大规模集成电路用高强度高导电引线框架铜合金研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子信息产业的高速发展,对集成电路主要组成部分之一的引线框架铜合金材料的性能要求越来越高。理想的引线框架材料的主要性能为:抗拉强度在600MPa以上,显微硬度大于180HV,导电率大于80%IACS。而目前所开发出的铜合金材料很难满足其性能要求,所以研制和开发可满足大规模集成电路需要的同时具有高强度和高导电性的铜合金材料是研究热点之一。
     根据高强高导铜合金的强化机理和对性能的要求,本文在分析合金元素在铜合金中作用的基础上,确定了高强高导引线框架铜合金材料的最佳合金系为Cu-Cr-Zr系。
     利用透射电镜研究了Cu-Cr-Zr-Mg和Cu-Cr-Zr合金的组织转变规律,发现Cu-Cr-Zr-Mg合金在470℃时效形成了具有Fm_3m点群的超点阵CrCu_2(ZrMg);同时存在体心的Cr相和面心的Cu_4Zr相。高温550℃时效析出相完全转变为Cr和Cu_4Zr。Cu-Cr-Zr合金在时效初期形成Cu_5Zr相,时效峰值状态析出相为Cu_5Zr相和体心立方的Cr,且析出相与基体保持着共格关系。以共格强化机制计算的强化值407MPa与实验结果430MPa相近。
     在分析Cu-Cr-Zr-Mg合金时效过程中导电率变化规律的基础上,利用合金时效过程中析出相的体积分数与导电率的线性关系,推导出实验温度下合金时效的Avrami相变动力学方程与导电率方程,并通过计算绘制了该固溶合金等温转变动力学(TTT)曲线。
     系统研究了Cu-Cr-Zr合金变形时效后,析出和再结晶的交互作用及其对组织和性能的影响。在低于550℃时效,沿位错分布着很多细小的析出相,使硬度和导电率在时效初期快速提高。同时析出物对位错的钉扎作用,延缓了再结晶过程。在一定的变形程度和较高温度时效后,由位错缠结成的胞状结构在时效过程中胞壁平直化,并形成亚晶,小角度晶界上的刃位错通过攀移而离开亚晶界,使两个亚晶变成一个大亚晶,出现了再结晶形核和长大的现象。
     采用L-M算法分别建立了引线框架Cu-Cr-Zr-Mg合金和Cu-Cr-Sn-Zn合金形变热处理工艺和时效工艺的人工神经网络模型,预测和研究了时效工艺参数性能的耦合作用,并且利用三维立体图将其直观地表达出来,得出了时效温度、时效时间和变形量工艺参数对硬度和导电率的影响规律,为工艺参数优化
With the development of large-scale integrated circuit, higher mechanical and electrical properties of copper alloys for lead frame are required. The ideal requirement for lead frame material properties is that tensile strength, hardness and electrical conductivity are more than 600MPa, 180HV and 80%IACS respectively. The copper alloy materials developed at the present time are difficulty in meeting the needs of high performance. So the study on the copper alloy material for lead frame used in the large-scale integrated circuit attracts much more attention.
    According to the strength mechanism and comprehensive property demands, the effect of alloying elements on copper alloy properties is analyzed. The optimal copper alloy is Cu-Cr-Zr for high strength and high conductivity lead frame materials used in integrated circuit.
    By transmission electronic microscope, aging precipitation phase transformation of Cu-Cr-Zr-Mg and Cu-Cr-Zr alloys was dealt with. After solid solution treated at 920℃ and aged at 470℃ for Cu-Cr-Zr-Mg alloy, the fine precipitation of an ordered compound CrCu_2(Zr,Mg) is found in copper matrix as well as fine Cr and Cu_4Zr. Aged at higher temperature the precipitate phases are completely transformed into Cr and Cu_4Zr. For Cu-Cr-Zr alloy at the early stage of aging, precipitate phase Cu_5Zr is formed. Aged at the same temperature for 6h, the precipitate phases are Cu_5Zr and Cr, which is associated with the peak hardness condition in the alloy. The precipitates are coherent with copper matrix. The strength 407MPa derived from coherent strengthening is almost identical with the experimental value 430MPa.
    Upon aging after solid solution for the Cu-Cr-Zr-Mg alloy, there could be linearity between electrical conductivity and volume fraction of precipitates. Based on the linear relationship, Avrami phase transformation kinetics equation and electrical conductivity equation at different aging temperatures are described for the Cu-Cr-Zr-Mg. The time-temperature-transformation (TTT) curves are also established.
    The mutual action between the aging precipitation and recrystallization and their effect on the microstructure and properties are dealt with systematically. Aged at the temperature lower than 550℃, it is found that the dislocations provide nucleation site for precipitation and the dispersed precipitates distribute along the dislocation, resulting in the precipitation hardening effect. At the same time the dislocations are pinned by the dispersed precipitates, the following recrystallization process is hindered. Rolled at definite extent of deformation and aged at higher temperature, the cell substructures formed by dislocation walls first appear strip structure. Then the bulging of the boundaries of some cell substructures and annihilation of the dislocations inside the cells indicate the onset and growth of recrystallization. The development of recrystallization offsets the hardening of the Cu-Cr-Zr alloys.
    For the first time, artificial neural network models of thermomechanical treatment processes and aging processes for Cu-Cr-Zr-Mg alloy and Cu-Cr-Sn-Zn alloy are established by
引文
[1] Alexander F. H. Kaplan. Model of the absorption variation during pulsed laser heating applied to welding of electronic Au/Ni-coated Cu-leadframes. Applied Surface Science, 2005, 241: 362~370
    [2] Ho-Young Lee, Young-Keun Chang. Locus of failure between a nanowire-coated leadframe and an epoxy-based molding compound. Materials Science and Engineering A, 2004, 382: 305-314
    [3] W. D. van Driel, G. Q. Zhang, J. H. J. Janssen, L. J. Ernst. Prediction and verification of process induced warpage of electronic packages. Microelectronics Reliability, 2003, 43: 765~774
    [4] Ping Zhao, Michael Pecht. Field failure due to creep corrosion on components with palladium pre-plated leadframes. Microelectronics Reliability, 2003, 43: 775~783
    [5] T. Y. Lin, K. L. Davisonb, W. S. Leong. Surface topographical characterization of silver-plated film on the wedge bondability of leaded IC packages. Microelectronics Reliability, 2003, 43: 803~809
    [6] H. Y. Lee. Failure paths of the Cu-based leadframe/EMC joints. Materials Science and Engineering A, 2001, 311: 217~225
    [7] K C Chan, S H Wang. The effect of a coating on the springback of integrated circuit leadframes. Journal of Materials Processing Technology, 2001, 116: 231~234
    [8] Sung Yia, Jang-Kyo Kim, Chee Yoon Yue, Jang-Hsing Hsieh. Bonding strengths at plastic encapsulant-gold-plated copper leadframe interface. Microelectronics Reliability, 2000, 40: 1207~1214
    [9] K. C. Chan, S. H. Wang. Theoretical analysis of springback in bending of integrated circuit leadframes. Journal of Materials Processing Technology, 1999, 91: 111~115
    [10] J. H. Hsieh. L. H. Fong, S. Yi, G. Metha. Plasma cleaning of copper leadframe with Ar and Ar/H 2 gases. Surface and Coatings Technology, 1999, 112: 245~249
    [11] S. K. Lahiri, N. K. Waalib Singh, K. W. Heng, L. Ang. Kinetics of oxidation of copper alloy leadframes. Microelectronics Journal, 1998, 29: 335~341
    [12] 叶方,高雪松,周琴.集成电路塑封中引线框架使用要求.电子与封装,2003,3(2):26~29
    [13] 龙乐.IC封装用铜合金引线框架及材料.电子与封装,2003,3(5):33~37
    [14] Rensei Futatsuka. Development of copper alloy for lead frame. Journal of the Japan Copper and Brass Research Association, 1997, 36: 25~32.
