高温高压下辉长岩弹性波速及其衰减
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文报道了100~300℃,0.5~4.0 GPa下辉长岩纵波速度(VP)和横波速度(VS)值,并且根据品质因子(QP、QS)变化讨论了实验条件下辉长岩的物性特征及其地震地质意义。实验结果表明,在0.5~4.0 GPa,固定温度下辉长岩VP、VS、QP、QS随压力增大递增,但是它们在0.5~2.3 GPa范围内随压力的变化率比2.3~4.0 GPa范围内的大。固定压力下,温度从100℃增至300℃时,辉长岩VP、VS、QP、QS呈线性下降趋势。300℃恒温下,当压力由0.5 GPa升至2.3 GPa,VP、VS、QP、QS分别增大5.9%、2.7%、353.8%和403.4%,当压力由2.3 GPa升至4.0 GPa,VP、VS、QP、QS分别增大1.4%、0.5%、47.5%和40.4%。在0.5~2.3 GPa,辉长岩波速与Q值增大的主要原因是辉长岩样品随压力增加被压缩,样品连续性变好,弹性加强,弹性波衰减变小,波速与Q值升高。在2.3~4.0 GPa,样品被压密,样品接近连续弹性介质,弹性波衰减很小,波速与Q值变化速率变小。在100~300℃,辉长岩样品内部以膨胀为主,样品密度变小,弹性波速与Q值呈线性下降趋势。实验结果表明在岩石圈内构造应力局部集中会导致岩石Q值的增大,或岩石破裂、热物质局部聚集会导致岩石Q值的降低,这可以解释地震前后观测到的震源区Q值的类似变化。
The variations of the elastic properties of gabbro at 100~300℃and 0.5~4.0 GPa and the seismogeological application of the experimental results are discussed based on the measured wave velocities (VP, VS) and quality factor values (QP, QS) of the gabbro. The values of VP, VS, QP and QS increase with pressure from 0.5 GPa to 4.0 GPa at the given temperatures, but decrease in small extent from 100℃to 300℃at the given pressures. Increasing pressure from 0.5 GPa to 2.3 GPa at 300℃, the values of VP, VS, QP and QS increase by 5.9%, 2.7%, 353.8% and 403.4%, respectively; and from 2.3 GPa to 4.0 GPa, by 1.4%, 0.5%, 47.5% and 40.4%, respectively. The variations of velocities and quality factor values may be mainly attributed to the compression of the gabbro sample, and its continuity and elasticity become better at 0.5~2.3 GPa. The gabbro sample almost becomes continuous and elastic medium at 2.3~4.0 GPa, resulting in smaller change of elastic wave velocities and attenuation. The wave velocities and quality factor decrease with increasing temperature because of thermal expansion and density decreasing of gabbro. The experiment results can be used to explain the geophysical observed phenomena that quality factor values are enhanced by stress aggregation in the lithosphere, and the quality factor values may be reduced by rock fracturation and local enrichment of hot fluids in the epicentral areas before and after earthquake occurrences.
引文
1. Bai L. P., Du J. G., Liu W. And Guo J. The experimental studies on electrical conductivities and P-wave velocities of anorthosite at high pressure and high temperature [J]. Acta Seismologica Sinica, 2002, 15(6):667-676.
    2. Bai L. P., Du J. G., Liu W. and Zhou W. G. P-wave velocities and conductivity of gabbro at high pressures and high temperatures [J]. Science in China (D), 2003(a), 46(9):895-908.
    3. Bai L. P., Du J. G., Liu W. and Guo J. Evidence of grain boundary transport from impedance of Gabbro at 1-2GPa and up to 890℃[J]. Chinese Phys. Lett., 2003(b), 20 (11):2073-2077.
    4. Best A., Mccann C. and Southcott J. The relationship between the velocities and attenuations and petrophisical properties of reservoir sedimentary rocks [J]. Geophysprosp, 1994, 42: 151-178.
    5. Birth F. The velocity of compressional waves in rocks to 10 Kbar: part 2 [J]. J. Geophys. Res., 1961, 66:2199-2224.
    6. Born W. T. Attenuation constant of earth materials [J]. Geophys, 1941, 6: 132-148.
    7. Butt S. D., Frempong P. K., Mukherjee C. and Upshall J. Characterization of the permeability and acoustic properties of an outburst-prone sandstone [J]. J. Appl. Res., 2005, 58(1): 1-12.
