凝胶注模SiC-AlN复相陶瓷的制备工艺与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅陶瓷因具有高温强度高、比重轻、高热导率、抗氧化、耐化学腐蚀、耐磨损性好、热膨胀系数小等优良特性,在国民经济领域获得广泛的应用。但碳化硅的共价键合很强,晶界能和表面能之比过高,扩散系数低,很难制备出致密的烧结体。由于AlN和SiC材料在原子尺寸、晶体结构上非常相似,能在1800~2100℃的温度范围内形成固溶体,有效地改善材料的力学性能和微观组织结构。
     本文以SiC、AlN和Y_2O_3为原料,成分以SiC为主体,AlN含量在7wt%~20wt%,添加剂Y_2O_3含量为3wt%,采用凝胶注模成型的方法制备SiC-AlN复相陶瓷。系统地研究了浆料制备工艺条件对流变学性能的影响规律;单体含量、固相体积分数对坯体性能的影响规律及坯体排胶工艺;进而研究了成分配比、烧结温度、固相含量对SiC-AlN复相陶瓷的显微组织结构和性能的影响规律。
     结果表明:由于AlN成分较少,AlN的水解对凝胶注模成型的影响在可接受范围之内,水解产物在烧结过程中可作为烧结助剂促进致密化。通过对SiC-AlN浆料流变学性能研究得到最佳工艺参数:PH值13.00~13.10,分散剂含量0.2wt%,单体AM含量5wt%,混料时间10h,可制备出流动性较好,固相体积分数40vol%的SiC-AlN浆料。另外,AlN含量过多,水解程度增大,浆料稳定性恶化。
     单体含量和固相体积分数越高,坯体强度也越高,可对其进行机加工。但同时也造成坯体成分不均匀,排胶时易出现变形开裂。单体含量5wt%,固相体积分数40vol%,所制备的坯体抗弯强度14.2MPa,收缩率3.4%,致密度42.2%,可满足凝胶注模成型坯体的要求。坯体表面喷洒质量分数20wt%的聚乙二醇(PEG)溶液,可大大减轻表面起皮现象。通过对坯体TG/DTA热分析,最终制定坯体排胶制度:1.5℃/min升至600℃,保温2h,最后随炉冷却至室温。
     随着AlN含量的增加,SiC-AlN固溶体增加,晶粒细化,断裂方式由穿晶断裂过渡至沿晶断裂,裂纹扩展产生绕道与偏转效应,材料的力学性能大为改善。AlN含量为12wt%时,复相陶瓷密度、抗弯强度、断裂韧性和弹性模量分别为2.94g/cm~3,329.5MPa,5.49MPa·m~(1/2),299.6GPa。AlN进一步增加,复相陶瓷由于失重率较高,坯体成分不均而导致力学性能下降。而烧结温度的提高,也导致SiC-AlN复相陶瓷力学性能也大幅提高。当烧结温度为2050℃时,AlN含量10wt%,其密度、抗弯强度,断裂韧性,弹性模量分别达到2.95g/cm~3,365.8MPa,5.31 MPa·m~(1/2),308.9GPa。随着固相含量的增加,SiC-AlN复相陶瓷的力学性能相应提高。烧结温度不变,AlN含量一定,不同固相含量的复相陶瓷中的固溶体含量在中基本不变。在一定范围内,AlN含量和烧结温度越高,生成的固溶体越多。经过高达1000℃的热震后,SiC-AlN复相陶瓷残余抗弯强度大幅下降,热震前后断口形貌显著改变,表面有氧化膜的形成,且AlN含量越多,表面氧化膜越致密。
Silicon carbide (SiC) ceramic is an advanced structural material with excellent properties such as high bending strength at high temperature, low density, high thermal conductivity, resistance to extreme temperature and abrasion, low thermal expansion, and it is widely used in many industries. However, the covalent bonding between Si and C and low diffusion coefficient makes the sintering of SiC difficult without the application of sintering additives. Aluminium nitride (AlN) is similar with SiC in crystal lattice, density and so on.They can react and form an extensive solid solution at temperature between 1800℃and 2100℃to improve the sintering behaviour of SiC and obtain SiC-AlN multiphase ceramics. The driving forces for densification are volume and surface diffusion which are enhanced by the addition of AlN and Y_2O_3. Fracture toughness and bending strength increase greatly through the solid solution and the formation of Y-Si-Al-O-N liquid phase.