    [15] M Motohisa. High-strength and high-conductivity alloy KLF201. Journal of the Japan Copper and Brass Research Association, 1988, 27: 93~98.
    [16] M Motohisa. Development trends in new copper alloy for lead frame. Journal of the Japan Copper and Brass Research Association, 1990, 29: 18~21.
    [17] M Motohisa. Performance of KFC-SH and KLFI94-SHT copper alloys in high-strength and high-conductivity for lead frame. Journal of the Japan Copper and Brass Research Association, 1990, 29: 224~233.
    [18] A. A. Hopgood. Knowledge-based systems for material selection. Powder Metal., 1990, 33 (2): 116~117.
    [19] J H Su, Q M Dong, P Liu, H J Li. Research on the Aging Precipitation of Lead Frame Cu-Cr-Sn-Zn Alloy. Journal of rare earths, 2003, 21 Suppl: 182~184
    [20] Martin Buggy, Colm Conlon. Material selection in the design of electrical connectors. Journal of Materials Processing Technology, 2004, 153-154: 213~218.
    [21] 刘平.铜合金功能材料.科学出版社,2004:113
    [22] Naoki lde, Motochika Yamashita, Shigeru Asano. Solid solution hardening evaluated from amplitude-dependent internal friction in polycrystalline copper alloys. Scripta Materialia, 1999. 41(2): 181~185
    [23] E Botcharova, M Heilmaier, J Freudenberger. Supersaturated solid solution of niobium in copper by mechanical alloying. Journal of Alloys and Compounds, 2003, 351: 119~125
    [24] 宫藤久元.用铜合金开发动向.伸铜技术研究会誌,1990,29:18~21
    [25] M Lira, J K Heuer, J F Stubbins. Fracture behavior of high-strength, high-conductivity copper alloys. Journal of Nuclear Materials, 2000, 283-287: 977~981
    [26] S. Nagarjuna, M. Srinivas. High temperature tensile behaviour of a Cu-1.5 wt.% Ti alloy. Materials Science and Engineering A, 2002, 335: 89~93
    [27] D. M Zhao, Q. M Dong. Structure and strength of the age hardened Cu-Ni-Si alloy. Materials Chemistry and Physics, 2003, 79: 81~86
    [28] W. A. Soffa, D. E. Laughlin. High-strength age hardening copper-titanium alloys. Progress in Materials Science, 2004, 49: 347~366
    [29] J H Su, Q M Dong, P Liu, H J Li. Research on Aging Precipitation in a Cu-Cr-Zr-Mg Alloy. Naterials Science and Enineering A, 2005, 392: 422~426
    [30] Nicole Jordan, Roland Schroder, Helmuth Harig. Influences of the spray deposition process on the properties of copper and copper alloys. Materials Science and Engineering A, 2002, 326: 51~62
    [31] D. M. Zhao, Q. M. Dong, P. Liu. Aging behavior of Cu-Ni-Si alloy. Materials Science and Engineering A, 2003, 361: 93~99
    [32] V. C. Srivastava, A. Schneider, V. Uhlenwinkel. Age-hardening characteristics of Cu-2.4Ni-0.6Si alloy produced by the spray forming process. Journal of Materials Processing Technology, 2004, 147: 174~180
    [33] Yoshimi Watanabe, Jun-ichi Murakami, Hiromi Miura. Effect of annealing on saturation magnetization in deformed Cu-Fe alloys with transformed Fe particles. Materials Science and Engineering A. 2002, 338: 299~304
    [34] R. P. Godbole, S. A. Jha, M. Milanarun, A. K. Mishra. Thermodynamics of liquid Cu-Mg alloys. Journal of Alloys and Compounds, 2004, 363: 182~188
    [35] 马莒生.黄福祥.黄乐.铜基引线框架材料的研究与发展.功能材料,2002.33(1):1~4
    [36] A. Vinogradov, T. Ishida, K. Kitagawa. Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu-Cr alloy produced by equal-channel angular pressing. Acta Materialia, 2005, 53: 2181~2192
    [37] J. B. Correia, H. A. Davies. Magnetic and structural monitoring of nanophase precipitation during ageing of water-atomised Cu-5% Co alloy powders. Acta mater., 2000, 48: 4115~4123
    [38] Karl R. Forwald, Lars Arnberg. Microstructural development in rapidly solidified siliconrich alloys. Materials Science and Engineering A, 2001, 304-306: 125~128
    [39] Y Li, S C Ng, L K Tan. Structures, properties and responses to heat treatment of melt-spun Cu-Y alloy. Journal of Alloys and Compounds, 1997, 259: 276~282
    [40] J H Su, Q M Dong, P Liu, H J Li,. Establishing the knowledge Repository of Rapidly Solidified aging Cu-Cr-Zr Alloy on the Neural-Network. Rare Metals, 2004, 23(2): 171~175
    [41] J. B. Correir. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys. Acta mater., 1997, 45(1): 177~190
    [42] M Xie, J L Liu, X Y Lu. Investigation on the Cu-Cr-Re alloys by rapid solidification. Materials Science and Engineering A, 2001, 304-306: 529~533
    [43] P Liu, B X Kang, X G Cao. Aging precipitation and recrystallization of rapidly solidified Cu-Cr-Zr-Mg alloy. Materials Science and Engineering A, 1999, 265: 262~267
    [44] 苏娟华.李胡军,董企铭.刘平.固溶时效和快速凝固时效对Cu-Cr-Zr-Mg合金时效性能的影响.功能材料,2004,35(4):439~441
    [45] H. Miura, K. Kotani and T. Sakai. Temperature dependency of cyclic deformation behavior of Cu-SiO., single crystal. Acta Materialia. 2001, 49: 3379~3386
    [46] T. S. Srivatsan, N. Narendra and J. D. Troxell. Tensile deformation and fracture behavior of an oxide dispersion strengthened copper alloy. Materials & Design, 2000, 21: 191~198
    [47] Meslet Al-Hajri, Aldo Melendez, R. Woods, T. S. Srivatsan. Influence of heat treatment on tensile response of an oxide dispersion strengthened copper. Journal of Alloys and Compounds, 1999, 290: 290~297
    [48] T. S. Srivatsan, K. Dhana Singh, J. D. Troxell. The tensile behavior of an oxide dispersion strengthened copper-niobium composite. Materials Letters, 1996, 28: 423~429