    8. Christensen N. I. Compressional wave velocities in possible mantle rocks to pressures of 30 kbar [J]. J. Geophys. Res., 1974, 79(24): 407-412.
    9. Christensen N. I, Fountain D. M. Construction of the low continental crust based on experimental studies of seismic velocity in granulite [J]. Geol. Soc. America. Bull,1975, 86:227-236.
    10. Christensen N. I. Compressional wave velocities in rocks at high temperature and pressure, critical thermal gradients, and crustal low-velocity zones [J]. J. Geophys. Res., 1979, 64(B12):6849-6857.
    11. Christensen N. I. and Mooney W. D. Seismic velocity structure and composition of the continental crust: A global view [J]. J. Geophys. Res., 1995, 100(B7), 9761- 9788.
    12. Christensen N. I. Poission’s ratio and crustal seismology [J]. J. Geophys. Res., 1996, 101 (B2): 3139-3156.
    13. Darot M. and ReuschléT. Acoustic wave velocity and permeability evolution during pressure cycles on a thermally cracked granite [J]. Inter. J. Rock Mech. Min.Sci., 2000, 37:1019-1026
    14. Du J., Si X., Chen Y., Fu H. and Jian C.Geochemical anomalies connected with great earthquakes in China [M]. In:ó. Stefánsson (Ed), Advances in Geochemistry, New York: Nova Science Publishers, Inc., 2008: 57-92.
    15. Engelhard L. Determination of seismic-wave attenuation by complex trace analysis [J]. Geophys. J. Int., 1996, 125:608-666.
    16. Frempong P., Butt S. and Donald A. Frequency dependent spectral ratio for Q estimation [J]. Proceedings, Rainbow in the Earth, 2005:1-4.
    17. Gao S., Kern H., Liu Y. S., Jin S. Y., Popp T., Jin Z. M., Feng J. L., Sun M. and Zhao Z. B. Measured and calculated seismic velocities and densities for granulites from zenolith occurrences and adjacent exposed lower crustal sections: A comparative study from the north China craton [J]. J. Geophy. Res., 2000, 105(B8): 18965-18976.
    18. Gao S., Kern H., Jin Z. M., Popp T., Jin S. X., Zhang H. F. and Zhang B. R. Poisson's ratio of eclogite: the role of retrogression [J]. Earth Planet. Sci. Lett., 2001, 192:523-531.
    19. Gao S., Kern H., Jin Z., Zhang H. F. and Zhang B. R. Poisson’s ratio of eclogite: Implications for lower crustal delamination of orogens [J]. Science in China (D),2003, 46 (9):909-918.
    20. Giovanni L. and Lara D. G. Experimental studies on the effects of fracture on the P and S wave velocity propagation in sedimentary rock (“Calcarenite del Salento”) [J]. Engineering Geology, 2006, 84: 130-142.
    21. Isaak D. G., Gwamesia G. D., Falde D., Davis M. G., Triplet R. S. and Wang L. P. The elastic properties ofβ-Mg2SiO4 from 295 to 660 K and implications on the composition of Earth’s upper mantle [J]. Phys. Earth Planet. Inter., 2007, 162:22-31.
    22. Jackon I., Paterson M., Niesler H. and Wotervord R. M. Rock enelasticity measurement at high pressure, low strain amplitude and seismic frequency [J]. Geophys. Res. Lett., 1982, 11: 1235-1238.
    23. Ji S., Wang Q. and Marcotte D. P wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure [J]. J. Geophys. Res., 2007, 112(B09204): 1-24.
    24. Johnston D. D. Phisical mechanisms of seismic-wave attenuation [J]. Rev.geophys. space phys., 1970, 8 (1):1-63.
    25. Johnston D. H., Tok?z M. N. and Timur A. Attenuation of sesmic waves in dry andsatured rocks:Ⅱ. Mechanisms [J]. Geophys. , 1979, 44(4):691-711.
