圆柱形洞室在反平面冲击荷载作用下的动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在车辆隧道、地铁隧道等此类地下交通道路中,刹车、车辆碰撞以及意外爆炸时有发生,这些情况发生时外界对洞室的冲击力不但有径向的,沿洞室切向的冲击力也不容忽视,切向冲击力对结构和土体的影响也很大,很有必要对其安全性能进行评估。截止目前为止国内外学者对于地下洞室受径向冲击荷载作用下的动力响应的研究已趋于成熟,但是对于洞室在反平面冲击力下的动力响应的研究报道较少,因此,基于弹性动力学理论和波的传播理论对地下洞室在外界轴向冲击力作用下的动力响应问题的研究不但具有深远的理论意义,同时对实际工程也具有巨大的现实价值。
     本文将土体视为弹性均质的各向同性材料,将外界冲击力简化为施加在圆柱形洞室表面沿轴线方向的均布荷载,基于波的传播理论,讨论了弹性土体内地下圆柱形洞室在轴线方向冲击荷载的作用下的动力响应问题,包括稳态响应和瞬态响应,主要研究内容和成果如下:
     首先假设源函数是简谐的,用解析的方法求解了弹性全空间内地下洞室表面在轴向冲击荷载作用下土体的稳态动力响应,绘制了土体应力和位移的时程曲线和随波的传播距离的衰减曲线,然后在全空间解答的基础上运用镜像原理,计算得到了半空间内土体的动力响应,分析结果显示:土体内应力和位移都是轴对称的,全空间内应力和位移值仅仅取决于离开震源圆柱轴的距离,距离波源越远,应力和位移值越小;半空间内,波源的频率越高,应力和位移的幅值较大,沿圆周的空间变化越复杂,随着频率的增大,应力和位移的最大值出现的位置由靠近地表的位置向远离地表的位置移动;洞室埋深越深,应力和位移幅值也越小,应力和位移随角度的空间变化越小。
     其次研究了无限弹性空间内地下洞室表面在轴向冲击力作用下土体的瞬态响应。利用拉普拉斯积分变换法在频域内求得了土体位移和应力的一般解析表达式,然后结合围道积分,运用拉普拉斯逆变换的方法,在时域内求得了土体应力和位移的一般解析解答式,并将这种解析方法得出的计算结果、地下洞室在静力作用下的土体应力和位移与采用Durbin的数值逆变换方法得出的结果做了比较,验证了本文结果的正确性,Durbin的数值逆变换方法对本文研究问题是适用的,最后分析了应力和位移随时间的变化规律,得出以下结论:波到达后,该点土体的应力和位移均瞬间增大,随后慢慢减小并逐渐趋于稳定值。
     然后考虑到自由地面的存在,研究了弹性半空间内圆柱形洞室在轴向荷载作用下的瞬态响应。借助于镜像方法将半无限空间内的求解问题转化为无限体内的求解问题,先利用积分变换法,在频域内求得应力和位移的解答,然后运用Durbin的拉普拉斯逆变换法求得数值的计算结果,从而在半空间内获得了土体的位移应力分布,分析了半空间内弹性波的传播规律,土体应力和位移随时间、空间、传播距离以及洞室埋深的变化。
     接着将洞室衬砌的作用考虑进去,利用积分变换法,在频域范围内分别求的了衬砌和土体位移和应力的表达式,采用Durbin拉普拉斯数值逆变换得到了衬砌和土体在时域内的动力响应,分别绘制了衬砌边界上和土介质内一点上应力和位移的时程曲线,讨论了衬砌相对剪切模量和相对厚度对响应的影响,结果表明:衬砌与土介质的相对剪切模量越大,衬砌外边界上和土介质的中应力和位移就越小,应力和位移衰减的越快;位移和应力随衬砌相对厚度增加而减小。
     最后基于全空间内圆柱形衬砌洞室在轴向荷载作用下的瞬态动力响应的研究,借助于镜像方法,在频域内分别求得半空间内衬砌和土介质应力和位移的解答,然后运用数值逆变换在时域内得到了衬砌和土介质在冲击荷载作用下的瞬态动力响应,绘制了半空间内应力和位移的时程曲线和极坐标曲线,讨论了洞室埋深、衬砌相对剪切模量和相对厚度对动力响应的影响。
The brakes, the vehicle collision and accidental explosion occur frequently in underground traffic roads such as vehicles tunnels and subway tunnels. When these situations occur the impact load exerted on the cavity is not only radial, tangential impact load along the cavity can not be ignored. It is necessary to evaluate its safety performance because the influence of the tangential impact on the structure and the soil is also great. So far the theory of dynamic response for underground cavity under radial impact loads has developed sophisticatedly at home and abroad. However, the study on anti-plane dynamic response is reported less. Therefore the study on the dynamic response of a cylindrical cavity subjected to an axial impact load is not only of profound theoretical significance, but also of great practical value in the actual project based on elastodynamics and wave propagation theory.