    [49] J. Cadek, K. Kucha rova,, K. Milicka. Creep in copper dispersion strengthened with fine alumina particles and reinforced with alumina short fibres — an ODS copper matrix composite. Journal of Alloys and Compounds, 2004. 378: 123~126
    [50] S. Kustov J. Pons, E. Cesari. Athermal stabilization of Cu-Al-Be β-1 martensite due to plastic deformation and heat treatment. Materials Science and Engineering A, 2004, 373: 328~338
    [51] J H Su, H J Li, Q M Dong, P Liu. Effect of Cold Working on the Aging Properties of Cu-Cr-Zr-Mg Alloy by Artificial Neural Network. Acta Metallurgica Sinica(English Letters), 2004, 17(5): 741~746
    [52] F X Huang, J S Ma, H L Ning. Precipitation in Cu-Ni-Si-Zn alloy for lead frame. Materials Letters, 2003, 57: 2135~2139
    [53] 苏娟华,董企铭,刘平,李贺军.Cu-0.3Cr-0.15Zr-0.05Mg合金变形时效强化与再结晶.金属热处理,2004,29(2):18~21
    [54] S. Nagarjuna, K. K. Sharma. I. Sudhakar. Age hardening studies in a Cu-4.5Ti-0.5Co alloy. Materials Science and Engineering A, 2001, 313: 251~260
    [55] R. Haugsrud, K. L. Lee. On the oxidation behaviour of a Cu-10 vol% Cr in situ composite. Materials Science and Engineering A, 2005, 396: 87~91
    [56] D. L. Zhang, K. Mihara, E. Takakura. Effect of the amount of cold working and ageing on the ductility of a Cu-15%Cr-0.2%Ti in-situ composite. Materials Science and Engineering A, 1999, 266: 99~108
    [57] Y. Leprince-Wang, K. Han, Y. Huang. Microstructure in Cu-Nb microcomposites. Materials Science and Engineering A, 2003, 351: 214~223
    [58] 尹志民.张生龙.高强高导铜合金研究热点及发展趋贽.矿冶工程,2002,22(2):1~6
    [59] K. L. Lee. Effect of oxidation on the creep behaviour of copper-chromium in situ composite. Composites: Part A, 2003, 34: 1235~1244
    [60] C Biselli, D G Morris. Microstructure and strength of Cu-Fe in situ composites after very high drawing strains. Acta Materialia, 1996, 44: 493~504
    [61] Z Chen, P Liu, J D Verhoeven. Electrotribological behavior of Cu-15 vol.%Cr in situ composites under dry sliding. Wear, 1997, 203-204: 28~35
    [62] C. C. Leong, L. Lu, J. Y. H. Fuh, Y. S. Wong. In-situ formation of copper matrix composites by laser sintering. Materials Science and Engineering A, 2002, 338: 81~88
    [63] Z. Y. Ma, S. C. Tjong. High temperature creep behavior of in-situ TiB2 particulate reinforced copper-based composite. Materials Science and Engineering A, 2000, 284: 70~76
    [64] Wen Hong quan, Zou Qi ruing. Directional Solidification of Cu- Cr Alloy. Rare Metals, 1998, 17(4): 104~108
    [65] X Q Bi, J S Li. R Hu. Microstructure of directionally solidified Cu-Cr composites. Trans. Nonferrous Met. Soc. China, 2004, 14(1): 137~142
    [66] 邱成军,王元化.王义杰.材料物理性能.哈尔滨工业在学出版社,2003:49~56
    [67] 田莳.李秀臣.李邦淑.金属物理性能.国防工业出版社,1985:36~37
    [68] Da Hai He, Rafael Manory. A novel electrical contact material with improved self-lubrication for railway current collectors. Wear, 2001, 249: 626~636
    [69] D. H. He, R. R. Manory, N. Grady. Wear of railway contact wires against current collector materials. Wear, 1998, 215: 145~155.
    [70] Hiroki Nagasawa. Koji Kato. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current. Wear, 1998, 216: 179~183
    [71] 付会敏,赵文辉.高强高导CrZrCu合金结晶器的研制.铸造技术,2002,23(4):230-232
    [72] H. C. Tsai, B. H. Yah, F. Y. Huang. EDM performance of Cr/Cu-based composite electrodes. International Journal of Machine Tools & Manufacture, 2003, 43: 245~252
    [73] 程镇康.关于引线框架铜带研制开发的管见.电子工业用铜合金材料研讨推广会论文集.北京,中围有色金属加工工业学会,2002:29.
    [74] 汪黎.孙扬善.我国引线框架铜基材料的市场需求与国产化策略.世界有色金属,2004,(8):16~19
    [75] 赵谢群.引线框架铜合金材料研究及开发进展.稀有金属,2003,27(6):777~781
    [76] Juanhua Su, Hejun Li, Qiming Dong, Ping Liu. Finite element analysis about stress and strain of surface peeling in Cu-Fe-P sheet. Chinese Journal of Mechanical Engineering, 2005, 18(2): 212~214
    [77] “引线框架用铜带的研制和开发”列入国家“十五”重大科技专项.稀有金属,2003,(2):245
    [78] 二塚鍊成.铜合金伸铜技术研究会誌,1997,36:25~31
    [79] I. S. Batra, G. K. Dey, U. D. Kulkarni, S. Precipitation in a Cu-Cr-Zr alloy. Materials Science and Engineering A, 2002, 356: 32~36
    [80] N. Y. Tang. Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium, Materials Science and Technology, 1985, 1: 270~270
    [81] K. J. Zeng. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram. Scripta Metallurgica et Materialia, 1995, 32(12): 2009~2014
    [82] U. Holzwarth, H. Stamm. The precipitation behavior of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing. Journal of Nuclear Materials, 2000, 279: 31~45
    [83] I. S. Batra. Microstructure and properties of a Cu-Cr-Zr alloy. Journal of Nuclear Materials, 2001, 299: 91~100
    [84] P Liu, B X Kang, X G Cao. Aging precipitation and recrystallization of solidified Cu-Cr-Zr-Mg alloy. Materials Science and Engineering A, 1999, 265: 262~267
    [85] W X Qi. Microstructure and tribological behavior of a peak aged Cu-Cr-Zr alloy. Materials Science and Engineering A, 2003, 343: 89~96
    [86] F X Huang, J S Ma. Analysis of Phases in a Cu-Cr-Zr Alloy. Scripta materialia, 2003, 48: 97~102
    [87] Uwe Holzwarth, Hermann Stamm. The precipitation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing. Journal of Nuclear Materials, 2000, 279: 31~45
    [88] Juan-hua Su, Qi-ming Dong, Ping Liu, He-Jun Li. Prediction of properties in thermomechanically treated Cu-Cr-Zr by an article neural network. Journal of Materials Science and Technology, 2003, 19(6): 529~532