    26. Johnston D. H. and Tok?z M. N. Ultrasonic P and S wave attenuation in dry and satureded rocks under pressure [J]. J. Geophys. Res., 1980, 85(B2):925-936.
    27. Kahraman S. The correlations between the saturated and dry P-wave velocity of rocks [J]. Ultrasonics, 2007, 46:341-348.
    28. Kern H. and Richter A. Temperature derivatives of compressional and shear wave velocity in crustal and mantle rocks at 6kbar confining pressure [J]. J. Geophys., 1981, 49:47-56.
    29. Kern H. P-and S-wave velocity in crustal and mantle rocks under the simultaneous action of high confining pressure and high temperature and the rock microstructure [J]. High-Pressure Res. Geosci., 1982, 15-45.
    30. Kern H. and Schenk V. Elastic wave velocities in rocks frome a lower crustal section in southern Calabria [J]. Phys. Earth Planet, 1985, 40:147-160.
    31. Kern H., Burlini L. and Ashchepkov I. Fabric-relate seismic anisotropy in upper-mantle xenoliths: evidence from measurements and calculation [J]. Phys. Earth Planet. , 1996, 95:195-209.
    32. Kern H., Liu B. and Popp T. Relationship between anisotropy of Pand S wave velocities and anisotropy of attenuation in serpentinite and amphibolite [J]. J. Geophys. Res., 1997, 102 (B2): 3 051-3065.
    33. Kern H., Popp T., Gorbatsevich F., Zharikov A., Lobanov K. V. and Smirnov Y. P. Pressure and Temperature dependence of VP and VS in rocks from super deep well and from surface analogues at Kola and the nature of velocity Anisotropy [J]. Tectonophys, 2001, 38:113-134.
    34. King M. Elastic wave propagation in and permeability for rocks with multiple parallel fractures [J]. Inter. J. Rock Mech. Min. Sci., 2002, (8):1033-1043.
    35. Kitamura K., Ishikawa M. and Arima M. Petrological model of the northern Izu-Bonin -Mariana arc crust: constraints from high-pressure measurements of elastic wave elocities of the Tanzawa plutonic rocks, central Japan [J]. Tectonophys, 2003, 37(1):213-220.
    36. Liu B., Kern H. and Popp T. Attenuation and velocities of P-and S-Waves in dry and saturated crystalline and sedimentary rocks at ultrasonic frequencies [J]. Phys. Chem. Earth, 1997, 22(1-2): 75-79.
    37. Liu W., Du J. G., Bai L. P. and Guo J. Compressional elastic wave velocities of serpentinized olivine-bearing pyroxeniteup to 960℃at 1.0GPa [J]. J. Phys. Condensed Matt., 2002(a), 14:11355-11358.
    38. Liu W., Du J. G., Bai L. P., Xie H. S. and Guo J. Compressional elastic wave velocities of serpentinized pyroxenite at high pressures and temperatures and its geological significance [J]. Acta Seismologica Sinica, 2002(b), 15:456-461.
    39. Liu W., Du J. G., Bai L. P., Zhou W. G. and Guo J. Uhrasonic P wave velocity and attenuation in pyroxene under 3.0GPa up to 1170℃[J].Chinese Phys. Lett., 2003, 20(1):164-166.
    40. Liu W., Du J. G., Bai L. P., Zhou W. G., Guo J. and Xie H. S. Compressional wave velocity and attenuation in dunite to 1240℃at 1.0 GPa [J]. Du J. and Xie H. (Ed), From Atom to the Earth―Advances in High Pressure Geoscience, Beijing: Seimological Press, 2007:127-132.
    41. Liu Y. G., Xie H. S., Zhou W. G. and Guo J. A method for experimental determination of compressional velocities in rocks and minerals at high pressure and high temperature [J]. J. Phys.(Condensed Matter), 2002, 14:1-5.
    42. Muller H. J, Raab S.The velocities of elastic P-and S-waves in high-grade metamorphic rocks under high pressures and temperatures[J]. Geophys. J., 1995, 15:143-155.
    43. Muller H. J, Raab S. Elastic wave velocities of granite at experimental simulated partial melting conditions[J].Phys.Chem.Earth, 1997, 22:93-96.