     In this paper the material of the soil is assumed to be homogeneous, isotropic and linearly elastic. The external impact load excited on cylindrical cavity is simplified to uniform sudden load along the axial direction. Based on wave propagation theory, the dynamic response of an elastic soil body containing a cylindrical cavity subjected to the anti-plane load is studied including steady-state response and transient response. The main research contents and conclusions are as follows:
     First of all, assuming that the wave source function is harmonic, the steady dynamic response of an elastic full space containing a cylindrical cavity subjected to the axial impact load is solved using analytical methods. The soil stress-time curve and displacement-time curve and the decay curve with wave propagation distance are drawn. And then on the base of the theory of the full space, according to the image method, the dynamic response of the soil half-space is obtained, The calculation results show that, the stress and displacement of the soil are axially symmetric, the farther the wave is from the source, the smaller the stress and the displacement are, and the stress and the displacement are just functions of the radial distance from the axis in full space. In half space, the stress and displacement and the complexity of spatial variations along the circumference increase with the increasing of the frequency of the wave source, and the position of maximum displacement and maximum stress moves away from the ground surface. The bigger the depth is, the smaller the stress and displacement are, and the less the spatial variation with angle of stress and displacement is.
     Secondly, the transient response to sudden anti-plane shock load of an infinite soil body containing a cylindrical cavity is studied. Using Laplace transform method, the frequency domain solutions are obtained. Using Laplace inverse transform combining with contour integral, the general analytical expressions of the soil displacement and stress are obtained in the time domain, respectively. And the calculation results are compared with those from numerical inversion proposed by Durbin and the static results, one observes good agreement between analytical and numerical inversion results, which lending the further support to the method presented. Durbin's method is applicable to this paper. Finally the stress and displacement variation with time is analyzed, the conclusions are gained:after the wave arrival the stress and the displacement at this point increase abruptly, then reduce and tend to the static value gradually at last.
     Then, taking into account the ground surface, the transient response of an elastic soil body half-space containing a cylindrical cavity subjected to the axial impact load is investigated. Then infinite space solutions are translated into solutions for the elastic half-space using image method. Using integral transform method, the stress and displacement are obtained in the frequency domain. And the numerical solutions of the problem are presented by the numerical inversion proposed by Durbin. Thus the displacement and stress distribution of the soil in half-space are gained. The propagation of elastic waves, the variation of the stress and displacement with respect to the time, angle, the radial distance and depth of the cavity are presented.
     After that, taking into account the lining, using the integral transform frequency solutions of the lining and soil of the displacement and stress are obtained. The dynamic response in time domain of the lining and the soil using the numerical inverse Laplace transform proposed by Durbin is attained. Displacement-time curves and stress-time curves are drawn on the outer boundary of the lining and a point in the soil. The influence of the relative shear modulus and relative thickness of the lining on the response is analyzed. The results show that, lining and soil media the relative shear modulus, the displacement and stress of the lining and the soil decrease with the increasing of the relative shear modulus and relative thickness.
     Finally, based on transient response in full space containing a cylindrical cavity with lining subjected to the axial impact load, by means of image method, frequency solutions of the lining and soil of the displacement and stress are obtained respectively. Then using numerical inverse transform, the transient response of the lining and the soil subjected to impact load in the time domain is obtained. Displacement-time curves, stress-time curves and polar plots are drawn in half space. The influence of the depth, the relative shear modulus and relative thickness of the lining on the response is discussed.
引文
[1]Abozena A. M.. Radiation form a finite cylindrical explosive source. GeoPhysics, 1977,42(7):1384-1393.
    [2]Acharya D. P., Indrajit R., Biswas P. K.. Vibration of an infinite inhomogeneous transversely isotropic viscoelastic medium with cylindrical hole. Applied Mathematies and Mechanics,2008,29(3):367-378.
    [3]Achenbach J. D.. Wave propagation in elastic solids. New York:American Elsevier Pub. Co.1980,35-69.
    [4]Akkas N., Erdogogan F.. The residual variable method applied to the diffusion equation in cylindrical coordinates. Acta Mechanic.1989,79(3-4):207-219.
    [5]Barclay D. W.. The shock pattern for axially symmetric shear wave propagation in a hyperelastic incompressible solid. International Journal of Solids and Structures, 2004,41(18-19):5265-5284.
