Ⅲ族氮化物半导体外延层薄膜的生长与表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以Ⅲ族氮化物为研究对象的固体发光技术,带动了与之密切相关的蓝光、绿光和发光二极管(Light-emitting Diode,LED)照明与紫外探测器的应用。在这个方兴未艾的领域里,虽然很多技术瓶颈已经取得了突破,但是仍然有不少问题尚未解决,例如,虽然紫外半导体激光器和紫外LED、绿光LED技术已经取得了长足的进步,但它们的内量子效率仍然不高;即使是蓝光LED内量子效率已经很高了,但是随着工作电流的增加,其输出效率会急速降低(Efficiency-Droop Effect)。我们知道,位错的量级在固体发光特性中扮演着非常重要的角色,是引起发光效率降低的主要因素。因此,在Ⅲ族氮化物半导体器件大规模商业化的同时,对Ⅲ族氮化物外延层薄膜结晶质量做更进一步的提高依然十分重要;对Ⅲ族氮化物半导体外延层薄膜生长和表征的深入研究依然是当前的研究热点。本文从Ⅲ族氮化物半导体材料的生长和表征出发,重点研究了AlGaN、InGaN的生长和表征技术、GaN非谐效应的变温Raman散射以及LED发光转变机制的低频噪声表征等问题。主要的成果如下:
     1.提高AlGaN外延层结晶质量的低温加高温AlN成核层技术的生长与表征
     采用金属有机化学气相沉积(Metal-Organic Chemical Vapor Deposition,MOCVD)法,通过在高温AlN成核层与衬底之间插入一薄层低温AlN成核层结构,有利于提高AlGaN外延层的结晶质量。通过高分辨XRD结果表明,AlGaN外延层薄膜的线位错密度明显降低;原子力显微镜(Atomic Force Microscope,AFM)结果表明,AlGaN外延层的表面相貌得到改善,表面粗糙度降低。
     2. AlGaN外延层结晶质量进一步提高的自支撑GaN衬底与低温加高温AlN
     成核层技术的生长与表征
     采用低温加高温AlN成核层的MOCVD法生长AlGaN外延层,通过与蓝宝石衬底进行对比,研究了AlGaN外延层的相关缺陷行为和发光特性。发现以自支撑GaN衬底生长的AlGaN外延层,虽然表面形貌的起伏较大,但结晶质量和发光性质均得到了明显地提高,刃位错密度和总位错密度得到了较大幅度的降低。
     3.温度对InGaN外延层薄膜结晶质量的影响
     在不同温度下,对InGaN外延层薄膜的发光特性与结晶质量和In组分之间的关系进行了研究。提出在较低温度(650℃)时生长的InGaN外延层薄膜,在In组分(15.36%)较高时InGaN外延层的结晶质量、表面形貌与发光特性均得到了明显地提高,线位错密度明显降低。
     4.插入AlN成核层结构的InGaN/GaN MQW LED光电转换效率的模拟研究
     采用STR公司的SimuLED5.2软件,对插入AlN成核层结构的多量子阱LED的能带结构、发射光谱、Auger电流密度、非辐射复合电流等方面进行模拟研究。结论表明,插入AlN成核层结构的多量子阱具有较高的内量子效率;随着偏置电压的逐渐增大,IQE下降幅度较小。
     5. GaN外延层的非谐效应进行变温Raman表征
     通过对不同温度段(整个测试温度段,高温段和临界温度)Raman频移与温度的分析,提出了采用一阶指数衰减数学模型,可以对样品的非谐效应进行对比。在忽略高能声子衰变的情况下,进一步采用该模型还可以计算出热膨胀系数或者Grüneisen参数。
     6. InGaN/GaN多量子阱发光二极管发光机制转变的低频电流噪声表征
     以低频1/f噪声理论为依据,研究了InGaN/GaN多量子阱(Multiple QuantumWell,MQW)发光二极管(Light-emitting Diode,LED)发光机制转变的低频噪声表征方法。在电流从0.1mA到10mA之间变化时,对InGaN/GaN多量子阱结构LED的电流1/f噪声进行了测试,结论表明:(1)随着电流逐渐增大,InGaN/GaN多量子阱结构发光二极管的电流噪声从产生复合噪声(Generation-recombination,g-r)类型逐渐过渡为低频1/f噪声;(2)载流子的复合机制从非辐射复合过渡为载流子之间的辐射复合,并具有标准1/f噪声谱的趋势。
In the past few decade, Ⅲ-nitride (GaN, AlN and InN) and its compounds arebeing established as materials of extreme significance for the next generationhigh-density power devices for applications in solid state lighting field, includingblue-light, green-light and visible-light light-emitting diodes (LED), ultraviolet LEDand detector in deep space exploration. After a long-period of development and research,many key obstacles in this field have been achieved progress. However, there stillremain many problems expecting to be solved. For example, although the opticalefficiency have made great progress in semiconductor lasers, ultraviolet LEDs andgreen-light LEDs, there still existed the lower internal quantum efficiency (IQE). It wasfound that IQE will drop rapidly with increasing current for blue-light LEDs possessedhigher IQE value, which is called as efficiency-droop effect. It is well known that theorder magnitude of dislocation density plays a key role in solid state lighting, andbecomes an important factor that caused the efficiency reduce. Therefore, it is importantto study deeply and character the primary problems in materials and devices ofⅢ-nitride epitaxial films for large-scale and commercialization. This thesis studied thegrowth and characterization based on AlGaN, InGaN epifilms, anharmonic effect ofGaN epifilms using dependent-temperature Raman scattering and transition mechanismfor InGaN/GaN MQW LEDs using low-frequency noise. The main research results areas follows:
     (1) Growth and characterization of AlGaN layer by combining low-temperatureand high-temperature AlN nucleation layer on c-plane sapphire substrate
     Thick AlGaN layer on c-plane sapphire substrate with low-temperature AlN(LT-AlN) and high-temperature AlN (HT-AlN) nucleation layers have been grown bylow-pressure metal-organic chemical vapor deposition (LPMOCVD). Results indicatethat the insertion of LT-AlN nucleation layer between sapphire substrate andhigh-temperature AlN nucleation layer improves effectively crystal quality, reduces thesurface roughness and eliminates the threading dislocation density.
