HAb18G/CD147及其单抗的分子模建对接和抗体人源化设计的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机辅助分子模拟技术的蓬勃发展,计算生物学越来越多地应用于生命科学各个领域,包括蛋白质结构分析、预测和分子对接的理论方法和应用软件。这些方法和工具用于抗体结构和抗原-抗体相互作用的研究当中,将为抗体工程相关的研究和应用提供了重要的理论指导和实验所需的基础数据。
     本研究旨在:1)用公共访问的生物信息学工具和数据库,建立一种针对鼠源性和人源性抗体可变区结构预测和模拟的方法,并转化为可用的软件工具。同时用该软件对HAb18G/CD147单体HAb18进行结构模建;2)通过计算机辅助分子对接技术研究HAb18G/CD147分子与抗体HAb18的结合模式,确定抗原-抗体相互作用的关键氨基酸残基。3)在分析抗体空间结构特点和氨基酸残基间相互作用基础上,利用计算机辅助分子设计和表面残基替换法进行鼠抗体人源化设计。
     研究方法是:1)抗体结构模建:从PDB(Protein Data Bank)数据库中筛选抗体的结构信息,构建本地抗体结构库,使用Java语言编写程序实现目标抗体同本地抗体结构库的序列比对,为目标抗体搜索同源模板,最后由Modeller 9v1完成抗体三维结构预测;2)抗原表位预测:以折叠识别为模建方法、DOPE(Discrete Optimized Protein Energy)得分为筛选标准、AMBER6为优化工具,构建HAb18G/CD147胞外两个结构域,通过Insight II实现HAb18G/CD147同HAb18抗体分子对接并分析相互作用位点;3)基于表面重塑方法的抗体人源化设计是在抗体同源模建的基础上,利用序列分析和结构分析确定鼠源抗体可变区外露的非人样差异残基,参考分子内和分子间氢键相互作用并选定将要突变的残基位点。
     研究结果:1)成功建立了一套抗体结构预测和模建的方法,构建了抗体HAb18可变区的三维模型。开发出一个简单易用、具有图形界面和交互功能的抗体结构预测软件AbModeller,能在RMSD(Root Mean Square Deviation)等于2?的范围内准确的构建抗体可变区结构;2)模拟了HAb18G/CD147分子胞外段同其抗体的对接模型,确定了组成表位的关键氨基酸残基,为实验研究提供了理论参考;3)完成了HAb18可变区的人源化设计,并将确定的候选位点分为三类,以便在实验中依次突变,寻找既降低鼠源抗体免疫原性又保持生物学功能的平衡点。
     本文通过建立抗原、抗体结构预测和分子对接的方法和工具有力地支持了抗体生物学的各项研究工作,为单抗人源化设计、抗原-抗体分子表位识别和基于抗原-抗体相互作用位点结构的药物设计提供了理论依据和参考,并在一定程度上改变了传统抗体研究的模式。
Along with vigorous development of computer assisted molecule simulation methodology, Computational biology is increasingly used in all fields of life sciences. Under such situation, many theoretical methods and application software have presented in protein structure analysis and prediction and molecule docking. The application of these methods and tools in the study about antibody structure and interaction of antigen-antibody will provide strong theoretical guidance and foundation data, which are required by experiments, for antibody engineering-related research.
     The first purpose of our study was to establish a method of 3-D structure prediction and simulation of mouse and human antibody variable regions based on public-accessible bioinformatics tools and databases. Furthermore, put methods into available software tools. Using this software, an anti-HAB18G/CD147 monoclonal antibody is modeled. The second purpose was to verify the epitope and the key residues by analyzed the complex model of HAb18G/CD147 extracellular portion and its MAb based on computer assisted molecule docking. The third purpose was to perform a design of humanizing murine antibody with the method of residue replacement based on analyzing of antibody spatial structure and interaction among residues by means of computer assisted molecule design.
     There were three parts in our study: 1) Antibody structure modeling. A local database of antibody 3-D structure was constructed by extracting antibody resource from PDB. Sequence alignment and homology template search against the local database for query antibody was performed by a Java program and modeling was realized by Modeller 9v1. 2) Epitope prediction. The model of extracellular portion of HAb18G/CD147 molecule was constructed by a serial of steps that included fold recognition, DOPE evaluation and model refinement using AMBER6. The docking of HAb18G/CD147 extracellular portion and its MAb was performed by InsightII. 3) Humanization design of MAb HAb18 based on variable domain resurfacing. Identification of the surface exposed non-human like residues of MAb variable region and calculation of inter-molecular and intra-molecular hydrogen bond interaction by sequence and structure analysis in terms of the homology modeled variable region of mAb determined the residues that need to be mutated to their human counterpart.
