多孔介质储气研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用清洁、可再生能源是目前世界一项紧迫任务,天然气进而氢气被认为是合适的选择。气体在机动车上的存储是解决车用气体燃料的关键技术之一,而吸附被认为是有望解决这一问题的有效手段。近年来,对碳纳米管储氢的报道很多,结果却大相径庭。本论文测定了不同温度下碳纳米管对氢气的系列吸附等温线,并与活性炭上的储氢量进行比较。结果表明,氢气在碳纳米管上的吸附量很小,常温10MPa下吸附量只有0.2wt%。液氮温度下吸附量有所增加,但还是低于DOE标准。本论文以提高储氢容量为目的进行了多项尝试,其中包括活性炭表面的酸碱改性、SBA-15负载金属钯等。通过对实验数据的分析探讨了吸附储氢的机理,指出:临界温度以上的物理吸附遵循单分子层吸附机制,比表面积和储气温度是吸附量的决定因素,材料的其它特征和性质对储氢容量没有实质性影响。
     以提高甲烷的有效存储容量为目的,本论文研究了多孔介质湿储甲烷的方法。结果表明,预吸水的多孔介质对甲烷的吸入量较干燥样品有大幅提高,以BY-1活性炭为例,其对甲烷的吸入量可提高63%。随后进行的充放气研究表明,湿储过程中的热效应远低于吸附天然气温度的波动。对影响甲烷储量的诸多因素,如温度、载水量、填充密度、孔径分布等进行了考察。通过对甲烷湿储机理的分析证实了水存在条件下甲烷储量的提高是由于微孔中甲烷水合物的生成。
     考虑到氢氧燃料电池汽车发动机对氧源装置体积的严格限制,本论文研究了氧气在高比表面活性炭上的吸附特性,测定了氧气跨越临界温度的系列吸附等温线。实验温度为118~313K,压力为0~10MPa。并从实验数据计算了吸附热。以Gibbs定义和绝对吸附量模型为基础的过剩吸附量等温线模型很好地描述了氧气在活性炭上跨越临界点的大温度范围吸附平衡数据。实验结果显示了对氧气吸附存储的可行性。
     二氧化碳以水合物形式进行深海填埋是解决温室气体过量排放的有效手段之一。本文考察了水存在条件下多孔介质对二氧化碳的固定作用,测定了预吸水的炭材料对二氧化碳的吸入等温线,分析了二氧化碳吸入量的影响因素。实验证实了水存在条件下CO_2吸入量的提高是由于在微孔内生成了水合物。作者还测定了二氧化碳和甲烷的混合气在预吸水活性炭上的平衡等温线,计算了固定态混合气中各组分的含量,为二氧化碳深海填埋及可燃冰开采的实际需要提供了基础数据。
To develop a clean and renewable energy source is an urgent task for the world. Natural gas and hydrogen are thought to be appropriate alternative fuels. Gas storage on board of vehicle is one of the most important technologies in utilizing these alternative fuels. Many works on hydrogen storage using carbon nanotubes as the carrier have been reported. However, the results reported for the hydrogen storage capacity are quite divergent. In this dissertation, adsorption isotherms of hydrogen on multiwalled carbon nanotubes (MWNT) were measured for a wide range of temperature with a volumetric method, which was compared with the results collected on activated carbon AX-21. It is concluded that the amount of hydrogen absorbed on MWNT is very low, only 0.2wt% at room temperature and 10MPa. Although the storage capacity increases at 77K, it is much lower compared to the DOE criterior. In order to enhance the hydrogen uptake, many experiments, such as the modification of activated carbons using acid and alkali, Pd-loading on SBA-15 and so on were tested. These tests indicate that the physical adsorption above the critical temperature follows a monolayer surface coverage mechanism. Specific surface area and temperature are the decisive factors for the amount adsorbed. Other properties of the porous media only have minor effect on hydrogen storage capacity.
     Aiming to enhance the storage capacity of methane, methane sorption in porous media in the presence of water was studied. It is shown that 63% more methane was stored pre unit mass of activated carbon BY-1 compared to that of dry sample. The charging/discharging process of methane into/from the wet carbon indicate that the thermal effect is much more less than that with dry carbon. Effects of temperature, water ratio, package density and pore size distribution on the sorption amount of methane are studied. It was proven that the enhanced sorption of methane is due to the formation of methane hydrates in the pore spaces of carbon.
     Limitations on the equipment dimension of oxygen supplier promoted the study on oxygen storage in high surface activated carbon. Adsorption isotherms of oxygen on activated carbon AX-21 were collected for a range of 118-313K and 0-10 MPa. The isosteric heat of adsorption were evaluated basing of the isotherms. A model is presented for the experimental isotherms basing on the Gibbs definition of adsorption and the determination of absolute adsorption quantity. The model fits the isotherms very well for the whole range tested. Based of the measurements, the enhancement effect of adsorption for the storage of oxygen is proven.
     Carbon dioxide is an important greenhouse gas, however, it can be sequestrated as hydrates deep in the sea. The sorption isotherms of CO_2 in porous media were measured in the presence of water. All effects affecting the sorption amount of CO_2 in wet materials were discussed. The mechanism of enhanced storage capacity of CO_2 is proved to be the formation of hydrates in the pore spaces. The sorption isotherms of a mixture of CO_2 and CH4 in wet activated carbon were collected and the proportions of components in the adsorbed phase were calculated. These data might be useful for CO_2 sequestration and CH4 exploitation.