     (2) Growth and characterization of AlGaN layer on c-plane sapphire substrate andfree-standing GaN substrate
     Thick AlGaN epilayers have been grown on c-plane sapphire substrate andfree-standing GaN substrate using LT-AlN nucleation layers by LPMOCVD. Resultsindicate that crystal quality can be improved greatly when grown on the free-standingGaN substrate. We calculated the threading dislocation density and found that AlGaN epifilm grown on free-standing GaN substrate is much lower in total threadingdislocation density than that grown on sapphire substrate, although surface morphologyis rougher than that of sapphire substrate.
     (3) Influence of growth temperature on crystal quality of InGaN epifilms
     We studied the relationships between luminescence properties, crystal quality ofInGaN epifilms and In fraction under different different growth temperatures. Resultsshow that InGaN epitaxial layers possessed better crystal quality and luminescenceproperties when indium fraction increases from4.36%to15.36%at a lower temperature(650℃), and InGaN epifilms have an improved crystal quality, a lower threadingdislocation density and smoother surface morphology.
     (4) Studying the wall plug efficiency for inserting an AlN nucleation layer inInGaN/GaN MQW LEDs using simulation
     We have employed the software named SimuLED5.2to study the wall plugefficiency for InGaN/GaN multiple quantum well (MQW) LEDs based on Chapter IV.We compared the band diagram, emission spectra, non-radiative recombination currentand internal quantum efficiency of the convention InGaN/GaN LEDs with insertionHT-AlN nucleation layer of InGaN/GaN MQW LEDs. Conclusions show that insertingan AlN nucleation layer in InGaN/GaN MQW LEDs is beneficial to IQE, and IQE has alittle reduction with the increasing bias voltage.
     (5) Studying the relationships between Raman shifts and temperature range fora-plane GaN using temperature-dependent Raman scattering
     Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates byLPMOCVD are investigated. We studied the relationships between Raman shift andtemperature for conventional a-plane GaN epilayer with insertion AlN/AlGaNsuperlattice layers for a-plane GaN epilayer using temperature-dependent Ramanscattering. Results indicate that a critical temperature existed in the first-orderexponential decay model, which can characterize anharmonic effect of a-plane GaN indifferent temperature ranges. Further studies can calculate the thermal expansioncoefficient or Grüneisen parameters.
     (6) Charactering the transition mechanism for InGaN/GaN MQW LEDs usinglow-frequency noise
     The transition mechanism of InGaN/GaN MQW LEDs was investigated using thetool of low-frequency noise within the current range from0.1mA to10mA. We havestudied the relationships between power spectral density (PSD) of low-frequency noiseand frequency. Results indicated that PSD of low-frequency noise increased with thecurrent from0.1mA to10mA. At lower current range (I<1mA), it is g-r (generation-recombination) noise origin that dominated in low-frequency noise; and athigher current range (I>10mA), it is1/f noise origin that dominated in low-frequencynoise. There existed a transition mechanism in InGaN/GaN MQW LEDs between0.1mA to10mA, which indicated that the recombination mechanism of carriers fromnon-radiative recombination to stable carriers number fluctuation.
引文
[1] Zhang Li. Vibrating modes and dispersive spectra of full polar optical phonons inwurtzite GaN/AlGaN rectangular nanowires[J]. Superlattices and Microstructures.2012.52(1):134-146.
    [2] Zhao D G, Jiang D S, Wu L L, et al. Effect of dual buffer layer structure on theepitaxial growth of AlN on sapphire[J]. Journal of Alloys and Compounds.2012.544:94-98.