     An aqueous gelcasting process for the preparation of dense SiC-AlN composites has been described in this work. The content of AlN and Y_2O_3 is 7%~20wt% and 3wt%. The paper mainly contains following several experimental procedures: (1) Reports on SiC-AlN slurrys rheological properties were investigated. (2) The influence of monomer content and solid content on green body has been described; the procedure of binder burnout was confirmed by TG/DTA analysis. (3) The relationship of microstructure, properties and AlN content, sintering temperature and solid content was discussed. The results are followed: because AlN content is minority, the influence of AlN that react with water on gelcasting minimize. The hydrolysate of AlN, which can seem to be sintered additives, was even beneficial to densify SiC-AlN ceramics. The best fabricating condition of SiC-AlN suspensions with solid loading of 40vol% and low viscosity was content of dispersant being 0.2wt%, PH being 13.01~13.10, content of monomer being 5wt% and balling time being 10h. When AlN content increases too much, more and more AlN is hydrolytic, the slurry viscosity raises rapidly and is unstability.
     As increasing monomer content and solid content, the strength of green body improved correspondingly that can be machining using standard machining equipment. However, it also leads to pack unhomogeneously and large cracks on the surface of green body. When the monomer content and solid content is 5wt% and 40vol%, we prepare the green body of bending strength being 14.2MPa, contractiveness being 3.4%, relative density 42.2%. The surface of green body is sprayed a proper amount of polyethylene glycol(PEG) to prevent the inhibiton of oxygen which occurred in gel casting during the formation of polymer networks. Through the TG/DTA analysis of green body, We establish the procedure of binder burnout: Binder burnout was operated in muffle furnace in air at 600℃for 2h, at a heating rate of 1.5℃/min, then cool at room temperature in air.
     When enhancing AlN content, the amount of SiC-AlN solid solution increases, the grain size is fine, fracture mode transites from transcrystalline fracture to intergranular fracture, cracks expan producing bypass and deflection,which improve the strength and fracture toughness of multiphase ceramics. When the introducing content of AlN reaches to 12wt%, the bulk density, flexural strength, fracture toughness and elastic modulus sintered at 2000℃are 2.94g/cm~3、329.5MPa、5.49MPa·m~(1/2)、299.6GPa, respectively. However, if AlN content is too much, sintered sample shows coarse-grained microstructure that make the behavior of SiC-AlN composite deteriorate. The higher sintering temperature, the better the mechanical properties of SiC-AlN multiphase ceramics. When the introducing content of AlN reaches to 10wt%, the bulk density, flexural strength, fracture toughness and elastic modulus sintered at 2050℃are 2.95g/cm~3,365.8MPa,5.31 MPa·m~(1/2), 308.9GPa. Enhancing solid content, the pressureless sintering SiC-AIN multiphase ceramic possesses superior sintering properties and mechanical properties and then deteriorates.As sintered temperature and AlN content are both constant, the amount of solid solution varies little in different solid content SiC-AlN multiphase ceramics. In a proper range of AlN content and sintered temperature, solid solution increase with elevating AlN content and sintered temperature. After SiC-AlN ceramics experience 1000℃thermal shock, the residual bending strength fall dramatically and the microstructure of fracture surface change remarkably. Oxidation film emerges on the ceramics surface and is more thick when enhancing AlN content of SiC-AlN ceramics.