    [89] S. M. K. Hosseini, A, Zarei-Hanzaki, M. J. Yazdan Panah. ANN model for prediction Of the effects of composition and process parameters on tensile strength and percent elongation of Si-Mn TRIP steels. Materials Science and Engineering A, 2004, 374: 122~128
    [90] Kenan Genel, Ibrahim Ozbek, Akif Kurt, Cuma Bindal, Bonding response of AISI Wl steel and use of artificial neural network for prediction of bonded layer properties, Surface and Coatings Technology, 2002, 160: 38~43
    [91] S Malinov, W Sha, J J Mckeown. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Computational Materials Science, 2001, 21: 375~394
    [92] Q. Zhu, J. M. Jones, A. Williams, K. M. Thomas. The predictions of coal/char combustion rate using an artificial neural network approach. Fuel, 1999, 78: 1755~1762
    [93] 苏娟华,董企铭,刘平,李贺军.快速凝固Cu-Cr-Zr合金时效工艺人工神经网络模型.中国机械工程,2003.14(23):2056~2059
    [94] He-Jun LI, Juan-hua Su, Qi-ming Dong, P Liu. Aging properties prediction of the lead frame CuCrSnZn alloy via neural network. Materials Science Forum, 2005, 475-479: 3331~3334
    [95] Glenn C. Gardner, Meghan E. O Leary, Scott Hansen, J. Q. Sun. Neural networks for prediction of acoustical properties of polyurethane foams. Applied Acoustics, 2003. 64: 229~242
    [96] S Shyam Sablani, M. Shaur Rahman. Using neural networks to predict thermal conductivity of food as a function of moisture content temperature and apparent porosity. Food Research International, 2003, 36: 617~623
    [97] M. Kuroda, S. Ikawa. Texture optimization of rolled aluminum alloy sheets using a genetic algorithm. Materials Science and Engineering A, 2004. 385: 235~244
    [98] A. J. Kulkarni, K. Krishnamurthy, S. P. Deshmukh. Microstructural optimization of alloys using a genetic algorithm. Materials Science and Engineering A, 2004, 372: 213~220
    [99] R. G. Song, Q. Z. Zhang. Heat treatment optimization for 7175 aluminum alloy by genetic algorithm. Materials Science and Engineering C, 2001, 17: 133~137
    [100] Aijun, Li; Hejun, Li; Kezhi, Li; Zhengbing, Gu. Applications of neural networks and genetic algorithms to CVI processes in carbon/carbon composites. Acta Materialia, 2004, 52(2): 299-305
    [101] Q M Dong, P Liu, J H Su, H J LI. Numerical analysis of deformation and damage in Copper alloy sheet. Materials Science Forum, 2005, 475-479: 2713-2716
    [102] E Soppa, S Schmauder, G Fischer. Deformation and damage in Al/Al_2O_3.Computational Materials Science, 2003,28: 574-586
    [103] Javier Segurado, Javier Llorca. A new three-dimensional interface finite element to simulate fracture in composites. International Journal of Solids and Structures, 2004, 41:2977 -2993
    [104] J H Su, Q M Dong, P Liu, H J LI. Research on the Surface Peeling in Cu-Fe-P Alloy.Journal of rare earths, 2004,22, Suppl: 160-163
    [105] M.Toparli, ,S.Sahin ,E.Ozkaya, S.Sasaki. Residual thermal stress analysis in cylindrical steel bars using finite element method and artificial neural networks. Computers and Structures, 2002, 80: 1763-1770
    [106] F.D. Fischer, F.G. Rammerstorfer, N. Friedl, W. Wieser. Buckling phenomena related to rolling and levelling of sheet metal. International Journal of Mechanical Sciences, 2000,42: 1887-1910
    [107] Leon L.Mishnaevsky Jr. Three-dimensional numerical testing of microstructures of particle reinforced composites. Acta Materialia, 2004, 52: 4177-4188
    [108] Yibin Xiang, Shichun Wu. Numerical simulation of cavity damage evolution in superplastic bulging process. Journal of Materials Processing Technology, 2001, 116:224-230
    [1] 王深强,陈志强,彭德林.高强高导铜合金的研究概述.材料工程,1995,(7):3~6
    [2] 赵冬梅,董企铭,刘平,金志浩.探索高强高导铜合金最佳成分的尝试.功能材料,2001,32(6):609~611
    [3] 曹育文,马莒生,唐祥云.Cu-Ni-Si系引线框架用铜合金成分设计.中国有色金属学报,1999,9(4):723~727
    [4] 宫藤久元.用铜合金开发动向.伸铜技术研究会誌,1990,29:18~21
    [5] 二塚鍊成.用铜素材现状将来.伸铜技术研究会誌,1993.32:1~7
    [6] 阪本光雄.超LSI用,动向铜合金课题.伸铜技术研究会誌,1990,29:1~12
    [7] 山根寿己.高强度高传导性铜合金设计基础.伸铜技术研究会誌,1990,29:13~17
    [8] 岩坂光富,中岛和隆,大山繁.合金设计法新高强度铜基合金开发.伸铜技术研究会誌,1985,24:126~132
    [9] 刘平.快速凝固高强度高导电铜合金的制备技术及组织和性能的研究.西安交通大学博士论文,1999:32~39
    [10] P Liu, B X Kang, X G Cao. Aging precipitation and recrystallization of rapidly solidified Cu-Cr-Zr-Mg alloy. Materials Science and Engineering A, 1999, 265: 262~267
    [11] 张宝昌.有色金属及其热处理.国防工业出版社,1981:277
    [12] 林肇琦.有色金属材料学.东北工学院出版社,1981:20~22
    [13] Masamichi MiKi, Yoshikiyo Ogino. Effect of quenching temperature on the inter-granular and cellular precipitation in Cu-1.5% Be binary alloy. Materials transaction JIM, 1995, 36(9): 1118~1123
    [14] Taku Sakai, Hiromi Miura, Naokuni Muramatsu. Effect of small additions of Co on dynamic recrystallization of Cu-Be alloys. Materials transaction JIM, 1995, 36(8): 1023~1030
    [15] 张家涛,高性能Cu-Cr(Zr,Mg)自生复合材料研究及其应用.昆明理工大学博士论文,2001:71
    [16] E. Batawi, D. G. Morris, M. A. Morris. Effect of small alloying additions on behaviour of rapidly solidified Cu-Cr alloy. Materials Science and Technology, 1999, 6: 892~899
    [17] N. Y. Tang, N.M. Taplin, G. L. Dunlop. "Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium. Materials Science and Technology, 1985, 1: 270~270
    [18] Ming Xie, JiangLiang Liu, Xianyong Lu. Investigation on the Cu-Cr-Re alloys by rapid solidification. Materials Science and Engineering A, 2001, 304-306: 529-533