    [3] Xu ShengRui, Lin ZhiYu, Xue XiaoYong, et al. Comparative Study of theCharacteristics of the Basal Plane Stacking Faults of Nonpolara-Plane and Semipolar(11-22) GaN[J]. Chin.Phys. Lett.2012.29(1):017803.
    [4] S. C.Jain, M.Willander, J.Narayan, et al. Ⅲ–nitrides: Growth, characterization, andproperties[J]. J.Appl.Phys.2000.87(3):965-1006.
    [5] J.Wu, R.Palai, W.M.Jadwisienczak, et al. Bandgap engineering in MBE grownAl1-xGaxN epitaxial columnar nanostructures[J]. J. Phys. D: Applied Physics.2012.45(1):015104.
    [6] J.I.Pankove, E.A.Miller, J.E.Berkeyheiser. GaN blue light-emitting diodes[J].J.Lumin.1972.5:84-86.
    [7] S.Nakamura, T.Mukai, M.Senoh. Candela-class high-brightness InGaN/AlGaNdouble-heterosturcture blue-light-emitting diodes[J]. Appl.Phys.Lett.1994.64:1687-1689.
    [8]孔洁莹,张荣,刘斌等. MOCVD制备InN薄膜的光学性质[J],半导体学报.2007.28(11):1761-1763
    [9]王占国,郑有炓等.半导体材料进展[M],2012,高等教育出版社,第一版:pp335.
    [10] Isamu Akasaki, Hiroshi Amano. Crystal Growth and Conductivity Control ofGroup Ⅲ-Nitride Semiconductors and Their Application to Short Wavelength LightEmitters[J]. Jpn J. Appl. Phys.1997.36(Part1, No.9A):5393-5408.
    [11] O.Ambacher. Growth and applications of Group Ⅲ-nitrides[J]. J. Phys. D: Appl.Phys.1998.31:2653.
    [12] M.Van Schilfgaarde, A.Sher, A.B.Chen. Theory of AlN, GaN, InN and theiralloys[J]. J.Cryst.Growth.1997.178:8.
    [13] S.L.Chuang and C.S.Chang. k p method for strained wurtzite semiconductors[J].Phys.Rev. B.1996.54:2491.
    [14] D.J. Dugdale, S. Brandt, and R.A. Abram. Direct calculations of k p parametersfor wurtzite AlN, GaN, and InN[J]. Phys.Rev. B.2000.61:12933.
    [15] H.P.Maruska and J.J.Tietjen. The preparation and properties of vapor-depositedsingle crystal line GaN[J]. Appl.Phys.Lett.1969.15(10):327-329.
    [16] J.E.Andrews and M.A.Littlejohn. Growth of GaN Thin-Films fromTriethylgallium Monamine[J]. J Electrochem Soc: Solid-state science and technology.1975.122:1273-1276.
    [17] Takao Nagatomo, Takeshi Kuboyama, Hiroyuki Minamino, et al. Properties ofGa1-xInxN Films Prepared by MOVPE[J]. Jpn J. Appl. Phys.1989.28:1334-1336.
    [18]江剑平,孙成城.异质结原理与器件[M].电子工业出版社.2010第一版:pp216.
    [19] N.Yoshimoto, T.Matsuoka, T.Sasaki, et al. Photoluminescence of InGaN filmsgrown at high temperature by metalorganic vapor phase epitaxy[J]. Appl.Phys.Lett.1991.59(18):2251-2253.
    [20] S.Nakamura and T.Mukai. High-Quality InGaN Films Grown on GaN Films[J].Jpn J. Appl. Phys.1992.31:1457-1459.
    [21] Moon Sung Kang, Chul-Ho Lee, Jun Beom Park, et al., Gallium nitridenanostructures for light-emitting diode applications[J]. Nano Energy,2012.1(3):391-400.
    [22] Duan Huantao, Hao Yue, and Zhang Jincheng. Effect of nucleation layermorphology on crystal quality, surface morphology and electrical properties ofAlGaN/GaN heterostructures[J]. Journal of semiconductors,2009.30(10):105002.
    [23]段焕涛,基于高温AIN成核层的GaN基异质结构材料生长研究[D],2011.06.
    [24] M.Kneissl, C.Chua, V.Kueller, et al. Advances in group Ⅲ-nitride-based deep UVlight-emitting diode technology[J]. Semicon.Sci.Technol.2011.26:014036.
    [25] Elias Towe and K.Tarun. Shortwave Semiconductor Laser: Lattice constant is keyto group Ⅲ-nitride-based UV light emitters[J]. Laser Focus World2011.47(9):17-19.
    [26]许晟瑞,非极性和半极性GaN的生长及特性研究[D],2010.12.
    [27]叶志镇,吕建国,吕斌.半导体薄膜技术与物理[M].2008年9月,浙江大学出版社: pp95.
    [28] VYTAUTAS LIUOLIA, Localization effects in ternary nitride semiconductors,Doctoral Thesis in Microelectronics and Applied Physics,Stockholm, Sweden2012.