     In this study, we proposed a method of predicting antibody 3-D structure and developed a software tool named by AbModeller using to construct antibody model that is easy to be used and contain user interface and interactive function. In 2? of RMSD, AbModeller can predict accurately antibody spatial structure. Moreover, to simulate the complex model of HAb18G/CD147 extracellular portion and its MAb by molecule docking and identify the key residues of epitope that can be a theoretical evidence for experiment. Finally, the antibody variable domain resurfacing method was applied to the humanization of the monoclonal antibodies HAb18 against human hepatoma cell. The candidate mutation sites were put into three categories in experiment for maintaining an appropriate balance between the biological function and reduced immunogenicity.
     In conclusion, the methods and software of modeling and docking of antigen-antibody can support effectively the research of antibody biology and provide theoretical guidance for humanization and epitope identification and drug design based on the sites of antigen-antibody interaction.
引文
1. Venclovas C, Zemla A, Fidelis K, Moult J. Assessment of progress over the CASP experiments. Proteins, 2003; 53 Suppl 6:585-595
    2. Xiang Z. Advances in homology protein structure modeling. Curr Protein Pept Sci, 2006; 7(3):217-227
    3. Goldsmith-Fischman S, Honig B. Structural genomics: computational methods for structure analysis. Protein Sci, 2003; 12(9): 1813-1821
    4. Fiser A, Sali A. Protein Structure. New York: Marcel Dekker Inc, 2003. 167-206
    5. Sauder JM, Arthur JW, Dunbrack RL, Jr. Large-scale comparison of protein sequence alignment algorithms with structure alignments. Proteins, 2000; 40(1):6-22
    6. Yang AS, Honig B. An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance. J Mol Biol, 2000;.. 301(3):665-678
    7. Philip EB, Helge W. Structural Bioinformatics. New York: John Wiley & Sons Inc, 2003. 509-512, 525-528
    8. Xu Y, Xu D, Crawford OH, Einstein, Larimer F, Uberbacher E, Unseren MA, Zhang G. Protein threading by PROSPECT: a prediction experiment in CASP3. Protein Eng, 1999; 12(11):899-907
    9. Mirny LA, Finkelstein AV, Shakhnovich EL Statistical significance of protein structure prediction by threading. Proc Natl Acad Sci USA, 2000; 97(18):9978-9983
    10. Chang I, Cieplak M, Dima RI, Maritan A, Banavar JR. Protein threading bylearning. Proc Natl Acad Sci USA, 2001; 98(25):14350-14355
    11. Wallner B, Fang H, Elofsson A. Automatic consensus-based fold recognition using Peons, ProQ, and Pmodeller. Proteins, 2003; 53 Suppl 6:534-541
    12. McGuffin LJ, Jones DT. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics, 2003; 19(7):874-881
    13. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997; 25(17):3389-3402
    14. Rychlewski L, Jaroszewski L, Li W, Godzik A. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci, 2000; 9(2):232-241
    15. Yona G, Levitt M. Within the twilight zone: a sensitive profile-profile comparison tool based on information theory. J Mol Biol, 2002; 315(5):1257-1275
    16. Mittelman D, Sadreyev R, Grishin N. Probabilistic scoring measures for profile-profile comparison yield more accurate short seed alignments. Bioinformatics, 2003; 19(12): 1531-1539
    17. Ohlson T, Wallner B, Elofsson A. Profile-profile methods provide improved fold-recognition: a study of different profile-profile alignment methods. Proteins, 2004; 57(1):188-197
    18. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol, 1993; 234(3):779-815
    19. Marti-Renom MA, Ilyin VA, Sali A. DBAli: a database of protein structure alignments. Bioinformatics, 2001; 17(8):746-747
    20. Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci, 2000; 9(9): 1753-1773
    21. Petrey D, Xiang Z, Tang CL, Xie L, Gimpelev M, Mitros T, Soto CS, Goldsmith-Fischman S, Kernytsky A, Schlessinger A, Koh IY, Alexov E, Honig B. Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling. Proteins, 2003;53 Suppl 6:430-435