    44. Nishimoto S., Ishikawa M., Arima M. and Yoshida T. Laboratory measurement of P-wave velocity in crustal and upper mantle xenoliths from Ichino-megata, NE Japan: ultrabasic hydrous lower crust beneath the NE Honshu arc [J]. Tectonophys, 2005, 396:245-259.
    45. Popp T. and Salzer K. Anisotropy of seismic and mechanical properties of Opalinus clay during triaxial deformation in a multi-anvil apparatus [J]. Phys.Chem.Earth, 2007, 32:879-888.
    46. Punturo R., Kern H., Cirrincione R., Mazzoleni P. and Pezzino A. P-and S-wave velocities and densities in silicate and calcite rocks from the Peloritani Mountains, Sicily (Italy): The effect of pressure, temperature and the direction of wave propagation [J]. Tectonophys, 2005, 409:55-72.
    47. Rao M. and Prasanna K. Shear-wave propagation in rocks and other lossy media:An experimental study[J]. Current Sci. Assoc., 2003, 85(8):1221-1225.
    48. Sarma L. and Ravikumar N. Q-factor by spectral ratio technique for strata evaluations [J]. Engineering Geology, 2000, 57:123-132.
    49. Sears E. and Bonner B. Ultrasonic attenuation measurement by spectral ratio utilizing signal processing techniques [J]. IEEE Transactions Geosci. Remote sens.,1981, 19(2):95-99.
    50. Sergei A., Stanchits, David A., Lockner and Alexander V. P. Anisotropic changes in P-wave velocity and attenuation during deformation and fluid infiltration of granite [J]. Bull. Seism. Soc. Am., 2003, 93(4):1803-1822.
    51. Shatilo A., Sondergeld C. and Rai C. Ultrasonic attenuation in Glenn pool rocks, Northeastern Oklahoma [J]. Geophys. , 1998, 63:465-478.
    52. Song I., Suh M., Yong-Kyun W. and Hao T. Determination of the elastic modulus set of foliated rocks from ultrasonic velocity measurements [J]. Engineering Geology, 2004, 72:293-308.
    53. Specra F. J. Carbon dioxide in igneous petrogenesis.Ⅱ. Fluid dynamics of mantle metasomatism [J]. Contrib Mineral. Petrol, 1981, 77:56-65.
    54. Stein R. S., Barka A. A. and Dieterich J. H. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering [J]. Geophys. J. Inter., 1997, 128:594-604.
    55. Tarif P. and Bourbie T. Experimental comparision between spectral ratio and rise time techniques for attenuation measurement [J]. Geophys. Prospect., 1987, 35:668-680.
    56. Toks?z M. N., Jackson D. H. and Timur A. Attenuation of seismic waves in dry and saturated rocks, I Laboratory measurements [J]. Geophys. , 1979, 44, 681-690.
    57. Tonn R. Comparison of seven methods for the computation of Q [J]. Phys. Earth Planet. Inter., 1989, 55(3-4):259-268.
    58. Vinnik L. and Farra V. Low S velocity atop the 410-km discontinuity and mantle plumes [J]. Earth Planet. Sci. Lett., 2007, 262(3-4):398-412.
    59. Walsh J. B. Attenuation in partially melted material [J]. J. Geophys. Res., 1968, 73: 2209-2216.
    60. Walsh J. B. Seismic wave attenuation in rock due to friction [J]. J. Geophys. Res., 1966, 71:2591-2599.
    61. Xie H. S., Zhang Y. M., Xu H. G., Hou W., Guo J. and Zhao H. R. A new method of measuring the elastic wave velocity of rocks and minerals at high pressures and high temperatures and its significance [J]. Science in China, 1993, 36B (10):1276-1280.
    62. Yang X. S, Ma J., Jin Z.M.,Gao S.,Ma S. L.Partial melting and its implications for understanding the seismic velocity structure within the southern Tibetan crust[J].Acta Geologica Sinic,2003,77(1):64-71.
    63. Zemanek J., Jr and Rudnik I. Attenuation and dispersion of elastic waves in acylindrical bar [J]. J. Acoust. Soc. Am., 1987, 33(10):1283-1288.