引文
[1]理查德J,布鲁克.陶瓷工艺[M].清华大学新型陶瓷与精细工艺国家重点实验室译.北京:科学出版社, 1999: 88-104
    [2] Padture P N. In situ-toughened silicon carbide[J]. J. Am. Ceram. Soc, 1994, 77(2): 519-523
    [3] Inomata Y, Tanaka H, Inoue Z, Kawabata H. Tentative isothermal section of SiC- Al4C3-B4C system at 1800℃(C). Yogyo Kyokaishi, 1980, 88(6): 353-355
    [4] Rixecker G, Wiedmann I, Rosinus, et al. High-temperature effects in the fracture mechanical behavior of silicon carbide liquid-phase sintered with AlN-Y2O3 additives[J]. J. Eur. Ceram. Soc, 2001, 21: 1013-1019
    [5] Rixechker G, Biswas K, Rosinus A. Fracture properties of SiC ceramic with oxynitride additives[J]. J. Eur. Ceram. Soc, 2002, 20: 2669-2675
    [6] Zhou Longjie, Huang Yong, Xie Zhipeng. Gelcasting of concentrated aqueous silicon carbide suspension[J]. J. Eur. Ceram. Soc,2000, 20: 85-90
    [7] Erik Adolfsson. Gelcasting of zirconia using agarose[J]. J. Eur. Ceram. Soc,2006, 89(6): 1897-1902
    [8] Mao X J, Shimai S Z, Dong M J, S. Gelcasting of Alumina Using Epoxy Resin as a Gelling Agent. J. Am. Ceram. Soc, 2007, 90(3): 986-988
    [9] Nie L F, Zhang Y J, Gong H Y. Preparation and characteristics of gelcasting RBSC-B4C composite[J]. Advances in Applied Ceramics, 2009, 108: 314-318
    [10] Yu Juanli, Wang Hongjie, Zhang Jian. Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers[J]. Journal of Sol-Gel Science and Technology, 2010, 53(3): 515-523
    [11]斯温M V.陶瓷的结构与性能[M],郭景坤等译.北京:科学出版社, 1998
    [12]李世普.特种陶瓷工业学[M].武汉:武汉工业大学出版社, 1990
    [13]铁征骑.新型陶瓷材料手册[M].南京:江苏科学技术出版社, 1996
    [14]肖汉宁,高鹏召.高性能结构陶瓷及其应用[M].北京:化学工业出版社,2006: 166-167
    [15]于新奇,任欧旭,鲁占全.碳化硅材料在机械密封中的应用[J].河北工业科技, 2005, 22(3): 134-137
    [16]梁训裕,刘景林.碳化硅耐火材料[M].北京:冶金工业出版社, 1981, 5
    [17]李玉增.半导体SiC的研究现状与应用前景[J].稀有金属, 1995, 19(3): 204-210
    [18]殷声.现代陶瓷及应用[M].北京:科学技术出版社, 1989
    [19]王零森.特种陶瓷[M].长沙:中南大学出版社, 2005
    [20] Janney M A. Method for Forming Ceramic Powders into Complex Shape[P]. US 5028362. 1991-9-8
    [21] Janney M A, Omatete O O. Method for Molding Ceramic Powder Using A Water-based Gelcasting Process[P]. US 5145908. 1992-7-2
    [22] Yang J L, Huang Y. Study on Gelcasting Processing of High Powder Rutile Capacitor[J]. Key Engineering Materials, 1999, 161-163: 517-520
    [23] Janney M A, Omatete O O. Gelcasting-A New Ceramic Forming Process[J]. Am. Ceram. Soc Bull, 1998, 70(10): 1641-1649
    [24] Bindu Krishnan, Raghu Natarajan. Dispersion and tape casting of silicon carbide through aqueous route[J]. Journal of Materials Science, 2005, 40: 5511-5516
    [25]周龙捷.水基高固相含量SiC悬浮体的制备和凝胶注模成型.高技术通讯, 2000(7): 100-103
    [26]苏鹏,郭学益,翼树军. SiC泡沫陶瓷的凝胶注模制备与表征.人工晶体学报, 2009, 38(4): 983-988
    [27] Vlajic M D, Krstic V D. Strength and machining of gelcast SiC ceramics[J]. J Mater Sci, 2007, 37: 2943-2947
    [28]王艳香. SiC材料凝胶注模成型工艺的研究[J].硅酸盐通报, 2007, 26(6):1202-1206
    [29] Xue J F. Gelcasting of Aluminum Nitride Ceramics[J]. J. Am. Ceram. Soc, 2010,93(4): 928-930
    [30] Rafaniello W, Plichta M R, Virkar A V, Investigation of phase stability in the system SiC-AlN[J]. J. Am. Ceram. Soc, 1983, 64: 272-276