    [19] G.Gottstein. Annealing texture development by multiple twinning in fcc crystals. Acta.metall., 1984,32: 1117-1138
    [20] R.Trived and V.Laorchan. Crystallization from an amorghous matrix-I : morphological studies, Acta.Metal., 1988, 36(8): 1941-1950
    [1] J. W. Davis, G.. M. Kalinin. Material properties and design requirements for copper alloys used in ITER. Journal of Nuclear Materials, 1998, 258-263: 323~328
    [2] J. P. Tu. Effect of aging treatment on the electrical sliding wear behavior of Cu-Cr-Zr alloy. Wear, 2002, 249: 1021~1027
    [3] 齐卫笑,涂江平,杨友志.时效处理对低溶质Cu-Cr-Zr合金力学和电滑动磨损性能的影响.摩擦学学报,2001,21(6):405~409
    [4] 廖素二,尹志民,蒋牵.热处理对Cu-Cr(-Zr)合金力学性能和导电性能的影响.中国有色金属学报,2000,10(5):684~687
    [5] D L Zhang, K Mihara, S. Tsubokawa, H. G. Suzuki. Precipitation characteristics of Cu-15Cr-0.15Zr in situ composite. Materials Science and Technology, 2000, 16: 357~363
    [6] I. S. Batra. Microstructure and properties of a Cu-Cr-Zr alloy. Journal of Nuclear Materials, 2001, 299: 91~100
    [7] Juan-hua SU, Qi-ming DONG, Ping LIU. Simulation of aging process of lead frame copper alloy by artifical neural network. Trans. Nonferrous Met. Soc. China, 2003, 13(6): 1419~1423
    [8] P Liu, B X Kang, X G Cao. Aging precipitation and recrystallization of rapidly solidified Cu-Cr-Zr-Mg alloy. Materials Science and Engineering A, 1999, 265: 262~267
    [9] W X. Qi. Microstructure and tribological behavior of a peak aged Cu-Cr-Zr alloy. Materials Science and Engineering A, 2003, 343: 89~96
    [10] N. Y. Tang. Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium. Materials Science and Technology, 1985, 1: 270~270
    [11] E. Batawi, D. g. morris, M. A. Morris. Effect of small alloying additions on behavior of rapidly solidified Cu-Cr alloysp. Materials Science and Technology, 1990, 6: 892~899
    [12] F X Huang, J S Ma. Analysis of Phases in a Cu-Cr-Zr Alloy. Scripta materialia, 2003, 48: 97~102
    [13] K. J. Zeng. Phase relationships in Cu-rich comer of the Cu-Cr-Zr phase diagram. Scripta Metallurgica et Materialia, 1995, 32(12): 2009~2014
    [14] U. Holzwarth, H. Stamm. The precipitation behavior of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing. Journal of Nuclear Materials, 2000, 279: 31~45
    [15] 刘平,康布熙.快速凝固Cu-Cr-Zr-Mg合金的时效析出与再结晶.中国有色金属学报,1999,9(2):241~246
    [16] Juanhua Su, Hejun Li, Qiming Dong, Ping Liu. Modeling of Rapidly Solidified Aging Process of Cu-Cr-Sn-Zn Alloy by an Artificial Neural Network. Computational materials Science, 2005, 34(2): 151~156
    [17] J. B. Correir. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys. Acta mater. 1997, 45(1): 177~190
    [18] Ming Xie, JiangLiang Liu, Xianyong Lu. Investigation on the Cu-Cr-Re alloys by rapid solidification. Materials Science and Engineering A, 2001, 304-306: 529~533
    [19] 董企铭,苏娟华,刘平,李贺军.Cu-Cr-Zr-Mg合金时效析出研究.材料热处理学报,2004,25(3):38~41
    [20] 董企铭,苏娟华,刘平,李贺军.Cu-0.7Cr-0.13Zr合金时效强化行为的研究.材料科学与工艺,2004,12(6):630~632
    [21] Juan-hua Su, Qi-ming Dong, Ping Liu, He-jun Li. Research on Aging Precipitation in a Cu-Cr-Zr-Mg Alloy. Naterials Science and Enineering A, 2005, 392: 422~426
    [22] L. Arnberg, U. Backmark. A new high strength, high conductivity Cu-0.5wt.%Zr alloy produced by rapid solidification technology. Materials Science and Engineering, 1986, 83: 115~121
    [23] M. Xie, J. L. Liu, X. Y. Lu. Study of rapidly solidified Cu-Cr-Re alloys. Science and technology of Advanced Materials, 2001, 2: 79~82
    [24] J. H. Su, Q. M. Dong, P. Liu. Establishing the knowledge Repository of Rapidly Solidified aging Cu-Cr-Zr Alloy on the Neural-Network. Rare Metals, 2004, 23(2): 171~175
    [25] 苏娟华,李贺军,董企铭.固溶时效和快速凝固时效对Cu-Cr-Zr-Mg合金时效性能的影响.功能材料,2004,35(4):439~441
    [26] 戚正风.固态金属中的扩散与相变.机械工业出版社,1998:331~333
    [27] 张家涛.高性能Cu-Cr(Zr、Mg)自生复合材料研究及其应用.昆明理工大学博士论文,2001:81~82
    [28] 刘平,康布熙.快速凝固Cu-Cr合金时效析出的共格强化效应.金属学报,1999,35(6):561~564
    [1] I.S.Batra, G.K.Dey, U.D.Kulkarni, S.Banerjee. Microstructure and properties of a Cu-Cr-Zr alloy. Journal of Nuclear Materials, 2001,299: 91~100
    [2] D L Zhang, K Mihara, S.Tsubokawa, H.G.Suzuki. Precipitation characteristics of Cu-15Cr-0.15Zr in situ composite. Ma.terials Science and Technology, 2000, 16:357~363
    [3] F.X. Huang, J.S.Ma. Analysis of Phases in a Cu-Cr-Zr Alloy. Scripta materialia, 2003, 48: 97~102
    [4] K.J. Zeng. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram. Scripta Metallurgica et Materialia, 1995, 32(12): 2009~2014
    [5] N.Y.Tang, D.M.R..Taplin, G.L.Dunlop. Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium. Materials Science and Technology, 1985,1:270~270
    [6] 刘芙.高强度高导电性铜基合金的显微结构及性能研究.浙江大学硕士论文,2001:52
    [7] P.A. Rometsch, M.J. Starink, P.J. Gregson. Improvements in quench factor modeling. Materials Science and Engineering A, 2003,339:255~264
    [8] D.Hu,R.R.Botten. Phase transformations in some TiAl-based alloys. Intermetallics, 2002, 10: 701~715
    [9] M.P. Jackson, M.J. Starink, R.C. Reed. Determination of the precipitation kinetics of Ni3 Al in the Ni-Al system using differential scanning calorimetry. Materials Science and Engineering A, 1999, 264:26~38
    [10] F X Huang, J S Ma, Honglong Ning. Precipitation in Cu-Ni-Si-Zn alloy for lead frame. Materials Letters, 2003, 57: 2135~2139
