纤维矿渣微粉混凝土力学性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维混凝土是一种新型的复合材料。与普通混凝土相比,纤维混凝土的抗拉强度、抗弯强度及耐磨、耐冲击、耐疲劳、韧性、抗裂、抗爆性都有所提高,已广泛应用于许多工程领域。矿渣微粉作为一种“绿色建材”,具有价廉、量大的特点,等量取代纤维混凝土中的水泥,变废为宝,降低了纤维混凝土造价,符合可持续发展的要求。
     本文用矿渣微粉等量取代素混凝土和纤维混凝土中的水泥,配制成了矿渣微粉混凝土和纤维矿渣微粉混凝土,并围绕矿渣微粉混凝土和纤维矿渣微粉混凝土的力学性能展开研究,主要内容如下:
     (1)分析了国内外有关纤维混凝土的研究现状、工程应用情况以及纤维混凝土的增强阻裂机理,总结了矿渣微粉在水泥和混凝土中的研究和应用情况。
     (2)通过试验,测定了矿渣微粉混凝土和纤维矿渣微粉混凝土的抗压强度、劈拉强度、抗折强度、弹性模量以及劈拉荷载—横向变形关系曲线和弯曲荷载—挠度关系曲线,探讨了纤维掺量、矿渣微粉掺量和混凝土基体强度等级对上述力学性能的影响,建立了抗压强度随龄期变化的计算模型,统计了抗压和劈拉标准试件和非标准试件之间的强度换算系数。研究表明,矿渣微粉的加入提高了普通混凝土和纤维混凝土的各项力学性能指标;钢纤维对矿渣微粉混凝土的增强增韧效果比较显著,使矿渣微粉混凝土的劈拉荷载—横向变形关系曲线和弯曲荷载—挠度关系曲线更加饱满;聚丙烯纤维也能起到一定的的增强增韧效果,但效果没钢纤维显著。
     (3)试验表明,矿渣微粉混凝土的抗压试件破坏呈明显的倒锥形并伴随强烈的崩裂声,劈拉破坏试件被劈成两半;纤维矿渣微粉混凝土抗压破坏试件只是表面起皮掉渣,劈拉试件破坏后还保持一个整体,不会裂成两半,并伴有嘈杂的纤维拔断和拔出的声音。
Fiber reinforced concrete is a kind of new composite material. As compared with normal concrete, tensile strength, flexural strength, wear resistance, impact resistance, fatigue-resistant, toughness, crack-resistant and antiknock properties are all improved. It is widely used in various fields. As a kind of green building material, slag powder has the features of popular price and large amounts. Equivalent to replace cement within fiber reinforced concrete, we can make full use of resources, and reduce fiber reinforced concrete cost and conformance to requirements of the opinion of sustained development.
     In this paper, cement witch in normal concrete and fiber reinforced concrete, replaced by slag powder in equal quantity, makes up slag concrete and fiber reinforced slag concrete. Meanwhile, mechanical properties of concrete are studied here. The primary coverage as follows:
     (1) Retrospective analysis has been done on research situation and project application of fiber reinforced concrete at home and abroad in recent years. Analysising the reinforced and crack-resistanced mechanism of fiber reinforced concrete. Summary the current status of development and application of slag powder in cement and concrete in recent years.
     (2) The compressive strength, splitting strength, breaking strength, elastic modulus , the relationship curves between splitting load and lateral deformation, and the relationship curves between bending load and deflection of slag concrete and fiber reinforced slag concrete have been tested through experiments. Investigated the effect of fiber content, slag powder content and concrete grade on the above mechanical properties. Established the calculation model for the compressive strength changing by ages. Statisticsed of the conversion factor of compressive strength and splitting strength between standard specimen and non-standard specimen. The results showed that: the index of mechanical properties of normal concrete and fiber reinforced concrete improved after added slag powder; Steel fiber is very efficacious for increasing strength and toughness of concrete; Meanwhile, polypropylene fibre also has effect on increasing strength and toughness, but show worse effect than steel fiber. All the above features can be seen from the relationship curves between splitting strength and lateral deformation, and the relationship curves between bending load and deflection.