    22. Wallner B, Elofsson A. All are not equal: a benchmark of different homology modeling programs. Protein Sci, 2005; 14(5): 1315-1327
    23. Levitt M. Accurate modeling of protein conformation by automatic segment matching. J Mol Biol, 1992; 226(2):507-533
    24. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res, 2003; 31(13):3381-3385
    25. Bates PA, Kelley LA, MacCallum RM, Sternberg MJ. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins, 2001; Suppl 5:39-46
    26. Koehl P, Delarue M. Mean-field minimization methods for biological . macromolecules. Curr Opin Struct Biol, 1996; 6(2):222-226
    27. Li X, Jacobson MP, Friesner RA. High-resolution prediction of protein helix positions and orientations. Proteins, 2004; 55(2):368-382
    28. Rapp CS, Friesner RA. Prediction of loop geometries using a generalized born model of solvation effects. Proteins, 1999; 35(2): 173-183
    29. Zhang C, Liu S, Zhou Y. Accurate and efficient loop selections by the DFIRE-based all-atom statistical potential. Protein Sci, 2004; 13(2):391-399
    30. Michalsky E, Goede A, Preissner R. Loops In Proteins (LIP)~a comprehensive loop database for homology modelling. Protein Eng, 2003; 16(12):979-985
    31. Deane CM, Blundell TL. CODA: a combined algorithm for predicting the structurally variable regions of protein models. Protein Sci, 2001;10(3):599-612
    32. Canutescu AA, Shelenkov AA, Dunbrack RL, Jr. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci, 2003; 12(9):2001-2014
    33. Jiang L, Kuhlman B, Kortemme T, Baker D. A "solvated rotamer" approach to modeling water-mediated hydrogen bonds at protein-protein interfaces. Proteins, 2005; 58(4):893-904
    34. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM. Stereochemical quality of protein structure coordinates. Proteins, 1992; 12(4):345-364
    35. Schneider G, Todt T, Wrede P. De novo design of peptides and proteins: machine-generated sequences by the PROSA program. Comput Appl Biosci, 1994; 10(1):75-77
    36. Janin J, Henrick K, Moult J, Eyck LT, Sternberg MJ, Vajda S, Vakser I, Wodak SJ. CAPRI: a Critical Assessment of PRedicted Interactions. Proteins, 2003; 52(1):2-9
    37. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci USA, 1992; 89(6):2195-2199
    38. Aloy P, Querol E, Aviles FX, Sternberg MJ. Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. J Mol Biol, 2001; 311(2):395-408
    39. Chen R, Li L, Weng Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins, 2003; 52(1):80-87
    40. Mandell JG, Roberts VA, Pique ME, Kotlovyi V, Mitchell JC, Nelson E, Tsigelny I, Ten Eyck LF. Protein docking using continuum electrostatics and geometric fit. Protein Eng, 2001; 14(2):105-113. 41. Smith GR, Sternberg MJ, Bates PA. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. J Mol Biol, 2005; 347(5): 1077-1101
    42. Camacho CJ, Gatchell DW. Successful discrimination of protein interactions. Proteins, 2003; 52(1):92-97
    43. Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics, 2004; 20(1):45-50
    44. Berchanski A, Shapira B, Eisenstein M. Hydrophobic complementarity in protein-protein docking. Proteins, 2004; 56(1):130-142
    45. Gardiner EJ, Willett P, Artymiuk PJ. Protein docking using a genetic algorithm. Proteins, 2001; 44(1):44-56
    46. Taylor JS, Burnett RM. DARWIN: a program for docking flexible molecules. Proteins, 2000; 41(2):173-191
    47. Wang C, Schueler-Furman O, Baker D. Improved side-chain modeling for protein-protein docking. Protein Sci, 2005; 14(5): 1328-1339
    48. Pierce B, Tong W, Weng Z. M-ZDOCK: a grid-based approach for Cn symmetric multimer docking. Bioinformatics, 2005; 21(8): 1472-1478
    49. Ben-Zeev E, Eisenstein M. Weighted geometric docking: incorporating external information in the rotation-translation scan. Proteins, 2003; 52(1):24-27