    [11] [美]A.G盖伊 J.J赫仑著.物理冶金学原理.机械工业出版社,1981:271
    [12] 陈彬,董企铭,康布熙.热轧态Cu-Fe-P合金的相变动力学研究.热加工工艺,2003,166(6):9~13
    [13] 王东锋,康布熙.应用导电率研究Cu-Ni-Si合金的相变动力学.兵器材料科学与工程, 2003,26(5):8~11
    [14] 王东锋,康布熙.热轧态Cu-Ni-Si合金冷轧后时效过程中的相变动力学.河南科技大学学报(自然科学版),2003,24(4):1~3
    [15] P Liu, J G L, ei, D M Zhao. Study on Aging kinetics of CuNiSi Alloy. Tansactions of Materials and Heat Treatment, 2004, 25(5): 204~207
    [16] 董企铭,苏娟华,刘平,李贺军.Cu-Cr-Zr-Mg合金时效析出研究,材料热处理学报,2004,25(3):38~41
    [17] Juan-hua SU, Qi-ming DONG, Ping LIU. Research on Aging Precipitation in a Cu-Cr-Zr-Mg Alloy. Naterials Science and Enineering A, 2005,392:422~426
    [18] 苏娟华,董企铭,刘平,李贺军.Cu-Cr-Zr-Mg合金时效组织与性能.材料科学与工艺,2004,12(3):272~274
    [19] 戚正风.固态金属中的扩散与相变.机械工业出版社,1998:191
    [20] 田莳,李秀臣,李邦淑.金属物理性能.国防工业出版社,1985:37
    [1] H.Fernee, J.Nairn. Cold worked Cu-Fe-Cr alloys. Journal of materials science, 2001, 36: 5497~5510
    [2] 苏娟华,董企铭,刘平,李贺军.基于神经网络的铜合金形变热处理工艺和性能.中国有色金属学报.2003,13(5):1077~1082
    [3] S.Nagarjuna, K.Balasubramanian. Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys. Journal of materials science, 1999, 34:2929~2942
    [4] H.Fernee, J. Nairn. Precipitation hardening of Cu-Fe-Cr alloys. Journal of Materials Science, 2001, 36:2711~2719
    [5] Z.Rdzawski, J.Stobrawa. Thermomechanicai processing of Cu-Ni-Si-Cr-Mg alloy. Materials Science and Technology, 1993, 9:142~148
    [6] Juan-hua Su, Qi-ming Dong, Ping Liu. Prediction of properties in thermomechanically treated Cu-Cr-Zr by an article neural network. Journal of Materials Science and Technology, 2003, 19(6): 529~532
    [7] H.J.Ryu, H.K.Baik. Effect of thermomechanical treatment on microstructure and properties of Cu-base leadframe alloy. Journal of Materials Science, 2000,35:3641~3646
    [8] J. Dutkiewicz, L. Litynska. The effect.of plastic deformation on structure and properties of chosen 6000 series aluminium alloys. Materials Science and Engineering A, 2002, 324:239~243
    [9] D.L. Zhang, K. Mihara, E. Takakura, H.G. Suzuki. Effect of the amount of cold working and ageing on the ductility of a Cu-15%Cr-0.2%Ti in-situ composite. Materials Science and Engineering A, 1999, 266 : 99~108
    [10] Y.Jin, K.ADACHI. Correlation between the cold-working and aging treatments in a Cu-15 Wt Pct Cr in Situ composite. Metallurgical and Materials Transactions A, 1998, 29A: 2195~2203
    [11] D.Hamana, Z.Boumerzoug, M.Fatmi, S.Chekroud. Discontinuous and continuous precipitation in Cu-13wt.%Sn and Al-20wt.%Ag Alloys. Materials Chemistry and Physics, 1998, 53:208~216
    [12] 杨军军,聂祚仁,金头男.微量稀土元素E对高纯铝再结晶行为的影响.稀有金属材料与工程,2003,32(1):37~40
    [13] N.Gao,E.Huttunen-Saarivirta. Influence of deformation on the age hardening of a phosphorus containing Cu-0.61 wt.%Cr alloy. Material science and engineering A, 2003, 342: 270~278
    [14] I Naotsugu. Behavior of precipitation and recrystallization affect upon texture of Cu-Cr-Zr alloy [in Japanese]. Journal of the Japan Copper and Brass Research Association, 1993, 32: 115~121
    [15] M.A.Morris,M.Leboeuf, D.G.Morris. Recrystalliization mechanisms in a Cu-Cr-Zr alloy with a bimodal distribution of Particals. Material science and engineering A, 1994,18:255~265
    [16] 刘平,康布熙.快速凝固Cu-Cr-Zr-Mg合金的时效析出与再结晶.中国有色金属学报,1999,9(2):241~246
    [17] Shigeru Asano, Yushi Amaki. Change in damping capacity of aluminum as a result of work hardening, solid solution hardening and precipitation hardening. Japan inst metals, 2002, 66(2): 109~116
    [18] R W 卡恩(北京钢铁研究物理教研室译).金属物理.科学出版社,1986,1246~1286
    [19] 赵冬梅,董企铭,刘平.Cu-Ni-Si合金在时效过程中析出与再结晶行为.功能材料,2002,33(6):618~621
    [20] 石德珂.位错与材料强度.西安交通大学出版社,1988:9~12
    [21] 苏娟华,董企铭,刘平,李贺军.Cu-0.3Cr-0.15Zr-0.05Mg合金变形时效强化与再结晶.金属热处理,2004,29(2):18~21
    [22] 毛卫民,赵新民.金属的再结晶与晶粒长大.冶金工业出版社,1994:50~52
    [23] 苏娟华,董企铭,刘平,李贺军.Cu-0.72Cr-0.19Zr-0.06Mg合金变形时效硬化的研究.稀有金属材料与工程,2004,33:增刊77~80
    [24] J.W.Martin, R.d.Doherty. Stability of Microstructure in Metallic Systems. Cambridge University Press, 1976:149~150
    [1] M.S.A.Oliveira, A.C.M.Sousa. Neural network analysis of experimental data for air/water spray cooling. Journal of Materials Processing Technology, 2001, 113: 439~445
    [2] Dong Guo, Longtu Li, Cewen Nan. Modeling and analysis of the electrical properties of PZT through neural networks. Journal of the European Ceramic Society, 2003, 23 : 2177~2181
    [3] D.J.Kim, Y.C.Kim, B.M.Kim. Optimization of the irregular shape rolling process with an artificial neural network. Journal of Materials Processing Technology, 2001, 113: 131~135
    [4] Z.Zhang, K.Friedrich. Artificial neural networks applied to polymer composites: a review. Composites Science and Technology, 2003, 63:2029~2044
    [5] J J.P. Wang, Y.C. Chueh. Neural network approach to recognize the grid patterns in experimental mechanics. Journal of Materials Processing Technology, 2003,140:90~94
    [6] K. Manabe, M. Yang, S. Yoshihara. Artificial intelligence identification of process parameters and adaptive control system for deep-drawing process. Journal of Materials Processing Technology, 1998, 80-81: 421~426
    [7] Y.Y. Li, J. Bridgwater. Prediction of extrusion pressure using an artificial neural network. Powder Technology, 2000, 108:65~73