    [29] V.Darakchieva, P.P.Paskov, T.Paskova, et al. Lattice parameters of GaN layersgrown on a-plane sapphire: Effect of in-plane strain anisotropy[J]. Appl.Phys Lett.2003.82:703-705.
    [30] Masihhur R.Laskar, Tapas Ganguli, A.A.Rahman, et al. Distorted wurtzite unitcells: Determination of lattice parameters of nonpolar a-plane AlGaN and estimation ofsolid phase Al content[J]. J.Appl.Phys.2011.109(1):013107.
    [31] H.Angerer, D.Brunner, F.Freudenberg, et al. Determination of the Al mole fractionand the band gap bowing of epitaxial AlGaN films[J]. Appl.Phys.Lett.1997.71:1504-1506.
    [32] L.Filippidis, H.Siegle, A.Hoffmann, et al. Raman frequencies and angulardispersion of polar modes in AlN and GaN[J]. Phys.Stat.Sol.(b).1996.198:621-627.
    [33] V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, et al. Phonon dispersion andRaman scattering in hexagonal GaN and AlN[J]. Phys.Rev.B.1998.58(19):12899-12907.
    [34] V.P.Kladko, A.F.Kolomys, M.V.Slobodian, et al. Internal strains and crystalstructure of the layers in AlGaN/GaN heterostructures grown on a sapphire substrate J].J.Appl.Phys.2009.105(6):063515.
    [35] Hung Chiao Lin, Zhe Chuan Feng, Ming Song Chen, et al. Raman scattering studyon anisotropic property of wurtzite GaN[J]. J.Appl.Phys.2009.105(3):036102.
    [36] T.Batten, A.Manoi, M.J.Uren, et al. Temperature analysis of AlGaN/GaN baseddevices using photoluminescence spectroscopy: Challenges and comparison to Ramanthermography[J]. J.Appl.Phys.2010.107(7):074502.
    [37] Anwar Hushur, Murli H.Manghnani, Jagdish Narayan. Raman studies ofGaN/sapphire thin film heterostructures[J]. J. Appl. Phys.2009.106(5):054317.
    [38] M.M.Bulbul, S.R.P.Smith, B.Obradovic,et al. Raman spectroscopy of opticalphonons as a probe of GaN epitaxial layer structural quality[J]. Eur. Phys. J. B.2000.14:423-429.
    [39] J.M.Wagner and F.Bechstedt. Phonon deformation potentials of α-GaN and α-AlN:An ab initio calculation[J]. Appl.Phys.Lett.2000.77(3):346.
    [40] J.Han, K.E.Waldrip, S.R.Lee, et al. Control and elimination of cracking of AlGaNusing low-temperature AlGaN interlayers[J]. Appl.Phys.Lett.2001.78:67-69.
    [41] Wang Dang-Hui, Zhou Hao, Zhang Jin-Cheng, et al. Study on growing thickAlGaN layer on c-plane sapphire substrate and free-standing GaN substrate[J]. ScienceChina Physics, Mechanics and Astronomy.2012.55(12):2283-2288.
    [42] S.Nuttinck, E.Gebara, J.Laskar, et al. Development of GaN wide bandgaptechnology for microwave power applications[J]. Microwave Magazine, IEEE.2002.3(1):80-87.
    [43] Wang Dang-Hui, Hao Yue, Xu Sheng-Rui, et al. Reducing dislocations of thickAlGaN epilayer by combining low-temperature AlN nucleation layer on c-planesapphire substrates[J]. J. Alloys and Compounds:2013.555(5):311-314.
    [44] M.Iwaya, S.Terao, T.Sano, et al. Suppression of phase separation of AlGaN duringlateral growth and fabrication of high-efficiency UV-LED on optimized AlGaN[J]. J.Cryst. Growth.2002.237:951-955.
    [45] H.Amano, N.Sawaki, I.Akasaki, et al. Metalorganic vapor phase epitaxial growthof a high quality GaN film using an AlN buffer layer[J]. Appl.Phys.Lett.1986.48(5):353-355.
    [46] S. Nakamura. GaN Growth Using GaN Buffer Layer[J]. Jpn J. Appl. Phys.1991.30: L1705-L1707.
    [47] V.Kueller, A.Knauer, F.Brunner, et al. Growth of AlGaN and AlN on patternedAlN/sapphire templates[J]. J.Cryst.Growth.2011.315(1):200-203.
    [48] A.Redondo-Cubero, R.Gago, F.González-Posada, et al. Aluminium incorporationin AlxGa1-xN/GaN heterostructures: A comparative study by ion beam analysis andX-ray diffraction[J]. Thin Solid Films.2008.516(23):8447-8452.
    [49] S.V.Novikov, C.R.Staddon, R.E.L.Powell, et al. Wurtzite AlxGa1-xN bulk crystalsgrown by molecular beam epitaxy[J]. J.Cryst.Growth.2011.322(1):23-26.