     (3) The compression fracture morphology of slag concrete specimens show distinctly inverted cone accompanied by a strong voice breaking split in half observed through the experiment,while the fracture morphology of fiber reinforced slag concrete specimens show only peeling and dropped residue.And keep an integral whole after added steel fiber for splitting damage specimens, and accompanied by the noise of fiber extracted and broked.
引文
[1]罗辉涛.混杂纤维增强钢筋混凝土梁抗弯性能试验研究[D].广东:广东工业大学硕士学位论文,2008.
    [2]J.P.Romualdi and G.B.Bastson.Mechanics of crack arrest in concrete.Proc.ASCE,1963,89(6).
    [3]Karayannis,Chris G.Nonlinear analysis and tests of steel-fiber concrete beams in torsion.Structural Engineering and Mechanics,2000,9(4):323-338.
    [4]Almansa,Eduardo Mereno.Behaviour of normal and steel fiber reinforced concrete under impact of small projectilies.Cement and Concrete Research,1999,29(11):807-1814.
    [5]Teutsch,Manfed,Rosenbusch,Joachim.Load carrying and deformation behavior of lattice girder walls from steel fiber concrete.Betonwerk and Fertigteil-Technik/Concrete Precasting Plant and Technology,1998,64(10):58-62.
    [6]Traina,Leonard A.,Mansour,Shahin A.Biaxial strength and deformation behavior of plain and steel fiber concrete.ACI Mater,1991,88(7-8):354-362.
    [7]Bayasi,Ziad,Zhou,jing.Seismic resistance of steel fiber reinforced concrete beam-colum joints joints,Structure Engineering in Nature Hazards Mitigation Prc Symp Struct Eng Nat Hazard Mitigation 1993.Pub by ASCE,New York,NY,and USA.p1402-1408.
    [8]Goidfein S.Fibrous Reinforced for Potland Cement.Moderu Plastics,1965,42(8):156-160.
    [9]ACI Committee544.Fiber Reinforced Concrete.ACI544,1996.
    [10]姚武,蔡江宁,陈兵.混杂纤维增韧高性能混凝土的研究[J].三峡大学学报,2002,24(1):42-44.
    [11]孙伟,钱红萍,陈惠苏.纤维混杂及其与膨胀剂复合对水泥基材料的物理性能的影响[J].硅酸盐学报,2001,28(2):95-99.
    [12]Xu Guodong,Hannant DJ.Synergistic Interaction Between Fibetllated Polyproylene Networks and glass fibers in a cement-based composite.Cement Concrete Composite,1991 13(2):95-106.
    [13]Walton P L,Majumdar A J.Cement-Based Composites with Mixture of Different Types of Fibers.Composites,1975,6(5):209-216.
    [14]P.Sukontaukul.Tensile benhavior of hybrid fiber-reinforced concrete.Advances in Cement Research,2004(3):115-122.
    [15]Parviz Soroushian,Hafez Elyamany,AterTlili and Ken Ostowai.Mixed-mode Fracture Properties of Concrete Reinforced with Low Volume Fractions of Steel and Polypropylene Fibers.Cement and Concrete Composites,1998,20(1):67-78.
    [16]Qian C,Stroeven P.Fracture Properties of Concrete Reinforced with steel-polypropylene Hybeid Fibers.Cement and Concrete Composites,2003,22:343-351.
    [17]Banthia N,Nandakumer N.Crack growth Resistance of Hybrid Fiber Reinforced Cement Composites.Cement and Concrete Composites,2003,25:3-9.
    [18]中国工程建设标准化标准钢纤维混凝土试验方法(CECS13:1989).北京:中国计划出版社,1996.
    [19]中国工程建设标准化标准.钢纤维混凝土结构设计与施工规程(CECS38:2004).北京:中国计划出版社,2004.
    [20]黄承逵.纤维混凝土结构[M].北京:机械工业出版社,2004.
    [21]沈荣熹.水泥基复合材料科学与技术-低掺率合成纤维在混凝土中的作用机制[M].北京:中国建材出版社,1999.
    [22]曹诚,王春阳.低掺量聚丙烯纤维在混凝土中的效应分析[J].混凝土与水泥制品,2000(增刊).
    [23]华渊,曾艺,刘荣华.混杂纤维增强混凝土耐久性试验研究[J].低温建筑技术,1998,(3):18-20.
