高地应力下山岭隧道的地震破坏分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的中西部是一个多山的地区,在将来的建设中必然出现大量山岭隧道工程。但是中西部尤其是西部地区具有全球最强烈的地壳活动和高地应力场,在这些地区修建隧道都和东部地区有明显的不同,尤其表现在地应力方面。随着隧洞工程埋深的增大,地应力必定增高。而西部多高山,隧洞的埋深自然也大,即很多隧道将处于高地应力状态。高的地应力环境下的地下隧道,在地震的扰动下,会更易发生破坏失稳。汶川大地震山岭隧道的震害表明,较大的水平地应力与地震荷载叠加会造成隧道更大的震害。对应高应力环境下的硬岩来说,地震的作用还有触发岩爆等其它破坏的可能。目前地下结构的抗震研究越来越多,但对高地应力、高地震烈度地区修建的隧道工程研究较少。而如前面所述,对我国西部的隧道开发,不可避免的会遇到高地应力的问题。故在高地应力情况下研究的地下结构的地震破坏情况成为西部建设的一项重要内容。
     本文在前人对地下结构抗震研究的基础上,基于无限元理论,使用直接积分解法,建立了二维隧道模型,充分考虑因各种误差所带来的地质条件不确定性因素及岩石非线性的影响,对山岭地区处于高地应力场下的深埋隧道进行了地震动荷载与静力荷载组合作用的动力时程分析。主要的内容和结论如下
     (1)考虑围岩与隧道开挖地下结构动力相互作用的影响,建立了无限元—有限元相互耦合作用的二维计算模型,对深埋岩体隧道地震动作用下的动力荷载激励进行数值研究,对不同工况下的隧道周围应力及位移进行对比分析,分析了地下深埋隧道的动力反应特点,研究了高地应力对深埋隧道结构综合动力分析的影响。
     (2)充分考虑岩体地质因素的不确定性影响,利用本文建立的数值模型对深埋隧道地震动作用下不同的岩体情况的动力响应进行数值研究。比较分析了水平侧压力系数对深埋隧道动力分析结果的影响。发现侧压力系数在深埋地下结构的动力响应中有着重要的意义。同时分析了岩体软弱破碎带及不同的岩石物理力学参数对深埋隧道地震动时程分析的影响,结果表明,对于同一埋深位置的隧道模型,地质因素不确定性因素对结果的影响显著,随着埋深的增加,地应力对地震动计算结果的影响也有较大的差异。
There are numbers of mountains in the middle and western of China. Along with the implementation of the western development strategy, there is no doubt that more and more traffic facilities such as highways crossing mountains will be under construction which means lots of mountain tunnels will be on the scheme in the future. And it is much different from eastern areas when the mountain tunnels are built regarding the most intensive crust movement and the highest geo-stress field in the west of our country. The tunnels probably will be deep-buried and will be under high geo-stress conditions.
     Seismic response of underground structures has been widely studied recently, but the major subject of these researchers is on the behavior of shallow-buried tunnels or subways in the city. Obviously, the tunnels under high geo-stress conditions will be more easily destructed when earthquake occurs than shallow-buried tunnels with that the seismic analysis of tunnels under high geo-stress conditions become an unavoidable issue for the western development.
     Based on infinite theory, a two-dimensional calculation model is built to analyze the stress, displacement of the tunnel by using direct solving method. Considering the uncertainty of the geo-stress value due to inevitable error of sampling, several work conditions corresponding to each value are computed and compared.
     (1) The seismic response of deep-buried tunnels structure in hard rock was studied using two-dimensional large deformation infinite-finite coupled model, and effects of rock-structure interaction was considered by viscous boundary. In order to achieve reasonable both static and dynamic analysis results, the infinite element-finite element coupled boundary is adopted in the seismic performance. Using this simple and direct boundary conditions it can well solve the convergence problem between the static and dynamic calculation, and can also obtained good results in static excavation, without changing boundary when the calculation switch to dynamic analysis.
     (2) Effect of ground stress plays a more important role in the deep-buried tunnels than in shallow-buried tunnels. The concrete lining should be fully used to resist the dynamic deformation regarding that concrete materials can suffer more stress especially tensile stress than surrounding rocks in the vicinity of tunnels. Finally, it should be pointed out that consideration of the initial stress field and the influence of uncertainty of geo-stress is necessary and reasonable to get accurate deformation and force response of underground structures. The influence of deep-buried tunnels structure in hard rock on seismic response of free site is numerically investigated. In the case of building the tunnel structure and free site, the horizontal relative displacement and acceleration responses of tunnels structure has been analyzed briefly. Finally based on studying the relation of relative horizontal displacement of tunnels and the peak ground displacement relative to the bedrock at the free site, the peak ground displacement relative to the bedrock is a very effective design parameter of ground motion for evaluating the seismic response of underground structures.
引文
[1]高新强.高水压山岭隧道衬砌水压力分布规律研究[D].西南交通大学,2005.
    [2]徐林生等.高地应力与岩爆有关间题的研究现状[J].公路交通技术,2002-12,第4期.