    [50] H.S.Ahn, K.H.Kim, M.Yang, et al. Growth of thick AlGaN by mixed-sourcehydride vapor phase epitaxy[J]. Applied Surface Science.2005.243(1-4):178-182.
    [51] M.Z.Peng, L.W.Guo, J.Zhang, et al. Reducing dislocations of Al-rich AlGaN bycombining AlN buffer and AlN/Al0.8Ga0.2N superlattices[J]. J.Cryst.Growth.2008.310(6):1088-1092.
    [52] B.Heying, X.H.Wu, S.Keller, et al. Role of threading dislocation structure on thex-ray diffraction peak widths in epitaxial GaN films[J]. Appl.Phys.Lett.1996.68(5):643-645.
    [53] Y.Fu, Y.T.Moon, F.Yun, et al. Effectiveness of TiN porous templates on thereduction of threading dislocations in GaN overgrowth by organometallic vapor-phaseepitaxy[J]. Appl.Phys.Lett.2005.86(04):043108.
    [54] C.S.Gallinat, G.Koblmuller, Feng Wu, et al. Evaluation of threading dislocationdensities in In-and N-face InN[J]. J.Appl.Phys.2010.107(5):053517.
    [55] Zhang YuChao, Xing ZhiGang, Ma ZiGuang, et al. Threading dislocation densitycomparison between GaN grown on the patterned and conventional sapphire substrateby high resolution X-ray diffraction[J]. Science China Physics, Mechanics andAstronomy.2010.53(3):465-468.
    [56] K.T.Lam, C.L.Yu, P.C.Chang, et al. AlGaN/GaN heterostructure grown on1o-tiltsapphire substrate by MOCVD[J]. Superlattices and Microstructures.2008.43(3):147-152.
    [57] M.Leroux, F.Semond, F.Natali, et al. About some optical properties ofAlxGa1-xN/GaN quantum wells grown by molecular beam epitaxy[J]. Superlattices andMicrostructures.2004.36(4-6):659-674.
    [58] Poul Georg Moses and Chris G.Van de Walle. Band bowing and band alignment inInGaN alloys[J]. Appl.Phys.Lett.2010.96:021908.
    [59] Y.Guo, X.L.Liu, H.P.Song, et al. A study of indium incorporation in In-rich InGaNgrown by MOVPE[J]. Applied Surface Science.2010.256(10):3352.
    [60] Lin Zhi-Yu, Zhang Jin-Cheng, Zhou Hao, et al. Influence of double AlN bufferlayers on the qualities of GaN films prepared by metal-organic chemical vapourdeposition[J].2012.21(12):126804.
    [61] S.R.Lee, A.F.Wright, M.H.Crawford, et al.The band-gap bowing of AlxGa1-xNalloys[J]. Appl.Phys.Lett.1999.74:3344.
    [62] V.Yu.Davydov, I.N.Goncharuk, A.N.Smirnov, et al. Composition dependence ofoptical phonon energies and Raman line broadening in hexagonal AlxGa1-xN alloys[J].Phys.Rev.B.2002.65:125203.
    [63] M.Yoshikawa, J.Wagner, H.Obloh, et al. Resonant Raman scattering from buriedAlxGa1-xN (x<0.17) layers in (Al, Ga, In) N heterostructures[J]. J.Appl.Phys.2000.87(6):2853.
    [64] M.Kuball, F.Demangeot, J.Frandon, et al. Degradation of AlGaN duringhigh-temperature annealing monitored by ultraviolet Raman scattering[J].Appl.Phys.Lett.1999.74(4):549-551.
    [65] C. McAleese, M.J.Kappers, F.D. G.Rayment, et al. Strain effects of AlNinterlayers for MOVPE growth of crack-free AlGaN and AlN/GaN multilayers onGaN[J]. J.Cryst.Growth.2004.272(1-4):475-480.
    [66] Yong Gon Seo, Kwang Hyeon Baik, Hooyoung Song, et al. Orange a-planeInGaN/GaN light-emitting diodes grown on r-plane sapphire substrates[J]. OpticsExpress.2011.19(14):12919-12924.
    [67] F. K.Yam, Z.Hassan. InGaN: An overview of the growth kinetics, physicalproperties and emission mechanisms[J]. Superlattices and Microstructures.2008.43(1):1-23.
    [68] N.Yoshimoto, T.Matsuoka, T. Sasaki, and A. Katsui. Photoluminescence of InGaNfilms grown at high temperature by metalorganic vapor phase epitaxy[J].Appl.Phys.Lett.1991.59:2251-2253.
    [69] F. A. Ponce and D. P. Bour. Nitride-based semiconductors for blue and greenlight-emitting devices[J]. Nature.1997.386:351-359.
    [70] Ho.I-hsiu, G.B.Stringfellow. Solid phase immiscibility in GaInN[J]. Appl. Phys.Lett.1996.69:2701-2703.