    50. Ma XH, Li CH, Shen LZ, Gong XQ, Chen WZ, Wang CX. Biologicallyenhanced sampling geometric docking and backbone flexibility treatment with multiconformational superposition. Proteins, 2005; 60(2):319-323
    51. Fitzjohn PW, Bates PA. Guided docking: first step to locate potential binding sites. Proteins, 2003; 52(1):28-32
    52. Komatsu K, Kurihara Y, Iwadate M, Takeda-Shitaka M, Umeyama H. Evaluation of the third solvent clusters fitting procedure for the prediction of protein-protein interactions based on the results at the CAPRI blind docking study. Proteins, 2003; 52(1): 15-18
    53. Lorber DM, Udo MK, Shoichet BK. Protein-protein docking with multiple residue conformations and residue substitutions. Protein Sci, 2002; ll(6):1393-1408
    54. Li CH, Ma XH, Chen WZ, Wang CX. A protein-protein docking algorithm dependent on the type of complexes. Protein Eng, 2003; 16(4):265-269
    55. Fernandez-Recio J, Totrov M, Abagyan R. Identification of protein-protein interaction sites from docking energy landscapes. J Mol Biol, 2004; 335(3):843-865
    56. Norel R, Sheinerman F, Petrey D, Honig B. Electrostatic contributions to protein-protein interactions: fast energetic filters for docking and their physical basis. Protein Sci, 2001; 10(11):2147-2161
    57. Shen LZ, Li CH, Ma XH. Scoring function for other-type protein complex. Acta Phys Chim Sin, 2006; 22(5):623-627
    58. Shen LZ, ma XH, Li CH. Complex-type-dependent scoring functions in protein-protein docking. European biophysics Journal with biophysics Letters(EBSA), 2005; 34(6):745
    59. Palma PN, Krippahl L, Wampler JE, Moura JJ. BiGGER: a new (soft) docking algorithm for predicting protein interactions. Proteins, 2000; 39(4):372-384
    60. Li Z, Scheraga HA. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA, 1987; 84(19):6611-6615
    61. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. Geometry-based flexible and symmetric protein docking. Proteins, 2005; 60(2):224-231
    62. Rohl CA, Strauss CE, Misura KM, Baker D. Protein structure prediction using Rosetta. Methods Enzymol, 2004; 383:66-93
    63. Reichert JM. Trends in the development of therapeutic anti-cytokine antibodies. Drug Discov Today, 2004; 9(8):348
    64. Ewert S, Huber T, Honegger A, Pluckthun A. Biophysical properties of human antibody variable domains. J Mol Biol, 2003; 325(3):531-553
    65. Bruggemann M, Winter G, Waldmann H, Neuberger MS. The immunogenicity of chimeric antibodies. J Exp Med, 1989; 170(6):2153-2157
    66. Foote J, Winter G. Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol, 1992; 224(2):487-499
    67. Mian IS, Bradwell AR, Olson AJ. Structure, function and properties of ? antibody binding sites. J Mol Biol, 1991; 217(1): 133-151
    68. Colnot DR, Roos JC, de Bree R, Wilhelm AJ, Kummer JA, Hanft G, Heider KH, Stehle G, Snow GB, van Dongen GA. Safety, biodistribution, pharmacokinetics, and immunogenicity of 99mTc-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with squamous cell carcinoma of the head and neck. Cancer Immunol Immunother, 2003; 52(9):576-582
    69. Ritter G, Cohen LS, Williams C, Jr., Richards EC, Old LJ, Welt S. Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. CancerRes, 2001; 61 (18):6851-6859
    70. Delagrave S, Catalan J, Sweet C, Drabik G, Henry A, Rees A, Monath TP, Guirakhoo F. Effects of humanization by variable domain resurfacing on the antiviral activity of a single-chain antibody against respiratory syncytial virus. Protein Eng, 1999; 12(4):357-362
    71. Veselovsky AV, Ivanov AS. Strategy of computer-aided drug design. Curr Drug Targets Infect Disord, 2003; 3(1):33-40
    72. Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. Protein-protein interfaces: architectures and interactions in protein-protein interfaces and in protein cores. Their similarities and differences. Crit Rev Biochem Mol Biol, 1996; 31(2):127-152
    73. Kuntz ID. Structure-based strategies for drug design and discovery. Science, 1992; 257(5073): 1078-1082