    [3]李天斌.汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J].工程地质学报,2008,16(6):742-750.
    [4]福季耶娃著.地震区地下结构支护的计算[M].徐显毅译.北京:煤炭出版社,1986.
    [5]徐则民,黄润秋.深埋特长隧道及其施工地质灾害[M].成都:西南交通大学出版社,2000-05.
    [6]潘昌实.隧道及地下结构抗震问题的研究概况.世界隧道,1996.
    [7]周德培.地铁抗震设计准则[J].世界隧道.1995(2):36-45.
    [8]高田至郎.地下生命线的耐震设计[J].隧道译丛.1991(7):44-51.
    [9]Wolf J P,Somaini D R.Approximate dynamic model of embedded foundation in time domain[J].Earthquake Engineering and Structural Dynamics,1986,14(5):683-703.
    [10]周林聪,陈龙珠,宫必宁.地下结构地震模拟振动台试验研究[J].地下空间与工程学报.2005,1(2):182-213.
    [11]姜忻良,宋丽梅.软土地层中地下隧道结构地震反应分析[J].地震工程与工程振动.1999,19(1):65-69.
    [12]庄海洋,陈国兴,张菁莉.基于子结构法的地铁车站地震反应分析[J].岩土力学.2005,26(增刊):227-231.
    [13]国胜兵,赵毅,赵跃堂等.地下结构在竖向和水平地震荷载作用下的动力分析[J].地下空间.2002,22(4):314-319.
    [14]林利民.大型城市地下建筑结构的动力响应分析[D].大连理工大学,2006.
    [15]任红梅,林皋.基于的地下结构抗震分析[J].安徽建筑工业学院学报(自然科学版).2005,13(3):28-31.
    [16]林皋.地下结构抗震分析综述(上、下)[J].世界地震工程,1990(2,3):1-10.
    [17]川岛一彦.地下构筑物耐震设计[M].日本:鹿岛出版社,1994.
    [18]林皋,梁青槐.地下结构的抗震设计[J].土木工程学报.1996,29(1):15-24.
    [19]熊良宵,李天斌,刘勇.隧道地震响应数值模拟研究.[J].地质力学学报,2007(03).
    [20]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报,1986:26(3):51-63.
    [21]李建波.结构-地基动力相互作用的时域数值分析方法研究[D].大连:大连理工大学,2005.
    [22]Lysmer J, Richart F E T.Dynamic response of footings to vertical loadings[J].T. Soil. Mech. Div. ASCE.1966,92(1):65-91.Wolf J P,Song C M.Dynamic-stiffness matrix of unbounded soil by finite element multi-cell cloning[J].Earthquake Eng. Struct. Dyn.,1994,23(3):232-250.
    [23]Wolf J P,Somaini D R.Approximate dynamic model of embedded foundation in time domain[J].Earthquake Engineering and Structural Dynamics,1986,14(5):683-703.
    [24]Chopra A K,Perumalswami P R.Dam-Foundation Interaction during Earthquake[J].Pro 4th World Conf. Earthq. Eng,Santiago,Chile,1969.
    [25]楼梦麟.粘弹性地基的动力刚度矩阵及坝基相互作用对水坝地震反应的影响[D].大连:大连理工大学,1984.
    [26]Dasgupta G A.A finite element formulation for unbounded homogeneous continua[J].J. of Appl. Mech., ASME.1982,49:136-140.
    [27]Wolf J P,Song C M.Dynamic-stiffness matrix of unbounded soil by finite element multi-cell cloning[J].Earthquake Eng. Struct. Dyn.,1994,23(3):232-250.
    [28]Song C M,Wolf J P.Dynamic stiffness of unbounded medium based on damping-solvent extraction[J].EESD.,1994,23(2):169-181.
    [29]Song C M,Wolf J P.The scaled boundary finite element method-a primer solution procedures[J].Computer and Structures,2000,78(3):211-225.
    [30]Nakamura N.A practical method to transform frequency dependent impedance to time domain[J].Earthquake Engineering and Structural Dynamics,2006,35(2):217-231.
    [31]Nakamura N.Improved methods to transform frequency-dependent complex stiffness to time domain[J].Earthquake Engineering and Structural Dynamics,2006,35(8):1037-1050.
    [32]杜修力,赵建峰.考虑土-结构相互作用效应的结构地震响应时域子结构分析法[J].北京工业大学学报,2007,33(5):517-523.
    [33]赵建锋,杜修力.地基阻抗力时域递归参数的计算方法及程序实现[J].岩土工程学报,2008,30(1):34-40.
    [34]吴健,金峰,张楚汉,等.无限地基辐射阻尼对溪洛渡拱坝地震响应的影响[J].岩土工程学报,2002,24(6):716-719.
    [35]Lysmer J.Kuhlemeyer R L.Finite model for infinite media[J].Journal of engineering mechanics,division,ASCE.,1969,95:377-392.
    [36]Smith W D.A nonreflecting plane boundary for wave propagation problems[J].Journal of Computational physics,1974,15:492-503.
    [37]Clatton R,Engquist B.Absorbing boundary conditions for acoustic and elastic wave equations[J].Bulletin of the seismlogical society of America,67:1529-1540.