引文
1. 孙艳,苏伟,周理,氢燃料,北京:化学工业出版社,2005,1-3
    2. 鲍云樵,能源与我们,上海:上海科技教育出版社,1995,3-5
    3. Züttel, A. Hydrogen storage methods and materials, Naturwissenschaften, 2004,91(4): 157-172
    4. Robert T. Watson (ed.), Climate Change 2001: Synthesis Report, Published for the Intergovernmental Panel on Climate Change IPCC, Cambridge University Press, Cambridge, UK, 2001.
    5. 李明,本世纪将要到来的氢经济,国际技术经济导报,2002(2):23-28
    6. Parkyn A.D., Quinn D.F., Natural Gas Adsorbed on carbon, Porosity in Carbon, Patrick, J.W ed, London: Edward, Amold, 1995, 292-325
    7. Sloan E. D., Natural Gas Hydrate, J. Petroleum Technology, 1991, 43: 1414~1420
    8. 李正清,陶鹏万,21 世纪天然气化工研究开发战略研讨,现代化工,2000, 20 (3): 1-10
    9. Leung W. B., March N. H., Motz H. Primitive phase diagram for hydrogen, Physics Letters A, 1976, 56 (6): 425-426
    10. http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/freedomcar_targets_explanations.pdf
    11. 陈进富,赵永丰,贮氢技术及其发展现状,化工进展,1997,17(1):10-15
    12. 任建伟,廖世军,刘军民,规模储氢技术及其研究进展,现代化工,2006,26(3): 15-18
    13. Von Ardenne M., Musiol G., Reball S., Effekte der Physik, Verlag Harry Deusch, 1990, 712-715
    14. Schwarz J. A., Hydrogen Storage on Activated Carbon. Final Report for the New York State Energy Research and Development Authority and Ontario Ministry of Energy. November 1994
    15. Kidnay A. J., Hiza M. J., High pressure adsorption isotherms of neon, hydrogen and helium at 76K, J. Advance in Cryogenic Engineering, 1967, 12: 730-740
    16. Carpetis C., Peschka W., Study on hydrogen storage by use of cryoadsorbents, J. International Journal of Hydrogen Energy, 1980, 5 (5): 539-554
    17. Schwarz J.A., Activated carbon based storage system [A]. In Proc 1993 DOE/NREL Hydrogen Program[C], 1993, 89-102
    18. Chahine R., Bose T. K., Low-pressure adsorption storage of hydrogen J. International Journal of Hydrogen Energy, 1994, 19 (2):161-164.
    19. 周理,周亚平, 关于氢在活性炭上高压吸附特性的实验研究[J], 中国科学 B辑,1996, 26(5): 473-480
    20. Zhou L., Zhou Y. P., Linearization of Adsorption Isotherms for high-pressure application. Chemical Engineering Science. 1998, 53(14):2531-2536
    21. Zhou L., Zhou Y. P., A Comprehensive Model for the Adsorption of Supercritical Hydrogen on Activated Carbon. Ind. Eng. Chem. Res. 1996, 35(11): 4166-4168
    22. Zhou L., Zhou Y. P., A Mathematical Method for Determination of Absolute Adsorption from Experimental Isotherms of Supercritical Gases, Chinese J. of Chem. Eng. 2001, 9(1):110-115
    23. Dillon A. C., Jones K. M., Bekkedahl T. A., Kiang C. H., Bethune D. S., Heben, M. J., Storage of hydrogen in single-walled carbon nanotubes, Nature, 1997, 86 (27):377-379
    24. Dillon A C, Gilbert K. A. E., Alleman J. L., Gennett T., Jones K. M., Parilla P. A., Heben M. J., Carbon nanotube materials for hydrogen storage, Proceedings of the 2000/DOE/NREL Hydrogen program review, May 8-10, 2000
    25. Hirscher M., Becher M., Haluska M., Dettlaff-Wegbikowska U., Quintel A., Duesberg G. S., Choi Y. M., Downes P., Hulman M., Roth S., Stepanek I., Bernier P., Hydrogen storage in sonicated carbon materials. Appl Phys A. 2001, 72 (2): 129-132
    26. Ye Y., Ahn C. C., Witham C., Fultz B., Liu J., Rinzler A.G., Colbert D., Smith K., Smalley R.E., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Appl. Phys. Lett., 1999,74(16):2307-2309
    27. Pradham B. K.,Sumanasekera G. U.,Adu K. W.,Adu, K. W., Romero H. E., Williams K. A., Eklund P. C., Experimental probes of the molecular hydrogen-carbon nanotube interaction, Physica B-Condensed Matter, 2002, 323(1-4):115-121
    28. Züttel A., Ntitzenadel C.,Sudan P.,Mauron P., Emmenegger C., Rentsch S.,Schlapbach L., Weidenkaff A., Kiyobayashi T., Hydrogen sorption by carbon nanotubes and other carbon nanostructures, J. Alloys&Compounds, 2002, 330: 676-682