    [8] Ridha Hambli, Fabrice Guerin. Application of a neural network for optimum clearance prediction in sheet metal blanking processes. Finite Elements in Analysis and Design, 2003, 39:1039~1052
    [9] Jyrki Taskinen, Jouko Yliruusi. Prediction of physicochemical properties based on neural network modeling. Advanced Drug Delivery Reviews, 2003,55:1163~1183
    [10] Z. Zhang, N.M. Barkoula, J. Karger-Kocsis, K. Friedrich. Artificial neural network predictions on erosive wear of polymers. Wear, 2003, 255:708~713
    [11] 刘永红.神经网络理论的发展与前沿问题.信息与控制,1999:28(1):31~46
    [12] 张立明.人工神经网络的模型及其应用,复旦大学出版社,1994:13~157
    [13] 闻新,周露,王丹力.MATLAB神经网络应用设计.科学出版社,2000:208~238
    [14] 王文成.神经网络及其在汽车工程中的应用.北京理工大学出版社,1998:261~262
    [15] I.Naotsugu. The precipitation behaviour of Cu-Cr-Sn alloy. Journal of the Japan Copper and Brass Research Association, 1985, 24:225~230
    [16] F.rensei. New high-strength and high-conductivity copper alloy EFTEC-64. Journal of the Japan Copper and Brass Research Association, 1988, 27:109~114
    [17] 李爱军,李贺军,李克智,顾正彬.C/C复合材料CVI工艺人工神经网络建模.中国科学(E辑),2003,33(3):209~216
    [18] 苏娟华,董企铭,刘平,李贺军.利用神经网络方法优化引线框架铜合金导电率.中国机械工程,2003,14(增刊):184~186
    [19] 何仁斌.MATLAB6工程计算及应用.重庆大学出版社,2001:91~112
    [20] 许东,吴铮.基于MATLAB6.X的系统分析与设计——神经网络.西安电子科技大学出版社,2002:166~210
    [21] S.V. Kamarthi, S. Pittner. Accelerating neural network training using weight extrapolations. Neural Networks, 1999, 12:1285~1299
    [22] Yupu Yang, Xiaoming Xu, Wenyuan Zhang. Design neural networks based fuzzy logic. Fuzzy Sets and Systems, 2000,114:325~328
    [23] 高雪鹏,丛爽.BP网络改进算法的性能对比研究.控制与决策,2001,16(2):167~171
    [24] Aijun LI, Hejun LI, Kezhi LI, Zhengbing GU. Modeling of CVI Process in Fabrication of Carbon/Carbon Composites by an Artificial Neural Network. Science in China (Series E), 2003, 46(2): 173~181
    [25] 李爱军.碳/碳复合材料性能预测与ICVI工艺系统虚拟设计.西北工业大学博士论文,2004:65~67
    [26] 张智星,孙春在,[日]水谷英二等.神经-模糊和软计算.西安交通大学出版社,1998:156~215
    [27] 苏娟华,董企铭,刘平,李贺军.不同固溶方式对引线框架Cu-Cr-Sn-Zn合金时效组织和性能的影响.金属热处理,2005,30(5):49~52
    [28] Su Juan-hua, Dong Qi-ming, Liu Ping, Li He-jun. Research on the Aging Precipitation of Lead Frame Cu-Cr-Sn-Zn Alloy. Journal of rare earths, 2003, 21(Suppl): 182~184
    [29] 苏娟华,董企铭,刘平,李贺军.引线框架铜Cu-Cr-Sn-Zn合金时效组织和性能.材料科学与工程学报,2004,22(2):201~203
    [30] Juan-hua Su, Qi-ming Dong, Ping Liu, He-jun Li.Simulation of aging process of lead frame copper alloy by artifical neural network.Trans.Nonferrous Met.Soc.China, 2003, 13(6): 1419~1423
    [31] Juan-hua Su, Qi-ming Dong, Ping Liu, He-jun Li. Prediction of properties in thermomechanically treated Cu-Cr-Zr by an article neural network. Journal of Materials Science and Technology, 2003, 19(6): 529~532
    [32] Juan-hua Su, Hejun Li, Qi-ming Dong, Ping Liu. Effect of Cold Working on the Aging Properties of Cu-Cr-Zr-Mg Alloy by Artificial Neural Network. Acta Metallurgica Sinica(English Letters), 2004, 17(5): 741~746
    [33] J.S. Son, D.M. Lee, I.S. Kim, S.K. Choi. A study on genetic algorithm to select architecture of a optimal neural network in the hot rolling process. Journal of Materials Processing Technology, 2004,153-154:643~648
    [34] Nan Jiang, Zhiye Zhao, Liqun Ren. Design of structural modular neural networks with genetic algorithm. Advances in Engineering Software, 2003,34:17~24
    [35] 郑生荣,辛勇,杨国泰,何成宏.基于混合神经网络与遗传算法方法的注塑参数优化.计算机应用,2004,24(2):91~94
    [36] R.G. Song, Q.Z. Zhang. Heat treatment optimization for 7175 aluminum alloy by an artificial neural network and a genetic algorithm.Journal of Materials Processing Technology, 2001,117:84~88
    [1] O. Beffort, C. Solenthaler, M.O. Speidel. Improvement of strength and fracture toughness of a spray-depositedAI-Cu-Mg-Ag-Mn-Ti-Zr alloy by optimized heat treatments and thermo-mechanical treatments. Materials Science and Engineering A, 1995, 191:113~120
    [2] M. Murayama and K. Hono. Pre-precipitate clusters and precipitation processes in Al-Mg-Si Alloys. Acta mater., 1999, 47(5): 1537~1548
    [3] K. Stiller, P.J. Warren, V. Hansen. Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100° and 150℃. Materials Science and Engineering A, 1999, 270:55~63
    [4] Dayong Cai, Mei Yao, Pulin Nie. Influence of solution treatment temperature on mechanical properties ofa Fe-Ni-Cr alloy. Materials Letters, 2003, 57:3805~3809
    [5] L.Tan,W.C.Crone. In situ TEM observation of two-step martensitic transformation in aged NiTi shape memory alloy. Scripta Materialia, 2004, 50:819~823
    [6] P.C. Bai, T.T. Zhou, P.Y. Liu. Effects of lithium addition on precipitation in Li-containing Al-Zn-Mg-Cu alloy. Materials Letters, 2004, 58:3084~3087
    [7] M.J. Starink, N. Gao, J.L. Yah. The origins of room temperature hardening of Al-Cu-Mg alloys. Materials Science and Engineering A, 2004,387-389 : 222~226
    [8] B.C. Wei, C.Q. Chen, Z. Huang. Aging behavior of Li containing Al-Zn-Mg-Cu alloys. Materials Science and Engineering A, 2000, 280:161~167
    [9] 钱士强,李曼萍,赵亚平.深冷处理对AlCu合金时效的影响.金属热处理,2001,26(12):28~31
    [10] 李腾,陈敏勤,金瑞湘,李卫.热处理对高矫顽力型FeCrCo合金性能的影响.稀有金属,2003,27(5):558~560
    [11] 曹育文.引线框架用高强度高导电铜合金研究.清华大学博士论文,1999:31
    [12] 赵冬梅.高强高导Cu-Ni-Si时效相变规律及强化机制研究.西安交通大学博士论文,2003:102
    [13] 董明水,孙爱俊,迟永祥,谢春生.CuCoBeTiZr合金强化工艺与组织和性能研究.金属热处理,2003,28(8):23~27
    [14] 王孟君,张立勇,刘心宇.碳化钨弥敞强化铜的高温烧结及高温退火.金属热处理,2003,28(9):20~22
    [15] 贾燕民,丁秉钧.制备弥散强化铜的新工艺.稀有金属材料与工程,2000,29(2):141~143