    [6]Barclay D. W.. The propagation and reflection of finite amplitude cylindrically symmetric shear waves in a hyperelastic incompressible solid, Acta Mechanica,2007, 193 (1-2):17-42.
    [7]Barclay D. W.. Wavefront expansion for nonlinear axial shear wave propagation, International Journal of Non-linear Mechanics,1998,33(2):259-274.
    [8]Barclay D. W.. Shock front analysis for axial shear wave propagation in a hyperelastic incompressible solid, International Journal of Non-linear Mechanics, 1999,133(1-4):105-129.
    [9]Barclay D. W.. Shock calculations for axially symmetric shear wave propagation in a hyperelastic incompressible solid, International Journal of Non-linear Mechanics, 2004,39(1):101-121.
    [10]Baron M. L., Fames R.. Displacements and velocities produced by the diffraction of a pressure wave by a cylindrical cavity in an elastic medium. Journal of Applied Mechanics,1962,29(2):385-395.
    [11]Baron M. L., Mattews A. T., Diffaction of a pressure Wave by a Cylindrical Cavity in an Elastic Medium. ASME J Appl Mech,1961,28:347-351.
    [12]Bhattacharya S., Sengupta P. R... Disturbances in a general viscoelastic medium due to impulsive forces on a spherical cavity. Gerlands Beitr Geophysik,1978,87 (8):57-62.
    [13]Biswas P. K., Das T. K.. Propagation of waves in a higher order infinite visco-elastic medium by transient radial forces and twist on the surface of a cylinder. Acta Ciencia Indica,1991,17 (3):457-462.
    [14]Clebsch A.. Uber die reflexion an einer kugelfleche. Journal fur die reine und angewandte Mathematik,1863,61:195-262.
    [15]Daros C. H.. A fundamental solution for SH-waves in a class of inhomogeneous anisotropic media. International Journal of Engineering Science,2008,46:809-817.
    [16]Datta S K. Scattering of Elastic Waves. Mechanics Today ed. Nematnasser S, 1978,149-208.
    [17]Datta S. K., Akily N. E.. Diffraction of Elastic Waves in a Half Space. Pr PR interscince,1978:197-218.
    [18]Datta S. K., Shah A. H., Truell R.. Scattering of SH Waves by Embedded Cavities. Wave Motion,1982,4(3):265-283.
    [19]Davis C. A., Lee V. W., Bardet J. P.. Transverse response of underground cavities and pipes to incident SV waves. Earthquake Engineering and Structural Dynamics, 2001,30(3):395-410.
    [20]Duffey T. A.. Transient Response of Viscoplastic and Viscoelastic Shells Submerged in Fluid Media. Journal of Applied Mechanics,1976,43(1):137-143.
    [21]Durbin F.. Numerical inversion of Laplace transformation:An efficient improvement to Durbin and Abatep's method. The Computer Journal,1974,17 (4): 371-376.
    [22]Durelli A. J., Dally J. W. Stress Concentration Factors under Dynamic Loading Conditions. Journal of Mechanical Engineering Scienc,1959, 1(1):1-5.
    [23]Eason G. Propagation of waves from spherical and cylindrical cavities. ZAMP, 1963,14(1):12-22.
    [24]Eason G. The propagation of waves from a cylindrical cavity. Journal of Composite Materials,1973,7(1):90-99.
    [25]Eduardo K.. Fundamental solutions in elastodynamics:a compendium. Cambridge:Cambridge University Press,2006,124-156.
    [26]Fang X. Q., Hu C, Huang W. H., Dynamic stress of a circular cavity buried in a semi-infinite functionally graded piezoelectric material subjected to shear waves, European Journal of Mechanics A/Solids,2007,26(6):1016-1028.
    [27]Feldgun V. R., Kochetkov A. V., Karinski Y. S., Yankelevsky D. Z.. Internal blast loading in a buried lined tunnel. International Journal of Impact Engineering,2008, 35(3):172-183.
    [28]Feldgun V. R., Kochetkov A. V., Karinski Y. S., Yankelevsky D. Z.. Blast response of a lined cavity in a porous saturated soil. International Journal of Impact Engineering,2008,35 (9):953-966.
    [29]ForrestaM. J., Sagartz M. J.. Radiated pressure in an acoustic medium produced by pulsed cylindrical and spherical shells. Journal of Applied Mechanics,1971, 38(4):1057-1060
    [30]Fu Y. B., Scott N. H.. Transverse cylindrical simple waves and shock waves in elastic non-conductors. International Journal of Solids and Structures,1991, 27(5):547-563.