    [38]廖振鹏,杨柏坡,袁一凡.暂态弹性波分析中人工边界的研究[J].地震工程与工程振动,1982,2(1):1-11.
    [39]廖振鹏,黄孔亮,杨柏坡,等.暂态波透射边界[J].中国科学(A辑),1984,26(6):50-56.
    [40]Liao Z P,Wong H L.A Transmitting Boundary for the Numerical Simulation of Elastic Wave Propagation[J].Dyn.and Earth. Eng.1984,3(4):178-183.
    [41]Higdon R L.Absorbing boundary conditions for difference approximations to the multi-dimensional wave eaquation[J].J. Comp Phys,1973,15:492-503.
    [42]Deeks A J,Randolph M F.Axisymmetric time-domain transmitting boundaries[J].J. Eng. Mech.,1994,120(1):25-42.
    [43]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [44]Nakamura N.A practical method to transform frequency dependent impedance to time domain[J].Earthquake Engineering and Structural Dynamics,2006,35(2):217-231.
    [45]Bettess P,Zienkiewica O C.Diffraction and Refraction of Surface Wave Using Finite and Infinite Elements[J].Int. J. for Num. Mech.,In eng.1977:1271-1290.
    [46]陈健云,胡志强,林皋.超大型地下洞室群的随机地震响应分析[J].水利学报,2002(1):71-75.
    [47]朱维申,李晓静.地震荷载作用下大型地下洞室群的动态响应模拟[J].岩土工程学报,28(12):1877-1882.
    [48]李海波,朱莅,吕涛,等.考虑地震动空间非一致性的岩体地下洞室群地震反应分析[J].岩石力学与工程学报,2008,27(9):1758-1766.
    [49]王如宾,徐卫亚,石崇,等.高地震烈度区岩体地下洞室动力响应分析[J].岩石力学与工程学报,2008,28(3):569-575.
    [50]黄胜,陈卫忠,杨建平,等.地下工程地震动力响应及抗震研究[J].岩石力学与工程学报,2009,28(3):483-490.
    [51]国胜兵,赵毅,赵跃堂等.地下结构在竖向和水平地震荷载作用下的动力分析[J].地下空间.2002,22(4):314-319.
    [52]马震岳,宋志强,陈婧,等.小湾水电站地下厂房动力特性及抗震分析[J].水电能源科学,2007,25(6):72-74.
    [53]孙钧,候学渊.地下结构(上、下册)[M].北京:科学出版社,1987.
    [54]John P.W. Song C. Dynmaic-stiffess matrix of unbounded soil by finite-element multicell cloning[J].Earthquake Engineering and Structural Dynamics,1994,V23:233-250.
    [55]吴健,金峰,等.无限地基辐射阻尼对溪洛渡拱坝地震响应的影响[J].岩土工程学报,2002,24(6):716-719.
    [56]John Lysmer.Farhang Ostadan.Chih Cheng Chin.A system for analysis of soil-structure interaction.geotechnical engineering dePartment of civil and environmental engineering[M]. University of California.Berkeley.2000:1-8..
    [57]潘昌实,G.N.Pande.黄土隧道列车动荷载响应有限元初步数定分析研究[J].土木工程学报,1984(12):20-26.
    [58]潘昌实,杨力.黄土隧道地震反应分析初探[J].土木工程学报,1987(5):85-93.
    [59]朱镜清,周建.海底隧道体系地震反应分析方法[J].地震工程与工程振动,1992(2):91-97.
    [60]周健,胡晓燕.考虑行进波的地下建筑物动力反应分析[J].岩石力学与工程学报.2001(1):70-73
    [61]Haiyang Zhuang, Guoxing Chen and Ye Xu. Study on the influence of shallow excavated Tunnels in soft site on design ground motion Parameters[A].Proceedings of the Third International Conference on EarthquakeEngineering[C].19-20 October.2004.Nanjing P.R.China.91-97.
    [62]Jun Seong Choi,Jong She Lee,Jae Min Kim.Nonlinear earthquake response analysis of 2-D underground structures with soil-structure interaction including separation and sliding at interface[A].15th ASCE Engineering Mechanics Conference[C].New York:Columbia University,2002.
    [63]Hongbin Huo,Antonio Bobet.Seismic design of cut andcover rectangular tunnels evaluation of observed behavior of Dakai station during Kobe earthquake[A].1995. Proceedings of 1st World Forum of Chinese Scholars inGeotechnical Engineering[C]. Shanghai:Tongji University,2003.456-466.
    [64]楼梦麟,陈清军等.侧向边界对桩基地震反应影响的研究[M].上海:同济大学,1999.
    [65]Celso Romanel,Tribikram Kundu. Hybrid modeling of soil-structure interaction problems for deeply embedded structures in a multi-layered medium[J].Earthquake engineering and structural dynamics, Vol22,1993.557-571.
    [66]Lee V W,Karl J.On deformation near a circular underground cavity subjected to incident plane P waves[J].European Journal of Earthquake Engineering,1993,(1):29-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700