    [24]华渊,姜稚清,王志宏.混杂纤维增强水泥基复合材料的疲劳损伤模型[J].建筑材料学报,1996,1(2):144-149.
    [25]孙伟,钱红萍,陈惠苏.纤维混杂及其与膨胀剂复合对水泥基材料的物理性能的影响[J].硅酸盐学报,2001,28(2):95-99.
    [26]姚武,蔡江宁,陈兵.混杂纤维增韧高性能混凝土的研究[J].三峡大学学报,2002,24(1):42-44.
    [27]邓宗才.高性能合成纤维混凝土[M].北京:科学出版社,2003.
    [28]焦楚杰等.聚丙烯纤维/钢纤维高强混凝土弯曲性能试验的研究[J].建筑技术,2004(1):48-50.
    [29]姚武.绿色混凝土[M].北京:化学工业出版社,2005.9:22-23.
    [30]GB/T 18046-2000用于水泥与混凝土中的粒化高炉矿渣粉[S].
    [31]范莲花.矿渣微粉掺合料对混凝土性能的影响[D].西安建筑科技大学硕士学位论文,2007.
    [32]D.Higgins.The Effect of GGBS on the durability of concrete[J].Concrete,1991, 25(6):17-20.
    [33]Nakamura N.Effect of slag fineness on the development of concrete strength and microstructure[A].Malhotra VM.Fly ash,silica fume,slag and natural pozzolans in concrete[C].Istanbul:Turkey Press,1992:1343-1366.
    [34]高怀英,马树军,黄国泓.大掺量磨细矿渣混凝土国内外研究与应用综述[J].海河水利,2006,(3):47-50.
    [35]王昌义,陈迅捷.磨细矿渣高性能混凝土研究[J].水运工程,2000,(8):12-18.
    [36]洪定海.大掺量矿渣微粉高性能混凝土应用范例[J].建筑材料学报,1998,1(1):82-86.
    [37]杨建森.氯盐对混凝土中钢筋的腐蚀机理与防腐技术[J].混凝土,2001,(7):52-56.
    [38]俞海勇,徐强.矿物掺合材料在高性能海工混凝土中的应用[J].粉煤灰,2003,(5):21-25.
    [39]陈迅捷,王昌义.磨细矿渣高性能混凝土在海工建筑中成功应用[J].混凝土,2000,(9):59-61.
    [40]赵国藩,彭少民,黄承逵等.钢纤维混凝土结构[M].北京中国建筑工业出版社,1999.
    [41]J.P.Romualdi,J.A.Mandel.Tensile Strength of Concrete Affected by Uniformly.Distributed and Closely Spaced Stort Length of Wire Reinforcement,ACI Journal,Proceedings,Vol.6,Junl 1964(pp:567-670).
    [42]S.P.Shah and B.V.Ranjan,Fiber Reinforced Concrete Properties,ACI Journal,Proc.Vol.68,NO.2,Feb,1971(pp:126-135).
    [43]C.D.Johnson and A.R.Coleman.Strength and Deformation of Steel Fiber Reinforced Mortar in Uniaxial Tension,Fiber Reinforced Concrete,American Concrete Institute,1974,pp:177-207.
    [44]R.N.Swamy,ES.Mangat and CV.S.K.Rao.The Mechanics of Fiber Reinforcement of Cement Matrices.Fiber Reinforced Concrete,American Concrete Institute,1974(P1-P8).
    [45]GB175-1999 硅酸盐、普通硅酸盐水泥[S].
    [46]GB14685-2001 建筑用碎(卵)石[S].
    [47]GB14684—2001 建筑用砂[S].
    [48]SDJ207—82 水工混凝土施工规范[S].
    [49]GB8076-1997 混凝土外加剂[S].
    [50]SL352-2006 水工混凝土试验规程[S].
    [51]高丹盈,赵军,朱海堂.钢纤维混凝土设计与应用[M].北京:中国建筑工业出版社,2002.
    [52]SL352-2006 水工混凝土试验规程[S].
    [53]钱觉时,杨再富,黄煜镔.高强混凝土强度尺寸效应的试验研究[J].华中科技大学学报(城市科学版),2004(1):1-4.
    [54]杜晖,钱晓军,赵顺波.钢纤维混凝土力学性能的试件尺寸效应系数,第十一届全国纤维混凝土学术会议论文集,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700