    29. Chambers A., Park C., Baker R. T. K., Rodriguez N. M., Hydrogen storage in graphite nanofibers, J. Phy. Chem. B, 1998, 102 (22): 4253- 4256
    30. Chen P., Wu X., Lin J., Tan K. L., High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperature, Science, 1999, 285(5424): 91- 93
    31. Yang R. T., Hydrogen storage by alkali-dopped carbon nanotubes-revisited, Carbon, 2000, 38(4):623- 641
    32. Tibbetts G. G., Meisner G. P., Olk C. H., Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers, Carbon, 2001, 39(15): 2291-2301
    33. Shiraishi M., Takenobu T., Ata M., Gas-solid interactions in the hydrogen/single-walled carbon nanotube system. Chem Phys Letters. 2003, 367(5-6): 633-636
    34. Zhou Y. P., Feng K., Sun Y., Zhou L., Adsorption of hydrogen on multiwalled carbon natotubes at 77 K, Chemical Physics Letters, 2003, 380(5-6): 526-529
    35. 周亚平, 冯奎,孙艳,周理,述评碳纳米管储氢研究, 化学进展, 2003, 15 (5): 345-350
    36. Gordon P. A., Saeger R. B., Molecular modeling of adsorptive energy storage: Hydrogen storage in single-walled carbon nanotubes, Ind. Eng. Chem. Res., 1999,38(12): 4647- 4655
    37. Hynek S., Fuller W., Bentley J., Hydrogen storage by carbon sorption Int. J. Hydrogen Energy, l997, 22(6): 60l-610
    38. Wang Q. Y., Johnson J. K., Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores, J. Chem. Phys., 1999, 110(1):577-586
    39. 范月英,刘敏,成会明, 纳米炭纤维的吸氢研究, 第四届全国新型炭材料学术研讨会议论文集, 1999, 582-587
    40. 毛宗强,徐才录,阎军,梁吉,孙公敏,魏秉庆,吴德海, 碳纳米纤维储氢性能初步研究, 新型碳材料, 2000,15(1):64-67
    41. Wang Q K, Zhu C C, Liu W H, Wu T., Hydrogen storage by carbon nanotube and their films under ambient pressure, Int. J. Hydrogen Energy. 2002, 27(5): 497-500
    42. Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M, Dresselhaus M S., Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science. 1999, 286 (5442): 1127-1129
    43. Fan Y Y, Liao B, Liu M, Wei Y L, Lu M Q, Cheng H M., Hydrogen uptake in vapor-grown carbon nanofibers, Carbon. 1999, 37(10): 1649-1652
    44. Wu X B, Chen P, Lin J, Tan K L., Hydrogen uptake by carbon nanotubes. Int. J. Hydrogen Energy, 2000, 25(3): 261-265
    45. Cheng H. M., Liu C., Fan Y. Y., Li F., Su G., Cong H. T., He L. L., Liu M., Synthesis and Hydrogen Storage of Carbon Nanotubes and Single-walled Carbon Nanotubes, Z. Mrtallkd. 2000, 91 (4): 306-310
    46. Li X. S., Zhu H. W., Ci L. J., Xu C. L., Mao Z. Q., Wei B. Q., Liang J., Wu D. H., Hydrogen uptake by graphitized multi-walled carbon nanotubes under moderate pressure and at room temperature, Carbon. 2001, 39(13): 2077-2088
    47. Li X. S., Zhu H. W., Mao Z. Q., Wei B. Q., Liang J., Effects of structure and surface properties on carbon nanotubes’ hydrogen storage characteristics, Chinese Science Bulletin, 2001, 46 (16): 1358-1360
    48. Poirier E., Chahine R., Bose T. K., Hydrogen adsorption in carbon nanostructures, Int. J. Hydrogen Energy, 2001, 26(8): 831-835
    49. Zhu H. W., Chen A., Mao Z. Q., Xu C. L., Xiao X., Wei B. Q., Liang J., Wu D. H., The effect of surface treatments on hydrogen storage of carbon nanotubes, J Mater. Sci. Lett., 2002, 19(4): 1237-1239
    50. Huang W.Z., Zhang X.B., Tu J. P., Kong F. Z., Ma J. X., Liu F., Lu H.M., Chen C.P., The effect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes, Mater. Chem. Phys., 2002, 78(1): 144-148
    51. Bhabendra K., Pradhan G. U., Sumanasrkera K. W. A., Hugo E. R., Keith A. W., Eklund P. C., Experimental probes of the molecular hydrogen-carbon nanotube interaction. Physica B. 2002, 323(1): 115-121
    52. Pradhan B. K., Harutyunyan A., Stojkovic D., Zhang P., Cole M. W., Crespi V., Eklund P. C., Goto H., Fujiwara J., Large cryogenic storage of hydrogen in carbon nanotubes at low pressure, Materials Research Society Symp. Proc. 2002, Vol. 706, Z10.3.1-Z10.3.6.