    [71] G. B.Stringfellow. Microstructures produced during the epitaxial growth of InGaNalloys[J]. J.Cryst.Growth.2010.312(6):735-749.
    [72] Yukio Narukawa, Yoichi Kawakami, Mitsuru Funato, et al. Role of self-formedInGaN quantum dots for exciton localization in the purple laser diode emitting at420nm[J]. Appl.Phys.Lett.1997.70(8):981-984.
    [73] Désirée Queren, Marc Schillgalies, Adrian Avramescu, et al. Quality and thermalstability of thin InGaN films[J]. J.Cryst.Growth.2009.311(10):2933-2936.
    [74] M. S. Jeong, J. Y. Kim, Y.-W. Kim, et al. Spatially resolved photoluminescence inInGaN/GaN quantum wells by near-field scanning optical microscopy[J].Appl.Phys.Lett.2001.79(7):976-978.
    [75] Shuji Nakamura, Takashi Mukai and Masayuki Senoh. Si-Doped InGaN FilmsGrown on GaN Films[J]. Jpn J. Appl. Phys.1993.32: L16-L19.
    [76] Tao Tao, Zhao Zhang, Lian Liu, et al. Surface morphology and compositionstudies in InGaN/GaN film grown by MOCVD[J]. Journal of Semiconductors.2011.32(8):083002.
    [77] Dang-Hui Wang, Sheng-Rui Xu, Jin-Cheng Zhang, et al. Growth of InGaN Filmson c-plane Sapphire Substrates with an AlN Nucleation Layer by Using Metal-organicChemical-Vapor Deposition. Journal of the Korean Physical Society:2012.61(4):618-622.
    [78] Yong Huang, Andrew Melton, Balakrishnam Jampana, et al. Compositionalinstability in strained InGaN epitaxial layers induced by kinetic effects[J]. J.Appl.Phys.2011.110(6):064908.
    [79] Hyun Jin Kim, Hyunseok Na, Soon-Yong Kwon, et al. Growth of In-richInGaN/GaN quantum dots by metalorganic chemical vapor deposition[J].J.Cryst.Growth.2004.269(1):95-99.
    [80] S.Yoshida. Photoluminescence measurement of InGaN and GaN grown by agas-source molecular-beam epitaxy method[J]. J. Appl. Phys.1997.81:7966-7970.
    [81] H. C.Yang, T.Y.Lin, Y. F.Chen. Persistent photoconductivity in InGaN/GaNmultiquantum wells[J]. Appl.Phys.Lett.2001.78(3):338-340.
    [82] S. D. Lester, F. A. Ponce, M. G. Craford, et al. High dislocation densities in highefficiency GaN-based ligh-emitting diodes[J]. Appl.Phys.Lett.1995.66:1249-1251.
    [83] H. K. Cho, J. Y. Lee, G. M. Yang, et al. Formation mechanism of V defects in theInGaN/GaN multiple quantum wells grown on GaN layers with low threadingdislocation density[J]. Appl.Phys.Lett.2001.79(2):215-217.
    [84] A.M. Sánchez, M. Gass, A.J. Papworth, et al. V-defects and dislocations inInGaN/GaN heterostructures[J]. Thin Solid Films.2005.479:316-320.
    [85] F. Limbach, T. Gotschke, T. Stoica, et al. Structural and optical properties ofInGaN-GaN nanowire heterostructures grown by molecular beam epitaxy[J]. J. Appl.Phys.2011.109:014309.
    [86] S.Lazic M M, J. M.Calleja, A.Trampert, K. H.Ploog. Resonant Raman scatteringin strained and relaxed InGaN/GaN multi-quantum wells[J]. Appl.Phys.Lett.2005.86(6):061905.
    [87] C. Kisielowski, J. Krüger, S. Ruvimov, et al. Strain-related phenomena in GaNthin films[J]. Phys.Rev.B1996.54:17745-17753.
    [88] G.Irmer, T.Brumme, M.Herms, et al. Anisotropic strain on phonons in a-planeGaN layers studied by Raman scattering[J]. Journal of Materials Science: Materials inElectronics.2008.19(S1):51-57.
    [89] M. R.Correia, S. Pereira, E. Pereira, et al. Raman study of the A1(LO) phonon inrelaxed and pseudomorphic InGaN epilayers[J]. Appl.Phys.Lett.2003.83(23):4761-4763.
    [90] S. Hernández, R. Cuscó, D. Pastor, L. Artús, et al. Raman-scattering study of theInGaN alloy over the whole composition range[J]. J. Appl. Phys.2005.98:013511.
    [91] S. Yu. Karpov and N. Yu. Makarov. Dislocation Effect on Light EmissionEfficiency in Gallium Nitride[J]. Appl.Phys.Lett.2002.81:4721.
    [92] Li Wang and Li ShuShen. The Stark effect on excitons in a bilayer system[J].J.Appl.Phys.2006.100(1):013512.