    64. Zha C. S., Duffy T. S., Mao H. K., Downs R. T., Hemley R. J and Weidner D. J. Single-crystal elasticity ofβ-Mg2SiO4 to the pressure of the 410 km seismic discontinuity in the Earth's mantle [J]. Earth Planet Sci. Lett., 1997, 1-4(147):9-15.
    65. Zhao Z. D., Gao S., Luo T. C., Zhang B. R., Xie H. S., Zhang Y. M., Xu H. G. and Guo J. Origin of the crustal low velocity layer of Qinling and North China: Evidence from compressional wave velocities in rocks at high P T conditions [J]. Acta Geophysica Sinica, 1997, 40(2):251-259.
    66.安欧.构造应力场[M].北京:地震出版社,1992:682-706.
    67.安勇,牟永光,方朝亮.沉积岩的速度、衰减与岩石物理性质间的关系[J].石油地球物理勘探,2006,41(2):188-192.
    68.白利平.高温高压下辉长岩、斜长岩纵波速度与电学性质实验研究[D].北京:中国地震局分析预报中心,2001:1-20.
    69.陈俊华,甘家思,李普丽等.三峡水库蓄水后巴东地区波速比(VP/VS)研究[J].大地测量与地球动力学,2007,27:12-14.
    70.陈颙,黄庭芳.岩石物理学[M].北京大学出版社,2001.
    71.樊星,曹刚,樊迎春等. Q值异常与包头西6.4级地震[J].华北地震科学,1999,17(1):28-30.
    72.郭爱香,刁守中,薛革.胶东及其沿海介质品质因子Q值及地震活动特征[J].地震学刊,1990,3:65-69.
    73.郭梦秋,符力耘.利用地震观测资料预测震源区应力变化研究综述[J].地球物理学进展,2008,23(2):375-383.
    74.金振民,欧新功,徐海军等.中国大陆科学钻探主孔100-2000m岩石弹性波速度:对地震深反射的约束.岩石学报,2004,20(1):81-96.
    75.李生杰,施行觉,叶林等.准噶尔盆地岩石品质因子与速度分析[J].内陆地震,2001,15(3):224-231.
    76.李世愚,尹祥础.岩石断裂力学[M].北京:科学出版社,2006:4-6.
    77.李永华,吴庆举,安张辉等.青藏高原东北缘地壳S波速度结构与泊松比及其意义[J].地球物理学报,2006,49(5):1361-1368.
    78.李华,王良书,李成等.塔里木盆地岩石高温高压下波速的实验研究及其地质意义[J].高校地质学报,2005,11(4):601-607.
    79.刘继禄,李雪英,阎瑞贞等.大同-阳高地震前后地震波速比在源区与场区的变化特征[J]. 1999,(3-4):10-14.
    80.刘魏.高温高压下几种岩石的弹性总波波速及其动力学特征[D].中国地震局地质研究所博士论文,2002.
    81.刘巍,杜建国,谢鸿森等. 4.0GPa压力下纯橄岩弹性纵波速度和衰减的实验研究[J].高压物理学报,2005,19(4):293-298.
    82.刘维国,单钰铭,刘荣和.砂岩扩容过程中超声波衰减的实验研究[J].成都理工大学学报,2006,33(6):611-616.
    83.刘之的,夏宏泉,陈平等.岩石泊松比的测井计算方法研究[J].测井技术,2004,28(6):509-510.
    84.刘祝萍,吴小薇,楚泽涵.岩石声学参数的实验测量及研究[J].地球物理学报,1994,37(5):659-666.
    85.刘祖沅,胡竪敏,陈顒.单轴压力下干燥与含水岩石中超声P波的衰减[J].地球物理学报,1984,27(4):349-359.
    86.马大猷.噪声与振动控制工程手册[M].北京:机械工业出版社,2002:251-404.
    87.马麦宁.青藏地壳岩石弹性波速与流变性质实验研究[D].中国科学院地质与地球物理研究所博士论文,2002.
    88.马昭军,刘洋.地震波衰减反演研究综述[J].地球物理学进展,2005,20(4):1074-1082.
    89.马中高,谢吉高.岩石的纵、横波速度与密度的规律研究[J].地球物理学进展,2005,20(4):905-910.
    90.欧新功,金振民,金淑燕等.下地壳地震深反射的可能载体:来自层状辉长岩组构和高温高压波速实验的证据[J].科学通报,2003,48(4):338-394.