    53. Smith M. R., Bittner E. W., Bockrath B. C., Activating single-walled carbon nanotubes for hydrogen adsorption, Preprints of Symposia-American Chemical Society, Division of Fuel Chemistry, 2002, 47(2): 784-785
    54. Lupu D., Biris A. R., Misan I., Lupsa N., Biris A. S., Buzatu D. A., Kleeve M., Growth of nanoscale carbon structures and their corresponding hydrogen uptake properties, Particulate Science and Technology, 2002, 20 (3): 225-234
    55. Gabis I. E., Evard E. A., Gordeev S. K., Ekstrom T., Carbon nanomaterial for hydrogen uptake and storage, NATO Science Series. II: Mathematics, Physics and Chemistry 71(hydrogen materials science and chemistry of metal hydrides), Kluwer Academic Publishers, 2002, 383-390
    56. Pradhan B. K., Harutyunyan A. R., Eklund P. C., Hydrogen storage in carbon nanomaterials at low temperature. Preprints of Symposia-American Chemical Society. Division of Fuel Chemistry. 2002, 47(2): 477-480
    57. Tang C. C., Bando Y., Ding X. X., Qi S. R., Golberg D., Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc. 2002, 124 (49): 14550-14551
    58. Zhu H. W., Li X. S., Ci L. J., Xu C. L., Wu D. H., Mao Z. Q., Hydrogen storage in heat-treated carbon nanofibers prepared by the vertical floating catalyst method, Mater. Chem. Phys. 2003, 78(3): 670~675
    59. Kajiura H., Tsutsui S., Kadono K., Ata M., Murakami Y., Hydrogen storage capacity of commercially available carbon materials at room temperature, Appl Phys Letter, 2003, 82 (7): 1105-1107
    60. Lueking A., Yang R T., Hydrogen storage in carbon nanotubes: residual metal content and pretreatment temperature. AIChE Journal. 2003, 49 (6): 1556-1568
    61. Gao H., Wu X. B., Li J. T., Wu G. T., Lin J. Y., Wu K., Xu D. S., Hydrogen adsorption of open-tipped insufficiently graphitized multiwalled carbon nanotubes, Appl. Phys. Letter, 2003, 83 (16): 3389-3391
    62. Hanada K., Shiono H., Matsuzaki K., Hydrogen uptake of carbon nanofiber under moderate temperature and low pressure, Diamond and Related Materials, 2003, 12(3): 874-877
    63. Hou P. X., Xu S. T., Ying Z., Yang Q. H., Liu C., Cheng H. M., Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters, Carbon, 2003, 41(13): 2471-2476
    64. Shaijumon M. M., Ramaprabhu S., Synthesis of carbon nanotubes by pyrolysis of acetylene using alloy hydride materials as catalysts and their hydrogen adsorption studies, Chem Phys Letters, 2003, 374(5-6): 513-520
    65. Tibbetts G. G., Meisner C. P., Olk C. H., Hydrogen storage capacity of carbonnanotubes, filaments, and vapor-grown fibers, Carbon. 2001, 39(15): 2291-2301
    66. Shiraishi M., Takenobu T., Ata M., Gas-solid interactions in the hydrogen/single-walled carbon nanotube system, Chem Phys Letters, 2003, 367(5-6): 633-636
    67. Loutfy R. O., Moravsky A., Franco A., Veksler E., Physical hydrogen storage on nanocaron materials, Perspectives of Fullerene Nanotechnology. Ed. Osawa E. Dordrecht Neth: Kluwer Academic Publishers. 2002, 327-339
    68. Kiyobayashi T., Takeshita H. T., Tanaka H., Takeichi N., Züttel A., Schlapbach L., Kuriyama N., Hydrogen adsorption in carbonaceous materials-how to determine the storage capacity accurately, J Alloys Comp., 2002, 3302: 666-669
    69. Ritschel M, Uhlemann M, Gutfleisch O, Leonhardt A, Graff A, Taschner C, Fink J. Hydrogen storage in different carbon nanostructures, Appl Phys Letters, 2002, 80 (16): 2985-2987
    70. Bogdanovic B., Schwickardi M., Ti-doped alkali metal alumi-num hydrides as potential novel reversible hydrogen storage materials.J Alloy Comp, 1997, 253-254:1-9
    71. 周理,周亚平,孙艳,苏伟,超临界吸附及气体代油燃料技术研究进展,自然科学进展,2004,14(6):615-623
    72. Gudmundsson, J. S., Borrehang, A Natural gas hydrate-an alternative to liquified natural gas, Petroleum Review, 1996, 50(5): 232-235
    73. Davy H., Tbe Bakerian Lecture. On some of the Combination of Oxymuriatic Gas and Oxygen, and on the chemical relations of these Principles to Inflammable bodies, Philos. Trans. R. Soc. London. 1811, 101, (Partl): 1-35
    74. Handa Y. P., Stupin D., Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-A-radius silica gel pores, J. Physical Chemistry, 1992, 96(21): 8599-8603
    75. Miyawaki J., Kanda T., Suzuki T., Okui T., Maeda Y., Kaneko K., Macroscopic Evidence of Enhanced Formation of Methane Nanohydrates in Hydrophobic Nanospaces, J. Phys. Chem. B 1998, 102(12): 2187-2192