    [93] Li ShuShen, Xia JianBai. Binding energy of a hydrogenic donor impurity in arectangular parallelepiped-shaped quantum dot: Quantum confinement and Starkeffects[J]. J.Appl.Phys.2007.101(9):093716.
    [94] K.A.Bulashevich and S.Yu.Karpov. Is Auger recombination responsible for theefficiency rollover in Ⅲ-nitride light-emitting diodes?[J]. phys. Stat. solidi.(c).2008.5(6):2066-2069.
    [95] Xu ShengRui, Zhang JinCheng, Yang LinAn, et al. Defect reduction in (11-20)nonpolar a-plane GaN grown on r-plane sapphire using TiN interlayers[J].J.Cryst.Growth.2011.327(1):94-97.
    [96] Xu ShengRui, Hao Yue, Zhang JinCheng, et al. Improvements in a-plane GaNcrystal quality by AlN/AlGaN superlattices layers[J]. J.Cryst.Growth.2009.311(14):3622-3625.
    [97] J.Menéndez and M.Cardona. Temperature dependence of the first-order Ramanscattering by phonons in Si, Ge, and α-Sn: Anharmonic effects[J]. Phys.Rev.B.1984.29:2051-2059.
    [98] Wang DangHui, HaoYue, Zhang JinCheng, et al. Study on a-plane GaN etchingresidual stress using Raman scattering[J]. J. Optoelectr. Advanced Materials: RapidCommunications.2012.6(7-8):761-764.
    [99] F. Demangeot, J. Groenen, J. Frandon, et al. Coupling of GaN-and AlN-likelongitudinal optic phonons in Ga1-xAlxN solid solutions[J]. Appl.Phys.Lett.1998.72:2674-2676.
    [100] F.Demangeot, G.J.Frandon, M.A.Renucci et al. MRS Internet J. NitrideSemicond. Res.1997.2:40.
    [101] D. Y.Song, S. A.Nikishin, M.Holtz, et al. Decay of zone-center phonons in GaNwith A1, E1, and E2symmetries[J]. J.Appl.Phys.2007.101(5):053535.
    [102] V. M. Kaganer, O. Brandt, A. Trampert, and K. H. Ploog. X-ray diffraction peakprofiles from threading dislocations in GaN epitaxial films[J]. Phys.Rev.B2005.72:045423.
    [103] Wang DangHui, Xu ShengRui, Hao Yue, et al. Study on the relationshipsbetween Raman shifts and different temperature range for a-plane GaN usingtemperature-dependence Raman scattering[J]. Chin. Phys. B.2013.22(2):028101.
    [104]陈长乐.固体物理学,西北工业大学出版社(第六版),2008: pp156.
    [105] Yan Fawang, Gao Haiyong, Zhang Huixiao, et al. Temperature dependence of theRaman-active modes in the nonpolar a-plane GaN film[J]. J.Appl.Phys.2007.101(2):023506.
    [106] D.Y.Song, M.Basavaraj, S.A.Nikishin, et al. The influence of phonons on theoptical properties of GaN[J]. J. Appl. Phys.2006.100:113504.
    [107] W.S.Li, Z.X.Shen, Z.C.Feng, et al. Temperature dependence of Raman scatteringin hexagonal gallium nitride films[J]. J. Appl. Phys.2000.87:3332-3337.
    [108] Xue XiaoYong, Xu ShengRui, Zhang JinCheng,et al. Temperature dependencesof Raman scattering in different types of GaN epilayers[J]. Chin. Phys B.2012.21(2):027803.
    [109] D.Y.Song, V.Kuryatkov, M.Basavaraj, et al. Morphological, electrical, andoptical properties of InN grown by hydride vapor phase epitaxy on sapphire andtemplate substrates[J]. J.Appl.Phys.2006.99(11):116103.
    [110] M. Giehler, M. Ramsteiner, P. Waltereit, et al. Influence of heteroepitaxy on thewidth and frequency of the E2(high)-phonon line in GaN studied by Ramanspectroscopy[J]. J. Appl. Phys.2001.89(7):3634-3641.
    [111] I. Gorczyca, N.E.Christensen, E.L.Peltzery Blancá, et al. Optical phonon modesin GaN and AlN[J]. Phys.Rev.B.1995.51(17):11936-11939.
    [112] Haddou EL Ghazi,Anouar Jorio,Izeddine Zorkani,Mohamed Ouazzani-Jamil.Optical characterization of InGaN/AlGaN/GaN diode grown on silicon carbide[J].Optics Communications.2008.281(12):3314-3319.
    [113] Soon-Yong Kwon, Hee Jin Kim, Euijoon Yoon, et al. Optical and microstructuralstudies of atomically flat ultrathin In-rich InGaN/GaN multiple quantum wells[J]. J.Appl. Phys.2008.103(6):063509.
    [114] S. F. Chichibu, Y. Kawakami, and T. Sota. Introduction to Nitride SemiconductorBlue Lasers and Light Emitting Diodes.2000. chap-5:153-270.
