):36-40.
    [23]傅姗.力量训练须符合专项力量的性质[J].IAAF New Studies In Athletics,2004年第4期:48
    [24]吕季东,龙跃玉等.对专项力量概念的界定[J].上海体育学院学报,2004,28(4):25-28.
    [25]魏静.对赛艇中力量训练的初步探讨(J).辽宁体育科技,2005,27(1):82-83.
    [26]陈小平.论专项特征——当前我国运动训练存在的主要问题及对策[J].体育科学,2007,27(2):72-78.
    [27]肖永霞,高建深.浅析赛艇运动员的专项力量训练[J].安徽体育科技,2002,23(2):59-61.
    [28]张华杰.赛艇运动员的力量素质及其训练方法[J].武汉休育学院学报,1998年第1期:39.
    [29]杜忠林.赛艇力量训练的原则和力量素质的检查[J].湖北体育科技,2002,21(2):202
    [30]韩红升.论赛艇运动员专项力量训练[J].武汉体育学院学报,2004,38(6):109.
    [31]费鹏辉.谈赛艇专项力量训练[J].辽宁体育科技,2003,25(4):36.
    [32]Ed McNeely, David Sandler等.Strength and power goals for competitive rowers. Strength and Conditioning Journal, 2005,27(3):10-15.
    [33]孙小华.优秀赛艇运动员的训练强度问题[J].武汉休育学院,1997年第4期:29-31.
    [34]吴纪宁.最佳训练负荷是提高赛艇成绩的关键[J].武汉休育学院学报,1997年第1期:46-48.
    [35]张香花,代宝珍.2000m赛艇有氧能力的发展[J].武汉休育学院学报,2000,34(1):109-110.
    [36]孙建东.肌肉力量及其训练方法[J].辽宁体育科技,2001,15(4):36.
    [37]唐敏东.关于专项力量训练的探讨(J).中国体育教练员.
    [38]孙革.游泳运动员的专项力量训练[J].中国学校体育,2005年:43-45.
    [39]刘建红,王奎,周志宏等.赛艇运动员递增负荷运动中股直肌、肱二头肌和背阔肌积分肌电定量分析.中国运动医学杂志,2007,7,26(4):473-474.
    [40]H. Elliott, C. M. Schneider, C. J. Zebas. Eletromyogrphic responses and force application associated with two land rowing modes.
    [41]王奎等.运用IEMG评价举重运动员力量素质的研究[J].解放军体育学院学报,2005,24(1):92-95.
    [42]翁锡全等.不同个性类型运动员定量负荷时某些生理、生化指标变化特点[J].中国体育科技,2002,38(4):16-20.
    [43]Lars Janshen, Klaus Mattes. Musclar Coordination of the lower Exetremities of Oarsmen during ergometer rowing. Joural of applied Biomechanics,2009,25:156-164.
    [44]Hakkinen, K&Komi PV.The effect of explosive type strength training on EMG and force production characteristics of leg extensor muscles during concentric and varions strength-shortening cycle exercises [J] Scandinavian Journal of Sport Sciences.1985,7:65-76.
    [45]Clarys, J.P.& Cabri, J(1993). Electromyography and the study of sports movements:A Review. Journal of Biomechanics,39(supplement 1),S458.
    [46]Ishiko,T. (1971) Biomechanics of rowing. In J. Vredenbregt & J. Warenweiler (Eds.), Biomechanics Ⅱ (pp.249-252).
    [47]曲峰.运动员表面肌电信号与分形[J].北京:北京体育大学出版社2008(8):18-29.
    [48]王健.sEMG信号分析及其应用研究进展[J].体育科学,2000,20(4):52-60.
    [49]田石榴.负重超等长力量训练的神经肌肉适应机制研究.上海体育学院,2009.7:54-58.
    [50]Sale DG. Neural adaption to resistance training. [J]. Med Sci Sports Exerc,1998,20:135-145.
    [51]余洪俊.表面肌电图评价肌肉的功能状况[M]中国临床康复北京2002.
    [52]De luca CJ. The use of the surface EMG signal for performance evaluation of back muscles. Musecle Nerve,1993.
    [53]蔡明明,肖云,徐建中等.应用表面肌电图评定优秀竞走运动员20Km训练中的肌疲劳[J].中国临床康复,北京2005.
    [54]崔玉鹏,洪峰.表面肌电图在人体运动研究中的应用[J].首都体育学院学 报,2005.