    76. Okui T., Maeda Y., Kaneko K., High-density methane hydrate and its production, JP10324647, 1998
    77. Okui T., Maeda Y., Kaneko K., Maneria containing hydratelike substance of lower hydrocarbon and ots production, JP10324646, 1998
    78. Sloan E. D., Clathrate Hydrates of Natural Gases, 2nd ed.: Marcel Dekker: New York, 1997
    79. Perrin A, Celzard A, Mareche J. F., Furdin G., Improved methane storage capacities by sorption on wet active carbons, Carbon, 2004, 42 (7): 1249-1256
    80. 周理,孙艳,周亚平,水增强活性炭储存低碳烃(如天然气、煤层气)方法,中国发明专利,专利号 ZL01141967,2001
    81. Zhou L, Sun Y, Zhou Y. P., Enhancement of the Methane Storage on Activated Carbon by Preadsorbed Water, AIChE Journal, 2002, 48(10): 2412-2416
    82. Zhou Y. P., Wang Y. X., Chen, H. H., Zhou L., Methane storage in wet activated carbon: Studies on the charging/discharging process, Carbon, 2005 (43): 2007–2012
    83. Zhou, L., Sun Y., Yang, Z. G., Zhou Y. P., Hydrogen and methane sorption in dry and water-loaded multiwall carbon nanotubes, J. Colloid and Interface Science 2005, (289): 347–351
    84. Zhou L, Liu X. W., Li J. W., Sun Y., Zhou Y. P., Sorption/desorption equilibrium of methane in silica gel with pre-adsorption of water, Colloids and Surfaces A: Physicochem. Eng. Aspects 2006 (273): 117–120
    85. Zhou L, Liu X. W., Sun Y, Li J. W., Zhou Y. P., Methane Sorption in Ordered Mesoporous Silica SBA-15 in the Presence of Water, J. Phys. Chem. B, 2005, (109): 22710-22714
    86. Liu X. W., Zhou L., Chang H, Sun Y., Zhou Y. P., Methane sorption on large-pore MCM-41 in the presence of water, J. Porous Media, 2006, 9 (8): 769-777
    87. Liu X. W., Zhou L., Li J. W., Sun Y., Su W., Zhou Y. P., Methane sorption on ordered mesoporous carbon in the presence of water, Carbon, 2006 (44): 1386–1392
    88. Zhou Y. P., Dai M., Zhou L., Sun Y., Su W., Storage of methane on wet activated carbon:influence of pore size distribution, Letters to the Editor / Carbon, 2004, 42(8-9):1855–1858
    89. Perrin A., Celzard A., Mareche J. F., Furdin G., Methane Storage within Dry and Wet Active Carbons: A Comparative Study, J. Energy & Fuels 2003, 17(5): 1283-1291
    90. Liang M., Chen G., Sun C., Yan L. J., Liu J., Ma Q. L., Experimental andModeling Study on Decomposition Kinetics of Methane Hydrates in Different Media, J. Phys. Chem. B, 2005, 109(40): 19034-19041
    91. 阎立军,刘犟, 陈光进,郭天民, 活性炭中甲烷水合物的储气量, 石油学报(石油加工)2002, 18(2): 1-5
    92. Wilder J. W., Seshadri K., Smith D. H., Resolving Apparent Contradictions in Equilibrium Measurements for Clathrate Hydrates in Porous Media, J. Phys. Chem. B, 2001, 105(41): 9970-9972
    93. Kono H., Narasimhan S., Song F., Smith D. H., Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing, Powder Technology 2002, 122(2): 239–246
    94. Zhang W., Wilder J. W., Smith D. H., Methane Hydrate-Ice Equilibria in Porous Media, J. Phys.Chem.B 2003, 107(47): 13084-13089
    95. Smith D. H., Wilder J. W., Seshadri K., Methane Hydrate Equilibria in Silica Gels with Broad Pore-Size Distributions, AIChE Journal 2002 ,48(2): 393-400
    96. Uchida T., Ebinuma., Ishizaki T., Dissociation Condition measurements of Methane Hydrate in Confined Small Pores of Porous Glass, J. Phys. Chem. B 1999, 103(18): 3659-3662
    97. 吴保祥,段毅,雷怀彦,张辉,水+沉积物体系中甲烷水合物的填充率,天然气工业 2004, 24(8): 27-29
    98. Uchida T., Takeya S., Chuvlin E. M., Ohmura R., Nagao J., Yskushev V. S., Istomin V. A., Minagawa H., Ebinum T., Narita H., Decomposition of Methane Hydrates in Sand, Sandstone, Clays and Glass Beads (CH4 Hydrate Decomposition in Sediments), J.Geophysical Research-Solid Earth, 2004, 109(B5): Art. No. B05206
    99. Lu H. L., Matsumoto R., Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column, Geochemical Journal, 2002, 36(1): 21-30
    100.Davidson D., Gas hydrates as clathrate ices, in Cox, J., ed., Natural gas hydrate- properties, occurrence and recovery: Butterworth, Woburn, MA, 1983:1-16
    101.Prensky S. E., A review of gas hydrates and formation evaluation of hydrate- bearing reservoirs, In proceedings of 36th Society of Petrophysicists and Well Log Analysts Annaual Symposium, 1995, 26-29
    102.张雄福,鲍钟英,殷德宏,王金渠,吸附法脱除乙烯中少量氧气的吸附剂研究, 石油化工,1998,27(1):8-12.
