水下浅埋暗挖隧道的覆盖层安全厚度研究及开挖工序模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国建设的蓬勃发展,涌现了各种过江跨海隧道,而水下隧道的建设将直接面临选取隧道覆盖层安全厚度的问题。据以往经验,合理的隧道覆盖层安全厚度既是水下隧道建设的一个重要经济指标,又是控制水下隧道施工和运营安全的一个重要因素。由于岩土体通常都含有节理裂隙、破碎带等软弱夹层,并且水下隧道不可避免遇到渗流场与应力场相互作用的耦合问题,再加上水下隧道的地质环境复杂且难以探明,从而使得水下隧道施工具有高难度和高风险性。然而我国水下隧道的出现和研究较晚,水下隧道覆盖层安全厚度的系统研究较少,目前还没有明确的规范,仍处于探索研究阶段。因此,水下隧道覆盖层安全厚度的确定将日益成为目前隧道工程建设中的亟待解决的难题。为此本文以长沙市湘江大道浏阳河水下隧道为依托,结合国家自然科学基金(50878213)、长沙市科技计划项目(K0902027-11),主要开展如下工作:
     (1)比较借鉴国内外已建水下隧道的成功经验,总结确定水下隧道安全覆盖层厚度的主要经验方法,并结合浏阳河隧道实际工程情况,工程类比分析确定合理隧道安全覆盖层厚度的范围。
     (2)结合断裂损伤与流固耦合的基本理论,探讨了断裂损伤与流固耦合理论在有限三维差分程序FLAC3D中的运用。
     (3)基于己探明的隧道场地条件,并考虑围岩节理裂隙的断裂损伤效应,对浏阳河水下隧道动态施工过程进行数值模拟分析,研究不同工况下围岩和支护结构中应力场特征及其位移变化规律,对比分析得到节理裂隙的影响系数,并推出了经验修正公式。
     (4)采用FLAC3D数值方法,并考虑流固耦合效应,对静水平面17m下的隧道施工进行数值模拟分析,再结合日本最小涌水量法进行渗流分析研究,对隧道覆盖层厚度进行定性分析。
With the vigorous development of the Chinese construction, it springs up various river-crossing or cross-sea tunnel. And subaqueous tunnel construction will directly face selection for the safe thickness of roof at first. According to the previous experience, reasonable safe thickness of tunnel roof is not only an important economic indicator for underwater tunnel construction, but also an important factor of safety for underwater tunnel construction and operation. As the rock mass usually contains soft interlayer such as joints, crack, fault fracture zone and so on, and underwater tunnel inevitably encounter the coupling interaction between the seepage field and stress field, and because the geologic environment around subaqueous tunnel is complex and difficult to proven, thus the underwater tunnel construction is difficult and high risk. However, the research of underwater tunnel in China initiated relatively late, the systematic study on the least security coping thickness for an underwater tunnel are less, and there is no clear specification, it is still at the exploratory research stage at present. So the determination of the coping thickness for an underwater tunnel is urgently needed to be settled for current tunnel construction building. Therefore, relying on Liuyang River Underwater Tunnel of Xiang River Road in Changsha City, National Natural Science Foundation(50878213), and Changsha Science and Technology Project(K0902027-11), the disseration presents a numerical simulation study as the following:
     1. compare with and refer to international main experience, summarized the main empirical method, based on practical engineering of Liuyang River Underwater Tunnel, determined the reasonable security coping thickness for underwater tunnel by engineering analogy analysis.
     2. Combined the basic theory of fracture damage with fluid-solid coupling, the theory is applied in the three-dimensional differential procedure FLAC3D.
     3. Based on the proved tunnel site conditions, and consider fracture damage of joint fissure, numerical simulation analysis is made of the dynamic construction process in Liuyang River Underwater Tunnel, study on the stress and displacement variation characteristics of surrounding rock and supporting structure in different conditions, obtained influence coefficients of joint fissure by comparative analysis, and deduce the experience correction formulae.
     4. By FLAC3D numerical methods, and consider the fluid-structure coupling effect, the numerical simulation analysis for the tunnel construction at horizontal 17m below, combined with Japan's minimum water yield to research for seepage calculation, analyze tunnel coping thickness qualitatively.