    [55]周家颖,高琴心,徐利峰.跳深着地阶段下肢所测肌肉的表面肌电活动特征研究[J].西安体育学院学报,2008,25(6):68 72.
    [56]Komi P V. Measurement of the force velocity relationship in human muscle under concentric and eccentric contractions[J].Medicine and Sport,1973,8,224-229.
    [57]Semmler JG & Enoka RM. Neural contrations to changes in muscles strength[A]. In, Komi PV.Strength and power in sports [M].I0C medical Commission 2000.
    [58]冯炜权.运动生物化学研究进展.-北京:北京体育大学出社,2006,7(333-358).
    [59]延烽,郑晓鸿.对“专项”涵义的诠释[J].北京体育师范学院学报,1999,11(1):41-42.
    [60]Schmidtbleicher D. Muscular mechnics and neuromuscular control. Swimming science V international series sport science [M]. USA:Human Kinetics Publishers champaign, IL,1998,131-148.
    [61]Carlo J. De. Luca. the use of surface electromyography in biomechanics. Journal of Applied Biomechanics,1997,13 (2):135-163.
    [62]Narici MV. Roi GS. Landoni L, eta. al. Changes in force, Cross-sectional area and neural activation during strength training and detraining of the human quadriceps[J]. Eur J Appl physiol,1989, 59:310-319.
    [63]Nadone A, Romance C, Schieppatl E. Selective recruitment of high threshold motor units during voluntary isotonic lengthening of active muscle [J]. J Physiol.1989,409:451-471.
    [64]阮迪云等.神经生理学[M].北京:中国科学技术出版社,1992,2.
    [65]陈小平. “神经支配能力”的训练[J].科学训练,25-28.
    [66]弗拉基米尔M.扎齐奥尔斯基,运动生物力学[M].国际奥委会医学委员会与国际运动医学联合会,2000年.
    [67]单信海,刘利.神经肌肉力学研究进展[J].南京体育学院学报,2000,9.14(3):16-19.
    [68]Sale,D. G. Influence of exercise and training on motor unit activation[J]. Exercise and Sport Science Reviews(1987),16:95-151.
    [69]William. J. Kraemer, Keijo Hakkinen. Strength training for sports [M]. IOC Medical Commission,2002.
    [70]H Kyrolainen, J Avela, JM McBride, S Koskinen,JL. Effects of power training on muscle straining on muscle structure and neuromuscular performance [J]. Scandinavian Journal of medicine &Science In Sports:15(1) 2005 p58-64.
    [71]K Hakkinen, M Alen, M Kallinen, RU Newton, WJ. Neuromuscular adaptation during prolonged strength training detraining and re-strength-training in middle-aged and elderly people(J).European journal of applied physiology,83(1) 2000 p 51-62.
    [72]K. Hakkinen M. Alen W. J. Kraemer. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol (2003) 89:42-52.
    [73]Ishiko,T. (1971). Biomechanics of rowing. In J. Vredenbregt& J.Wartenweiler(Eds.), Biomechanics Ⅱ(pp.249-252).
    [74]Metral,S.,&Cassar,G.(1981).Relationship between force and integrated EMG activity during voluntary isometric anisotonic contraction.European Journal of Applied Physiology,46(2),185-198.
    [75]Parkin,S.,Nowicky, A.V.,Rutherford,O.M.,&McGregor,A.H.(2001).Do oarsmen have asymmetries in the strength of their back and leg muscles?Journal of Sports Sciences,19(7),521-526.
    [76]刘宇.肌力与肌力诊断的生物力学基础[J].台湾师大体育研究.1996,2:151-179.
    [77]张胜年.肌肉力量的生物学基础[M].北京:人民体育出版社,2005.
    [78]Rodriguez,R.J.,R.P., Rodriguez,S.D.,Cook, and P.M.,Sandborn. Eletromyographic analysis of rowing stroke biomechanics.J.Sports Med. Phys. Fitness (1990) 30:103-108.
    [79]Mills,K.R.Power spectral analysis of EMG and compound muscle action potential during muscle fatigue and recovery.J.Physiol,(1982).326:401-409.
    [80]Raymond C.H. Application of surface electromyography in assessing muscle recruitment patterns in a six-minute continuous rowing effort.Journal of strength and conditioning research,2007,21(3),724-730.
    [81]Komi PV, training of muscle strength and power:interaction of neuromotoric hypertrophyic, and mechanical factors[J] International Journal of sports medicine,1986,7:10-15.
    [82]Gary Kamen. Electromyographyic Kinesiology. research methods in biomechanics[M].2004,163-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700