    [115] Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, et al. The effect of thelast quantum barrier on the internal quantum efficiency of InGaN-light emittingdiode[J]. Appl.Phys.Lett.2008.93(10):101112-101115.
    [116] C. H.Chen, W. H.Chen, Y. F.Chen, T. Y.Lin, et al. Piezoelectric, electro-optical,and photoelastic effects in InxGa1-xN/GaN multiple quantum wells[J]. Appl.Phys.Lett.2003.83(9):1770-1772.
    [117] U. Jahn, S. Dhar, O. Brandt, et al. Exciton localization and quantum efficiency: Acomparative cathodoluminescence study of (In,Ga)N/GaN and GaN/(Al,Ga)Nquantum wells [J]. J. Appl. Phys.2003.93(2):1048-1050.
    [118] S. Dhar, U. Jahn, O. Brandt, et al. Influence of exciton localization on thequantum efficiency of GaN/(In,Ga)N multiple quantum wells grown bymolecular-beam epitaxy[J]. Appl.Phys.Lett.2002.81(4):673-675.
    [119] S.F.Chichibu, H.Yamaguchi, L.Zhao, et al. Optical properties of nearlystacking-fault-free m-plane GaN homoepitaxial films grown by metal organic vaporphase epitaxy on low defect density freestanding GaN substrates[J]. Appl.Phys.Lett.2008.92(9):091912.
    [120] S.Chichibu TS, K.Wada, and S.Nakamura. Exciton localization in InGaNquantum well devices[J]. J.Vacuum Science and Technology B.1998.16(4):2204-2214.
    [121] X. Ni, J. Lee, M. Wu, X. Li,et al. Internal quantum efficiency of c-plane InGaNand m-plane InGaN on Si and GaN[J]. Appl.Phys.Lett.2009.95(10):101106.
    [122] J. Park, J. Lee, and S. Park. Photoluminescence dependence of InGaN/GaN QWon embedded AlGaN delta-layer[J]. Optics express.2008.15:6096-6101.
    [123] Chien-Chih Kao, Yan-Kuin Su, Chuing-Liang Lin, Jian-Jhong Chen. Enhancedluminescence of GaN-based light-emitting diodes by selective wet etching ofGaN/sapphire interface using direct heteroepitaxy laterally overgrowth technique[J].Displays.2011.32(2):96-99.
    [124] Liang Meng, Wang GuoHong, Li HongJian, et al. Low threading dislocationdensity in GaN films grown on patterned sapphire substrates[J]. J.Semi.2012.33(11):113002.
    [125] Vilius Palenskis, Jonas Matukas, Sandra Pralgauskaite. Light-emitting diodequality investigation via low-frequency noise characteristics[J]. Solid-State Electronics.2010.54(8):781-786.
    [126] Milan M.Jevtic. Low frequency noise as a tool to study optocouplers withphototransistors[J]. Microelectronics Reliability.2004.44(7):1123-1129.
    [127] S.Mz. Physics semiconductor devices [M].1981.1st version: pp341.
    [128] Engin Arslan, Serkan Bütün, YaseminSafak, et al. Electrical characterization ofMS and MIS structures on AlGaN/AlN/GaN heterostructures[J]. MicroelectronicsReliability.2011.51(2):370-375.
    [129] N.S.Averkiev, A.E.Chernyakov, M.E.Levinshtein, et al. Two channels ofnon-radiative recombination in InGaN/GaN LEDs[J]. Physica B: Condensed Matter.2009.404(23-24):4896-4898.
    [130] S. Bychikhin, D. Pogany, L. K. J. Vandamme, et al. Low-frequency noise sourcesin as-prepared and aged GaN-based light-emitting diodes[J]. J. Appl. Phys.2005.97(12):123714.
    [131] S.Sawyer, S.L.Rumyantsev, M.S.Shur, et al. Current and optical noise ofGaN/AlGaN light emitting diodes[J]. J.Appl.Phys.2006.100(3):034504.
    [132] J. A. Jiménez Tejada, A. Godoy, A. Palma, et al. Generation-recombination noisein highly asymmetrical p-n junctions[J]. J. Appl. Phys.2002.92(1):320-329.
    [133] S.L.Rumyantsev, M.S.Shur, Yu.Bilenko, et al. Low-frequency noise andlong-term stability of noncoherent light sources[J]. J. Appl. Phys.2004.96(2):966-969.
    [134] S. Bychikhin, D. Pogany, L. K. J. Vandamme, et al. Low-frequency noise sourcesin as-prepared and aged GaN-based light-emitting diodes[J]. J. Appl. Phys.2005.97(12):123714.
    [135] G. H. Jessen, R. C. Fitch, J. K.Gillespie, et al. Effects of deep-level defects on
    ohmic contact and frequency performance of AlGaN/GaN high-electron-mobility
    transistors[J]. Appl.Phys.Lett.2003.83(3):485-487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700