    103.章潭,埋藏温室气体阻止全球变暖,国外科技动态,2006, 6:18-24
    104.Lund P. C., Shindo Y., Nakashiki N., Ohsumi T., A Simulation Model and A Thermodynamic Database for The System Sea Water/Liquid CO2 at Large Depths, Energy Convers, Mgmt. 1994, 35(10): 827-834
    105.Goel N., In situ methane dissociation with carbon dioxide sequestration: Current knowledge and issues, J., Petroleum Science & Engineering, 2006, 51(3-4): 169-184
    106.Ohgaki K., Takano K., Sangawa H., Matsubara T., Nakano S., Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-CH4 mixed hydrate system, J. Chem. Eng. Jpn., 1996, 29(3): 478-483.
    107.Seo Y., Lee H., Multiple-phase hydrate equilibria of the ternary carbon dioxide, methane, and water, J. Phys. Chem. B, 2001, 105(41): 10084-10090
    108.Sun Y, Wang YX, Zhou L, CO2 Sorption in Activated Carbon in the Presence of Water Reference, Chemical Physics Letters, 2007, 437(1-3):14-16
    109.Smith D. H., Wilder J. W., Seshadri K., Thermodynamics of Carbon Dioxide Hydrate Formation in Media with Broad Pore-Size Distributions, Environ. Sci. Technol., 2002, 36(23): 5192-5198
    110.IUPAC “Reporting Physisorption Data for Gas/Solid Systems”, Pure and Appl. Chem. 1985, 57(4):603-619
    111.严继民,张启元,高敬琮,吸附与凝聚:固体的表面与孔,北京: 科学出版社, 1986, 101-121
    112.Langmuir I., The dissociation of hydrogen into atoms III The mechanism of the reaction, J. Amer. Chem. Soc.1916, 38(11): 2221-2295.
    113.Bruauer S., Emmett P.H., Teller E., Adsorption of Gases in Multimolecular Layers, J. Amer. Chem. Soc.1938, 60(2): 309-319
    114.Polley M. H., Schaeffe W. D., Smith W. R., Development of Stepwise Isotherms on Carbon Black Surfaces J. Phys. Chem., 1953, 57(4): 469-471
    115.Dubinin M. M., Astakhov V.A., Development of the Concepts of Volume Filling of Micropores in the Adsorption of Gases and Vapors by Microporous Adsorbents, Izvestiya Akademii Nauk SSSR, Seriya Khimi cheskaya,1971, 1: 5-11
    116.Dubinin M. M., The Potential Theory of Adsorption of Gases and Vapors forAdsorbents with Energetically Nonuniform Surfaces, Chem.Rev., 1960, 60(2): 235-241
    117.Agarwal R. K., Schwarz J. A ., Analysis of High Pressures Adsortion of Gases on Activated Carbon by Potential Theory, Carbon, 1988, 26(6): 873-887
    118.Findenegg G. H., High Pressure Physical Adsorption of Gases on Homogeneous Surfaces, Fundamental of Adsorption, Schloas Elmau, Bavaria, West Germany,1983: 207-218
    119.Malbrunot P., Vidal D., Vermesse J., Chahine R., Bose T. K., Adsorption Measurements of Argon, Neon, Krytion, Nitrogen, and Methane on Activated Carbon up to 650MPa, Langmuir, 1992, 8(2): 577-580
    120.Ozawa S., Kusumi S., Ogino Y., Physical Adsorption of Gases at High Pressure, J. Colloid. Interface Sci., 1976, 56(1): 83-91
    121.Benard P., Chahine R., Modeling of high-pressure adsorption isotherms above the critical Temperature on microporous adsorbents: Application to Methane, Langmuir, 1997(13): 808-813
    122.郑青榕,顾安忠,杨晓东,林文胜,鲁雪生,氢气在碳狭缝微孔内吸附的预测,化学物理学报,2001,14(6):675-680
    123.Ono S.; Kondo S., Molecular theory of surface tension in liquids, in: Encyclopedia of physics, edited by Flugge S., Berlin: Springer, 1960: 134
    124.Matranga K. Y., Myers A., Glandt E. D., Storge of Natural Gas by Adsorption on Activated Carbon. Chem. Eng. Sci., 1992, 47(7): 1569-1579
    125.Shaoyi J., Zollweg J. A., Gubbins K. E., High-Pressure Adsorption of Methane Ethane in Activated Carbon and Carbon Fibres, J. Phys. Chem., 1994, 98(22): 5709-5713
    126.Tvardovski A V., Description of Adsorption and Absorption Phenomena from a Single Viewpoint, J. Colloid. Interface. Sci., 1996, 179(2): 335-340
    127.Tóth J., Thermodynamical Correctness of Gas/Solid Adsorption Isotherm Equations, J. Colloid. Interface. Sci., 1994, 163(2): 299-302
    128.Ruthven D. M., Principles of Adsorption and Adsorption Processes, New York John Wiley&Sons.1984,100-101
    129.Zhou Y., Zhou L., Bai S. P., Yang B., Experimental Studies of the Generalized Adsorption Isotherm for the Supercritical Region, Adsorption Science &Technology. 2001, 19(8): 681-690
    130.Zhou L., Zhang J.S., Zhou Y. P., A Simple Isotherm Equation for Modeling theAdsorption Equilibria on Porous solids Over Wide Temperature, Langmuir,2001, 17(18): 5503-5507
    131.周理,吕昌忠,王怡林,姚金花,王瑜,述评超临界温度气体在多孔固体上的物理吸附,化学进展,1999, 11(3): 221-226
    132.IUPAC “Recommendations for the Characterization of Porous Solids” Pure and Appl. Chem.1994, 66:1739-1758.