    [31] Houssam A. Toutanji, David Friel, Tahar EI-Korchi, Room temperature Tensile and Flexural Strength of Ceramics in AlN-SiC System[J]. J. Eur. Ceram. Soc,1995, 15: 425-434
    [32] Landon M, Thevenot F, The SiC-AlN system: Influence of elaboration routes on the solid solution formation and its mechanical properties[J]. Ceramics International, 1982, 65(5):260-265
    [33] Xue H, Munir Z A, Sythesis of AlN-SiC Composites and Solid Solutions by Filed-Activated Self-Propagating Combustion[J]. J. Eur. Ceram. Soc, 1997, 17: 1787-1792
    [34]步文博,徐杰,李晓云.原位反应合成法制备AlN-SiC固溶体的研究[J].硅酸盐通报, 2001, 4: 41-44
    [35] Huang Henkun, Tien Tsengying. Solid-liquid reaction in the SiC-AlN-Y2O3 system under 1MPa of Nitrogen[J]. J. Am. Ceram. Soc, 1996, 79(6): 1717
    [36] Strecker K, Hoffmann M J. Effect of AlN-content on the microstructure and fracture toughness of hot-pressed and heat-treated LPS-SiC ceramics[J]. J.Eur. Ceram. Soc. 2005, 25: 801-807
    [37] Giuseppe Magnani, Francesco Antolini, Sintering high temperature strength and oxidation of liquid-phase-pressureless-sintered SiC-AlN ceramics[J]. J.Eur. Ceram. Soc, 2009, 29: 2411-2417
    [38] Inger-lise Tangen. Hot Isostafically Pressed SiC-AIN Powder Mixtures-Effect of Milling on Solid-Solution Formation and Related Properties[J]. J. Am. Ceram. Soc, 1998, 81(6): 1445-1452
    [39]潘裕柏,石晓梅,王静.碳化硅-氮化铝复合材料的烧结[J].稀有金属材料与工程, 2005, 34(1): 497-500
    [40]吴澜尔. AlN-Re2O3液相烧结碳化硅[J].硅酸盐学报, 2008, 36(5): 593-596
    [41]马奇.氮化铝含量对SiC-AlN复相陶瓷常压烧结性能的影响[J].稀有金属材料与工程, 2008, 37(2): 518-521
    [42]潘裕伯,谭寿洪,江东亮.无压烧结SiC-A1N复相陶瓷的显微结构[J].无机材料学报, 1995, 10(4): 428-43
    [43] Keiichiro Suzuki, Mikio Sasaki. Pressureless sintering and high-temperature strength of SiC–AlN ceramics[J], J. Ceram. Soc. Jpn, 1994, 102(8): 727–731
    [44]程卫华,李晓云,丘泰. SiC含量和热压烧结温度对AlN-SiC复相陶瓷材料导热性能的影响[J].机械工程材料, 2009, 33(6): 69-71
    [45] Giuseppe Magnani, Aldo Brillante. Effects of oxidation on surface stresses and mechanical properties of liquid phase pressureless-sintered SiC–AlN–Y2O3 ceramics[J]. Materials Science and EngineeringA , 2008, 486: 381–388
    [46] Kay Andre Weidenmann. Liquid phase sintered silion carbide(LPS-SiC) ceramics having remarkably high oxidation resistance in wet air[J]. J. Am. Ceram. Soc, 2008, 26: 2453-2457
    [47] Ibram Ganesh, Jana D C, Shamshad Shaik. An Aqueous Gelcasting Process for Sintered Silicon Carbide Ceramics[J]. J. Am. Ceram. Soc, 2006, 89(10): 3056-3064
    [48]郭兴忠,杨辉,张玲洁.有机羧酸改性氮化铝粉体的抗水解性能[J].化工学报,2008, 59(9): 2412-2415
    [49] Hamaker H C. The Lon-van der waals Attraction Between Spherial Particles[J]. Physical, 1937, 4: 1058-1072
    [50] Lifshitz E M. The theory of Moolecular Attraction Forces Between Solids(C). Sov Phys JEPT, 1965, 2: 73-83
    [51]王红洁等, Si3N4陶瓷凝胶注模成型工艺{J},西安交通大学学报, 2001, 35(4)
    [52] CamcohobГB. Handbook of High-Melting Point Compound[M]. Beijing: China Industry Press, 1965
    [53]贾德昌,宋桂明等.无机非金属材料性能[M].北京:科学出版社, 2007
    [54]周玉等,陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社, 1995
    [55]许昕睿,严伟林,庄汉锐. AlN陶瓷氧化行为的研究[J].无机材料学报, 2003, 18(2): 337-342
    [56]高积强,杨建锋,王红洁.无机非金属材料制备方法[M].西安交通大学出版社, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700