    [16] T Mohandas, G Madhusudan Reddy, B Satish Kumar. Heat-affected zone softening in high-strength low-alloy steels. Journal of Materials Processing Technology, 1999, 88: 284~294
    [17] K Mathis, Z Trojanova. P Lukac. Modeling of hardening and softening processes in Mg alloys. Journal of Alloys and Compounds, 2004, 378:176~179
    [18] N.Gao, T.Tiainen, M.Hemmila. Influence of prior deformation on the hardening of a phosphorus-containing Cu-0.61wt.%Cr alloy. Materials science engineering A, 2003, 342:270~278
    [19] H.Fernee, J.Naim,A.Atrens. Cold worked Cu-Fe-Cr alloys. Journal of Materials and Science, 2001, 36:5497~5510
    [20] 戚正风.固态金属中的扩散与相变.机械工业出版社,1998:80
    [1] 曹育文.引线框架用高强度高导电铜合金研究.清华大学博士论文,1999:21
    [2] J H Su, Q M Dong, P Liu, H J Li. Simulation of aging process of lead frame copper alloy by artifical neural network. Transaction of Nonferrous Metal Society of China, 2003, 13(6) 1419~1423
    [3] H J Ryu, H K Balk. Effect ofthermomechanical treatment on microstructure and properties of Cu-base leadframe alloy. Journal of Materials Science, 2000; 35:3641~3646
    [4] H I Choi. Fabrication of high conductivity copper alloys by rod milling. Journal of Materials Science Letters, 1997, 16:1600~1602
    [5] F.X Huang. J.S Ma. Analysis of Phases in a Cu-Cr-Zr. Alloy Scripta materialia, 2003; 48: 97~102
    [6] 袁振宇,董企铭,刘平,康布熙.时效对Cu-Fe-P合金显微硬度及导电率的影响.热加工工艺,2002(3):33~34
    [7] 刘熙波,董企铭.引线框架用铜合金QFe2.5的退火性能.特种铸造及有色合金,2004,(5):63~65
    [8] 刘熙波,董企铭.引线框架材料Cu-Fe-P合金产品试制分析.铸造,2004,53(9):736~738
    [9] C GonzaAlez, J Llorca. A self-consistent approach to the elasto-plastic behaviour of two-phase materials including damage. Journal of the Mechanics and Physics of Solids, 2000, 48:675~692
    [10] Y Li, K T Ramesh, E S C Chin. Viscoplastic deformations and compressive damage in an A359/SiC_p metal -matrix composite. Acta mater., 2000, 48:1563~1573
    [11] E.Soppa. Deformation and damage in Al/Al_2O_3. Computational Materials Science, 2003, 28:574~586
    [12] J.C.Wang ,G.C.Yang. Finite element micromechanical modeling the damping behaviors of PMMCs at room temperature. Computational Materials Science, 2001,21:9~16
    [13] C.M.Landis, I.J.Beyerlein, R.M.Mcmeeking. Micro-mech anical simulation of the failure of fiber reinforced composites. Journal of the Mechanics and Physics of Solids, 2000, 48: 621~648
    [14] A.L.Gurson. Continuum theory of ductile rupture by void nucleation and growth: Part I.Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials Technology, 1977, 99:2~15
    [15] J Aboudi. A continuum theory for fiber-reinforced elastic-visco-plastic composites. International Journal of Engineering Science, 1982, 20:605~620
    [16] J Aboudi. Closed form constitutive equations for metal matrix composites. International Journal of Engineering Science, 1987,25:1229~1240
    [17] J Aboudi. Constitutive equations for elastic-plastic composites with imperfect bonding. International Journal of Plasticity, 1988, 4:103~125
    [18] J Aboudi, F Mirzadeh, C T Herakovich. Response of metal matrix laminates with temperature-dependent properties. Journal of Composite Technology and Research., 1994, 16:68~76
    [19] G Bao, J W Hutchinson, R M McMeeking. Partical reinforcement of ductile matrices against plastic flow and creep. Acta Metall.Mater., 199l, 39:1871~1882
    [20] T Christman, A Neeedleman, S Suresh. An experimental and numerical study of deformation in metal-matrix composite. Acta Metall., 1989, 37:3029~3050
    [21] A Chakraborty, J C Earthmany. Numerical model of creep cavitation in single phase, dual phase and fully laminar titanium aluminide. Acta Metall., 1997, 45(11): 4516~4626
    [22] Ken Gall, M F Horstemeyer. Atomistic simulations on the tensile debonding of an aluminum-silicon interface. Journal of the Mechanics and Physics of Solids, 2000, 48: 2183~2212
    [23] Ken Gall, Mark Horstemeyer, David L. Finite element analysis of the stress distributions near damaged Si particle clusters in cast Al-Si alloys. Mechanics of Materials, 2000, 32: 277~301
    [24] Parhami F, Robert M McMeeking. A model for the sintering and coarsening of spherical particles. Mechanics of Materials, 1999, 31:43~61
    [25] Chad M Landis, Robert M McMeeking. Micromechanical simulation of the failure of fiber reinforced composite. Journal of the mechanics and physics of solids, 2000, 48:621~648
    [26] 王锦程.复相材料阻尼性能的数值模拟研究.西北工业大学博士论文,2001:25~27
    [27] MA Zhi-jun,YANG Yan-qing,ZHU Yah. Effect of fiber distribution on residual thermal stress in titanium matrix composite. Trans.Nonferrous Met.Soc.China. 2004, 14(2): 330~334
    [28] 苏娟华,董企铭,刘平,李贺军.引线框架铜合金精轧薄板表面起皮剥落的数值分析.功能材料,2005,36(1):40~43
    [29] Q M Dong, P Liu, J H Su, H J LI. Numerical analysis of deformation and damage in Copper alloy sheet. Materials Science Forum, 2005, 475-479:2713~2716
    [30] J H Su, Q M Dong, P Liu, H J LI. Research on the Surface Peeling in Cu-Fe-P Alloy. Journal of rare earths, 2004, 22, Suppl.: 160~163
    [31] 杨卫著.宏微观断裂力学.国防工业出版社,1995:152~156
    [32] Viggo Tvergaard. Influence of plasticity on interface toughness in a layered solid with residual stresses. International Journal of Solids and Structures, 2003, 40:5769~5779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700