    133.梅华,胡成刚,刘晓勤,姚虎卿,活性炭表面氧化改性对负载铜(I)吸附剂及其乙烯吸附性能的影响,新型碳材料,2002, 17(4): 33-37
    134.Boudou J. P., Chehimi M., Broniek E., Siemieniewska T., and Bimer J., Adsorption of H2S or SO2 on an activated carbon cloth modified by ammonia treatment, Carbon, 2003,41(10):1999-2007
    135.李德伏.活性炭的改性及对乙烯的吸附性.石油化工,2001,30(9): 677-680
    136.韩严和,全燮,薛大明,赵雅之,陈硕,活性炭改性研究进展,环境污染治理技术与设备,2004,4(1): 33-37
    137.蒋文举,金燕,朱晓帆,钟本, 江霞,活性炭材料的活化与改性, 环境污染治理技术与设备, 2002, 3(12): 25-27
    138.吴明铂,郑经堂,王茂章, 炭分子筛概述, 炭素技术,1997,6,19-24.
    139.Iijima S, Helical microtubules of graphitic carbon, Nature,1991, 354(6348): 56-58
    140.成会明,碳纳米管与氢能,自然杂志,2000,22(5): 249-253
    141.刘振宇,郑经堂,PAN 基活性炭纤维研究及展望,化工进展,1998,17(1):18-21
    142.杨 R. T.,吸附法气体分离,北京:化学工业出版社,1991,15-16
    143.李云峰 苏发兵,炭分子筛及其应用,防化学报,1996,7(4): 54-58
    144.闵振华, 曹敏, 王永刚, 炭分子筛的制备和应用, 材料科学与工程学报, 2006, 24(3): 466-471
    145.李军,朱冬生,方利国,吴会军,赵朝晖,吸附蓄冷技术的研究与开发,流体机械,2003 年,31(10): 51-53
    146.梁肃臣,常用吸附剂的基础性能及应用,低温与特气,1995,4:55-60
    147.Beck J. S., Vart U. J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E. W., McCullen S. B., J. B. Higgins, and J. L. Schlenkert, A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc. 1992, 114(27): 10834-10843
    148.Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J. C., Beck J. S., Orderedmesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature. 1992, 359: 710-712.
    149.Lu W., Lu G., Luo Y., A Chen. A novel preparation method of ZnO/MCM-41 for hydrogenation of methyl benzoate, Journal of Molecular Catalysis A: Chemical. 2002, 188(1-2): 225–231
    150.Newalkar B. L., Choudary N. V., Kumar P., Komarneni, S., and Bhat, T.S.G., Exploring the Potential of Mesoporous Silica, SBA-15, as an Adsorbent for Light Hydrocarbon Separation. Chem. Mater. 2002, 14(1): 304-309
    151.Rouquerol F., Rouquerol J. and Sing K., Adsorption by powders and porous solids. London: Academic Press, 1999, 165-179
    152.Gregg S.J., Sing K.S.W., Adsorption, Surface Area and Porosity. Second Edition London: Academic Press, 1982, 98-100
    153.Kruk M., Jaroniec M., Choma J., Comparative analysis of simple and advanced sorption methods for assessment of microporosity in activated carbons, Carbon, 1998, 36(10): 1447-1458
    154.Span R., Wagner W., A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressure up to 800Mpa, J. Phys. Chem. Ref. Data, 1996, 25(6): 1509-1595
    155.Barrett E. P., Joyner L. G., Halenda P. P., The Determination of Pore Volume and Area Distributions in Porous Substances I: Computations from Nitrogen Isotherms, J. Am. Chem. Soc., 1951, 73(1): 373-380
    156.Broekhoff J. C. P., De Boer J. H., Studies on pore systems in catalysts IX. Calculation of pore distribution from the adsorption branch of nitrogen sorption isotherm in the case of open cylindrical pores A. Fundamental equationm, J. Catal. 1967, 9, 8~14.
    157.Dubinin M. M., Stoeckli J., Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents, J. Colloid Interf. Sci., 1980, 75(1): 34-42
    158.Soule A.D., Smith C.A., Yang X. N., Lira C. T., Adsorption modeling with the ESD equation of state, Langmuir, 2001, 17(10): 2950-2957
    159.Rangarajan B., Lira C. T. and Subramanian R., Simplified local density model for adsorption over large pressure ranges, AIChE, 1995, 41(4): 838-845
    160.Subramanian R., Pyada H. and Lira C. T., An engineering model for adsorption of gases onto flat surfaces and clustering in supercritical fluids. Ind. Eng. Chem. Res. 1995, 34(11): 3830-3837
    161.Steele W. A., The Interaction of Gases with Solid Surfaces, Pergamon, Oxford, 1974.