    91.桑祖难,周永胜,何昌荣等.辉长岩部分熔融实验及地质学意义[J].地质科学,2002,37(4):385-392.
    92.史謌,邓继新.地层条件下泥、页岩衰减的各向异性研究[J].中国科学(D),2005,35(3):268-275.
    93.王宝善,孙道远,李生杰.非均匀性对超声衰减的影响及其修正[J].中国地震,2001,17(1):1-7.
    94.王卫东,张永志,狄秀玲等. 1998年临猗5.0级地震前Q值的前兆异常[J].灾害学,2004,19(4):25-29.
    95.王亚民,徐峰,王琴.沙漠表层纵波品质因子识别方法和基本特征[J].石油大学学报,2007,29(1):37-41.
    96.王煜.位错[M].北京:科学出版社,1984:1-10.
    97.韦士忠,李玉萍.大同地震前后介质Q值及小震震源参数的变化[J].地震,1992,2:30-38.
    98.吴宗絮,邓晋福,赵海玲等.华北大陆地壳-上地幔岩石学结构与演化[J].岩石矿物学杂志,1994,13:106-115.
    99.吴宗絮,郭才华.冀东陆壳岩石在高温高压下波速的实验研究[J].地球物理学进展,1993,8(4):206-213.
    100.席道英,刘爱文,刘卫.低频条件下饱和砂岩的衰减研究[J].地震学报,1995,17(4):477-481.
    101.席道英,刘斌,谢端等.孔隙流体饱和砂岩的衰减与频率的相关性[J].石油地球物理勘探,1998,33(1):67-77.
    102.席道英,邱文亮,程经毅等.饱和多孔岩石的衰减与空隙率和饱和度的关系[J].石油地球物理勘探,1997,32(2):196-201.
    103.谢鸿森.地球深部物质科学导论[M].科学出版社,1997.
    104.谢鸿森,周文戈,赵志丹等.高温高压条件下岩石弹性波速测量[J].地学前缘,1998,5(4):329-337.
    105.信毅,刘瑞林,张晓明.利用纵横波品质因子比值识别含气碳酸盐岩层[J].新疆石油地质,2006,27(3):308-310.
    106.薛荣俊,张维冈.纵横波速度比泊松比及分辨率比较研究[J].青岛海洋大学学报,1999,29(4)704-708.
    107.杨晓松,马瑾,张先进.大陆壳内低速带的成因综述[J].地质科技情报,2003,22(2):35-41.
    108.岳兰秀,谢鸿森,赵志丹.高温高压岩石弹性波衰减的研究综述[J].地球科学进展, 2001,16(3):382-386.
    109.岳兰秀,谢鸿森,刘丛强. 2.0GPa、室温至1200℃条件下斜长角闪岩的纵波速度及其衰减[J].高压物理学报,2002,16(3):177-184.
    110.岳兰秀,谢鸿森,刘丛强,等.塔里木西南缘下地壳低速层的成因:斜长角闪岩的纵波速度和衰减的限制[J].地质地球化学,2003,31(3):13-19.
    111.赵志丹,高山,骆庭川等.秦岭和华北地区地壳低速带的成因探讨-岩石高温高压波速实验证据[J].地球物理学报,1996,39(5):642-652.
    112.张友南.华北北部克拉通地壳岩石的波速特征及物质组成.地震地质,1999,21(2):147-155.
    113.周连庆,赵翠萍,修济刚等.利用天然地震研究地壳Q值的方法和进展[J].国际地震动态,2008,2(350):1-12.
    114.周文戈,谢鸿森,赵志丹等.晶体大小分布对高压下岩石纵波速度影响的初步研究[J].高压物理学报,1998,12(3):207-211.
    115.朱传镇,傅昌洪,容珍贵等.海城地震前后微震震源参数与介质品质困子[J].地球物理学报,1977,20(3).
    116.朱传镇,傅昌洪,罗胜利.唐山7.8级地震前后微震震源参数[J].地球物理学报,1977,20(4).
    117.朱守彪.景泰地区Q值变化特征及其原因初探[J].西北地震学报,1993,15(1):11-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700