    74. Sen TZ, Kloczkowski A, Jernigan RL, Yan C, Honavar V, Ho KM, Wang CZ, Ihm Y, Cao H, Gu X, Dobbs D. Predicting binding sites of hydrolase-inhibitor complexes by combining several methods. BMC Bioinformatics, 2004; 5:205
    75. Sotriffer CA, Flader W, Winger RH, Rode BM, Liedl KR, Varga JM. Automated docking of ligands to antibodies: methods and applications. Methods, 2000; 20(3):280-291
    76. Nani FK, Oguztoreli MN. Modelling and simulation of Rosenberg-type adoptive cellular immunotherapy. IMA J Math Appl Med Biol, 1994; ll(2):107-147
    77. Faro J, Carneiro J, Velasco S. Further studies on the problem of immune network modelling. J Theor Biol, 1997; 184(4):405-421
    78. Al-Lazikani B, Lesk AM, Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol, 1997; 273(4):927-948
    79. Whitelegg NR, Rees AR. WAM: an improved algorithm for modelling antibodies on the WEB. Protein Eng, 2000; 13(12):819-824
    80. Kabat EA, Wu TT. Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. J Immunol, 1991; 147(5):1709-1719
    81. Case DA, Cheatham TE, 3rd, Darden T, Gohlke H, Luo R, Merz KM, Jr., Onufriev A, Simmerling C, Wang B, Woods RJ. The Amber biomolecular simulation programs. J Comput Chem, 2005; 26(16):1668-1688
    82. Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A, 1981; 78(6):3824-3828
    83. Welling GW, Weijer WJ, van der Zee R, Welling-Wester S. Prediction of sequential antigenic regions in proteins. FEBS Lett, 1985; 188(2):215-218
    84. Stanfield RL, Fieser TM, Lerner RA, Wilson IA. Crystal structures of an antibody to a peptide and its complex with peptide antigen at 2.8 A. Science, 1990;248(4956):712-719
    85. Rini JM, Schulze-Gahmen U, Wilson IA. Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science, 1992; 255(5047):959-965
    86. Guddat LW, Shan L, Anchin JM, Linthicum DS, Edmundson AB. Local and transmitted conformational changes on complexation of an anti-sweetener Fab. J Mol Biol, 1994; 236(1):247-274
    87. Ku XM, Liao CG, Li Y, Yang XM, Yang B, Yao XY, Wang L, Kong LM, Zhao P, Chen ZN. Epitope Mapping of Series of Monoclonal Antibodies Against the Hepatocellular Carcinoma-associated Antigen HAbl8G/CD147. Scand J Immunol, 2007; 65(5):435-443
    88. Nabeshima K, Suzumiya J, Nagano M, Ohshima K, Toole BP, Tamura K, Iwasaki H, Kikuchi M. Emmprin, a cell surface inducer of matrix metalloproteinases (MMPs), is expressed in T-cell lymphomas. J Pathol, 2004; 202(3):341-351
    89. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer, 2001; 1(2): 118-129
    90. Padlan EA. A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol Immunol, 1991; 28(4-5):489-498
    91. Novotny J, Handschumacher M, Haber E, Bruccoleri RE, Carlson WB, Fanning DW, Smith JA, Rose GD. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc Natl Acad Sci U S A, 1986; 83(2):226-230
    92. Padlan EA. Anatomy of the antibody molecule. Mol Immunol, 1994; . 31(3):169-217
    93. Padlan EA, Abergel C, Tipper JP. Identification of specificity-determining residues in antibodies. Faseb J, 1995; 9(1):133-139
    94. Kashmiri SV, De Pascalis R, Gonzales NR, Schlom J. SDR grafting-a new approach to antibody humanization. Methods, 2005; 36(1):25-34
    95. MacCallum RM, Martin AC, Thornton JM. Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol, 1996; 262(5):732-745
    96. Retter I, Althaus HH, Munch R, Muller W. VBASE2, an integrative V gene database. Nucleic Acids Res, 2005; 33(Database issue):D671-674
    97. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997;18(15):2714-2723
    98. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem, 2004; 25(13): 1605-1612
    99. Pedersen JT, Henry AH, Searle SJ, Guild BC, Roguska M, Rees AR. Comparison of surface accessible residues in human and murine immunoglobulin Fv domains. Implication for humanization of murine antibodies. J Mol Biol, 1994; 235(3):959-973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700