引文
[1]谭鑫.考虑流固耦合影响的水下隧道施工力学效应研究[D].长沙:中南大学,2009
    [2]张鹏.海底隧道衬砌水压力分布规律和结构受力特征模型试验研究[D].北京:北京交通大学,2008
    [3]王培勇,刘元雪,陈忱,等.水下隧道钻爆法施工合理覆盖层厚度的研究评述[J].后勤工程学院学报,2007(1)
    [4]胡政才,余辉.挪威对海底隧道工程的研究[J].世界隧道.1995(2)68-76
    [5]谢锋.水下隧道最小覆盖厚度的研究[D].重庆:重庆交通大学,2007
    [6]Hsi J P and Small J C. Simulation of excavation in a poro-elastic material[J]. Int. J. Numer. Anal. Meth. Geomech.1992,16:25~43
    [7]朱维申,何满潮.复杂围岩条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995
    [8]赵景伟.城市化进程中的人居环境与地下空间利用[J].山东青岛:隧道建设,2008,28(2)
    [9]何朋立,郭力,王剑波.论21世纪我国城市地下空间的开发利用[J].山东青岛:隧道建设,2005,25(2)
    [10]王梦恕.21世纪是隧道及地下空间大发展的年代[J].岩土工程界,2000,3(6)
    [11]程亚鹏.哈尔滨送花江隧道覆盖层安全厚度研究[D].哈尔滨:哈尔滨工业大学,2002
    [12]王梦恕.水下交通隧道发展现状与技术难题[J].岩石力学与工程学报,2008,27(11)
    [13]榕叶.历时250年的梦想终成现实——英法海峡隧道开通[J].国外科技动态,1994,12
    [14]李术才.海底隧道衬砌结构选型及参数优化研究.岩石力学与工程学报[J].2005,24(21)
    [15]李廷春,李术才,白世伟.厦门海底隧道覆盖层厚度选择及其开挖稳定性分析[J].岩土力学,2005,26(12)
    [16]李术才,李树枕,徐帮树等.海都隧道最小岩石覆盖厚度确定方法研究[J].岩石力学与工程学报,2007,26(11)
    [17]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8)
    [18]王梦恕,皇甫民.海底隧道修建的关键问题[J].建筑科学与工程学报,2005,22(4)
    [19]NILSEN B. Empirical analysis of minimum rock cover for subsea rock tunnels[C]//BURGER H ed. Options for Tunnelling 1993. Proceedings of ITA World Congress. Amsterdam:Elsevier,1993:677-687
    [20]Arild P. The challenge of subsea tunneling[J]. Tunneling and Underground Space Technology,1994,9(2):145-150
    [21]Eisenstein Z. Large undersea tunnels and the progress of tunneling technology[J]. Tunneling and Underground Space Technology,1994,9(3):283-292
    [22]Vandebrouk P. The channel tunnel:the dream becomes reality[J]. Tunneling and Underground Space Technology,1995,10(1):17-21
    [23]Hagelia P. Semi-quantitative estimation of water shielding requirements and optimization of rock cover for sub-sea road tunnels[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1995, 32(3):485-492
    [24]Palmstrom A, Skogheim A. New Milestones in subsea blasting at water depth of 55 m[J]. Tunneling and Underground Space Technology,2000,15(1):65-68
    [25]王刚.裂隙岩体海底隧道最小岩石覆盖厚度研究[D].山东科技大学,2005
    [26]尹双增.断裂、损伤理论及应用[M].北京:清华大学出版社,1992
    [27]徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性-断裂损伤演化方程及试验验证[J].岩土力学,1994,15(2)
    [28]王家臣,常来山,陈亚军,等.露天矿节理岩体三维网络模拟与概率损伤分析[J].北京科技大学学报,2005,27(1)
    [29]Kyoya T, Ichikawa Y, Kawarnoto T. A damage mechanics theory for discontinuous rock mass. In:Proc 5th Int Conf Num Methods in Geomechanics. Nagoya,1985.469
    [30]李树忱,李术才,朱维申,等.能量耗散弹性损伤本构方程及其在围岩稳定分析中的应用[J].岩石力学与工程学报,2005,24(15)
    [31]朱维申,张强勇.节理岩体脆弹性断裂损伤模型及其工程应用[J].岩石力学与工程学报,1999,18(3)
    [32]KeRtan. Shah, Joseph F. Labuz. Damage mechanisms in stressed rock from acoustic emission[J]. Geophsical Research,1995
    [33]Gerrard, C. M. Equivalent Elastic Module of a Rock Mass Consisting of Orthorhombic Layers[J]. Int. J. Rock Mech. Min. Sci and Geomech. Abstr., 1982,19(1),9~14
    [34]陈胜宏.节理岩体弹塑性和粘弹性有限元计算[J].武汉水利电力学院学报,1986(6),79-86
    [35]张武,张宪宏.节理岩体的弹性模型[J].岩土工程学报,1987,9(4),33-44
    [36]曹平,各向异性岩体力学的理论与应用研究[D].中南工业大学,1990,1-10
    [37]Kawamoto, T., et al. Deformation and Fracturing Behaviour of Discontinuous Rock Mass and Damage Mechanics Theory, Int. J. for Numerical and Analytical Method in Geomechanics,1988,12,1~29
    [38]Shi, G. Discontinuous Deformation Analysis, a New Model for Statics and Dynamic of Block System PHD Dissertation, Univ. of California, Berkeley, 1988
    [39]章根德,王羽,石占中.地质材料中的流固耦合研究[J].岩石力学与工程学报,2000增刊
    [40]王芳.岩石地层水底隧道合理覆盖层厚度研究[D].西南交通大学,2009
    [41]黄涛,杨立中.渗流、应力、温度祸合下裂隙围岩隧道涌水量的预测[J].西南交通大学学报,1999,34(5):554-559.
    [42]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4).