    162.Chen J. H., Wong D. S. H., Tan C. S., Subramanian R., Lira C. T. and Orth M., Adsorption and desorption of carbon dioxide onto and from activated carbon at high pressures, Ind. Eng. Chem. Res. 1997, 36(7): 2808~2815.
    163.Boehm H. P., Some aspects of the surface chemistry of carbon black and other carbons, J. Carbon, 1994, 32(5): 759-769
    164.刘秀伍,有序介孔材料吸附功能研究,天津大学博士论文,2005,63-67
    165.Zhou L., Zhou Y. P., Sun Y., Enhanced storage of hydrogen at the temperature of liquid nitrogen, Int. J. Hydrogen Energy, 2004, 29(3): 319-322
    166.Beebe B. A., Biscoe J., Smith W. R., Wendell C. B., Heats of adsorption on carbon black, J. Am. Chem. Soc., 1947, 69(1): 95-101
    167.Zhou L., Sun Y., Zhou Y. P., Storage of hydrogen on carbon materials: Experiments and analyses, Chem. Eng. Commun., 2006, 193(5): 564-579
    168.Schneider M. S., Grunwaldt J. D., Baiker A., Near-critical CO2 in mesoporous silica studied by in situ FTIR spectroscopy. Langmuir, 2004, 20(7): 2890-2899
    169.Steele W. A., The Physical Interaction of Gases with Crystalline Solids, Surface Sci. 1973, 36: 317-318
    170.Zhou L, Zhou Y P, Sun Y., A Comparative Study of Hydrogen Adsorption on Superactivated Carbon versus Carbon Nanotubes. Int J Hydrogen Energy. 2004, 29 (5): 475-479
    171.Str?bel R., J?risen L., Schliermann T., Trapp V., Schütz W., Bohmhammel K., Wolf G., Garche J., Hydrogen adsorption on carbon materials, J. Power Source, 1999, 84(2): 221-224
    172.Nijkamp M. G., Graaymarkers J. E. M. J., Van Dillen A. J., et al, Hydrogen storage using physisorption-demands, Appl. Phys. A, 2001, 72: 619-623
    173.Chu X. Z., Zhou Y. P., Su W., Zhang Y. Z., Su W., Sun Y., Zhou L., Adsorption of hydrogen isotopes on micro- and mesoporous adsorbents with orderly structure, J. Phys. Chem. B, 2006, 110(45): 22596-22600
    174.Ma Y. C., Xia Y. Y., Zhao M. W., Wang R. J., Mei L. M., Effective hydrogen storage in single-wall carbon nanotubes. Phys Rev B. 2001, 63(11): 115422-115427
    175.郭天民,多元气-液平衡和精馏,北京:石油工业出版社,2002,68-72
    176.Stewart R. B., Jacobsen R. T., Wagner W.,Thermodynamic Properties of Oxygenfrom the Triple Point to 300K with Pressures to 80 MPa, J. Phys. Chem. Ref. Data, 1991, 20(5): 917-1021
    177.Talu O., An overview of adsorptive storage of natural gas, The 4th international conference on the fundamentals of adsorption, Kyoto, 1992, 17-22
    178.DavidsonD.W., “Gas Hydrates as Clathrate Ices,” Natural Gas Hydrates: Propoerties, Occurrence and Recovery, Cox J.L., ed., Butterworth, Boston, 1981
    179.Sloan E. D., Clathrate Hydrates of Natural Gases, 2nd ed.: Marcel Dekker: New York, 1997, 457-512
    180.Gudmundsson J. S., Borrehaug A., Frozen hydrate for transport of natural gas. In: The Proceedings of the Second International Conference on Natural Gas Hydrates. Toulouse, France. 1996, 415-422
    181.Buffett B. A., Zatespina O. Y., Formation of gas hydrate from dissolved gas in natural porous media, Marine Geology, 2000, 164(1-2): 69-77
    182.Klauda J. B., Sandler S. I., Prediction of gas hydrate phase equilibria and amounts in natural sediment porous media, Marine and Petroleum Geology, 2003, 20(5): 459-470
    183.Anderson R., Llamedo M., Tohidi B., et al, Characteristics of clathrate hydrate equilibria in meso-porous and interpretation of experimental data, J. Phys. Chem. B, 2003, 107: 3500-3506
    184.Anderson R., Llamedo M., Tohidi B., Burgass R. W., Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica, J. Phys. Chem. B, 2003, 107(15): 3507-3514
    185.Yang S. O., Yang I. M., Kim Y. S., Lee C. S., Measurement and prediction of phase equilibria for water+CO2 in hydrate forming conditions, Fluid Phase Equilibria, 2000, 175(1-2): 75-89.
    186.Lund P. C., The effect of CO2-hydrates on deep ocean carbon dioxide deposition options, Energy Convers. Mgmt. 1995, 36 (6-9): 543-546
    187.Smith D. H., Seshadri K., Wilder J. W., Assessing the thermodynamic feasibility of the conversion of methane hydrate into carbon dioxide hydrate in porous media. 2001 J Energy Environ Res USDOE 1:101-116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700