    [43]张电吉,汤平,白世伟.节理裂隙岩体渗流与应力耦合分析[J].武汉化工学院学报,2004,26(4).
    [44]曹阿静,许梦国.裂隙岩体渗流与应力耦合有限元分析[J].矿业研究与开发,2003,23(3).
    [45]X. Yi. R. Kerry Rowe, K. M. Lee. Observed and calculated pore pressures and deformations induced by an earth balance shield[J]. Can. Geotech. J. 1993,30:476~490.
    [46]Y. Murad. Abu-Farsakh, George Z. Voyiadjis. Computational model simulation of the shield tunneling process in cohesive soils [J]. Int. Mech. Geomech,1999,23:23~24
    [47]J. H. Shin, groundwater T. I. Addenbrooke, D. M. Potts. A numerical study the effect of movement on long-term tunnel behavious[J]. Geotechnique, 2002.52(6):391~403
    [48]吕明,Grφv ElNilsen B, et al.挪威海底隧道经验[J].岩石力学与工程学报,2005,24(25)
    [49]白木,李伟宁.世界海底隧道[J].2002,06
    [50]H. Darcy. Les fontaines publiques de la ville de Dijon, V. Dalmont, Paris,1856
    [51]徐帮树,李树忱,李术才,等.海底隧道涌水量与覆岩厚度关系研究[J].力学与实践,2007,29(1)
    [52]Nilsen B. Empirical analysis of minimum rock cover for subsea rock tunnels[J]. Developments in Geotechnical Engineering,1993,74:677~687.
    [53]Nilsen B. Concept of norw egian subsea tunneling[R]. Beijing:Beijing Jiao tong University,2005.
    [54]Dahlo T S, N ilsen B. Stability and rock cover of hard rock subsea tunnels[J]. Tunneling and Underground Space Technology,1994,9(2):151~158.
    [55]徐帮树,丁万涛,李术才.挪威海底隧道最小岩石覆盖厚度的经验及应用[J].武汉理工大学学报(交通科学与工程版),2008,32(4)
    [56]武雄,子青春,汪小刚.地表水体下煤炭资源开采研究[J].岩石力学与工程学报,2006,5(25):1029-1036
    [57]张燕琼.软硬岩交互地层水下隧道最小岩石覆盖层厚度研究[D].重启大学,2007
    [58]林本川.提高光面爆破质量的若干技术关键[J].福州大学学报(自然科学版),2000,28(4).
    [59]张天锡,魏伴云.嗣室爆破主要参数确定的若干问题[J].爆破,1998,15(3).
    [60]李克才,池淑兰.非线性地基系数的探讨[J].路基工程,1994(01).
    [61]陈学选.钻爆法施工过江隧道防治水综合措施[J].矿业安全与环保,2004(6):112-113
    [62]万祥富,何国伦,周延伦.钻爆法施工长江穿越隧道的防水措施[J].矿业安全与环保,2001(6):168-171.
    [63]李术才,朱维申.复杂应力状态下断续节理岩体断裂损伤机理研究及其应用[J].岩石力学与工程学报,1999,18(2)
    [64]许靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性-本构模型[J].岩土力学,Vol.14.No.4,1993
    [65]Itasca Consulting Group, Inc. FLAC3D, Fast Lagrangian Analysis of Continua in 3 Dimension, (Version 2.1). Interfaces,2003
    [66]Terzaghi K. Theoretical soil mechanics[M]. Wiley, New York,1943
    [67]Biot M A. General theory of three dimensional consolidation J]. J.Appl.Phys. 1941,12:155~164
    [68]Biot M A. General solution of the equation of elasticity and consolidation for a porous material[J]. J. Appl. Mech.1956,78:91~96.
    [69]徐曾和.论矿业工程中的流-固耦合渗流问题.中国矿业,1996:03
    [70]毛昶熙,段祥宝,李祖贻.渗流数值计算与程序应用[M].河海大学出版社,1998
    [7l]潘家铮等.水工建筑物的有限元分析[M].水利电力出版社,1990
    [72]Itasca Consulting Group, Inc. FLAC3D, Fast Lagrangian Analysis of Continua in 3 Dimension, (Version 2.1). User's manual,2003
    [73]胡斌,张倬元,黄润秋,许强.FLAC3D前处理程序的开发及仿真效果检验[J].岩石力学与工程学报,2002,21(9):1387-1391
    [74]Itasca Consulting Group, Inc. FLAC3D, Fast Lagrangian Analysis of Continua in 3 Dimension, (Version 2.1). Fluid-Mechanical Interaction,2003
    [75]廖红建,王铁行.岩土工程数值分析[M].机械工业出版社,2006
    [76]中华人民共和国交通部.公路隧道设计规范(JTG D70-2004).北京:人民交通出版社,2004
    [77]伍振志,傅志锋,王静,等.浅埋松软地层开挖中管棚注浆法的加固机理及效果分析[J].岩石力学与工程学报,2005,24(6)
    [78]陈育民,徐鼎平.FLAC\FLAC3D基础与工程实例[M].北京市:中国水利水电出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700