    [31]Gamer U.. Dynamic stress concentration in an elastic half space with a semi-circular cavity excited by SH waves. International Journal of Solids and Structures,1977,13(7):675-681.
    [32]Geers T. L.. Excitation of an elastic cylindrical shell by a transient acoustic wave. Journal of Applied Mechanics,1969,36(3):459-469.
    [33]Giannopoulos G., Larcher M., Casadei F., Solomos G. Risk assessment of the fatality due to explosion in land mass transport infrastructure by fast transient dynamic analysis. Journal of Hazardous Materials,2010,173(1-5):401-408.
    [34]Glenn L. A., Kidder R. E.. Blast loading of a spherical container surrounded by an infinite elastic medium. Journal of Applied Mechanics,1983,50(4a):723-726.
    [35]Graff K. F.. Wave motion in elastic solids. Oxford:Clarendon Press,1975,41-76.
    [36]Guz A. N., Chernyshenko I. S., Shnerenko K. I.. Stress concentration near openings in composite shells. Int. Appl.Mech.,2001,37 (2):139-181.
    [37]Haddow J. B., Jiang L.. Finite amplitude azimuthal shear waves in a compressible hyperelastic solid. Journal of Applied Mechanics,2001,68(2):145-152.
    [38]Haddow J. B., Jiang L.. Finite amplitude elastic waves due to non-uniform traction at the surface of a cylindrical cavity. International Journal of Non-linear Mechanics,2006,41(2):231-241.
    [39]Haddow J. B., Lorimer S. A., Tait R. J.. Nonlinear axial shear wave propagation in a hyperelastic incompressible solid. Acta Mechanica,1987,66(1-4)205-216.
    [40]Hasegawa T., Kitagawa Y, Watanabe Y.. Sound reflection from an absorbing sphere. Acoust. Soc. Am.,1977,62(5):1298-1300.
    [41]Haywood J. H.. Response of an elastic cylindrical shell to a pressure pulse. Journal of Mechanics and Applied Mathematics,1958, 11(2):130-140.
    [42]He W., Chen J. Y, Guo J.. Dynamic analysis of subway station subjected to internal blast loading. Journal Central South University of Technology,2011, 18(3):917-924.
    [43]Herman H., Klosner J. M.. Transient Response of a Periodically Supported Cylindrical Shell Immersed in a Fluid Medium. Journal of Applied Mechanics,1965, 32(3):562-568.
    [44]Hook J. F.. Green's functions for axially symmetric elastic waves in unbounded inhomogeneous media having constant velocity gradients. Journal of Applied Mechanics,1962,29(2):293-298.
    [45]Huang H., Gaunaurd G. C.. Acoustic scattering of a plane wave by two spherical elastic shells. J. Acoust. Soc. Am.,1995,98(4):2149-2156.
    [46]Iakovlev S.. Interaction between a submerged evacuated cylindrical shell and a shock wave-Part Ⅰ:Diffraction-radiation analysis. Journal of Fluids and Structures. 2008,24 (7):1077-1097.
    [47]Iakovlev S.. Interaction between a submerged evacuated cylindrical shell and a shock wave-Part Ⅱ:Numerical aspects of the solution. Journal of Fluids and Structures,2008,24 (7):1098-1119.
    [48]Jiang L. F., Zhou X. L., Wang J. H.. Scattering of a plane wave by a lined cylindrical cavity in a poroelastic half-plane. Computers and Geotechnics,2009, 36(5):773-786.
    [49]Karl F Graff. Wave motion in elastic solids. London:Oxford University Press, 1975,88-120.
    [50]Kattis S E, Beskos D E, Cheng A H D.2D dynamic response of unlined and lined tunnels in poroelastic soil to harmonic body waves. Earthquake Engineering and Structural Dynamics.2003,32(1):97-110.
    [51]Kit H. S., KhaM. V. J, Mykhas'ki V. V.. Analysis of dynamic stress concentration in an infinite body with parallel penny-shaped cracks by BIEM. Engineering Fracture Mechanics,1996,55(2):191-207.
    [52]Lamb H.. On the propagation of tremors over the surface of an elastic solid. Philosphical Transactions of the Royal Society of London, Series A,1904,203:1-42.
    [53]Lee J. K., Mal A. K.. A volume integral equation technique for multiple scattering problems in elastodynamics. Applied Mathematics and Computation,1995, 67(1-3):135-159.
    [54]Lee V. W., Karl J.. Diffraction of SV waves by underground, circular, cylindrical cavities. Soil Dynamics and Earthquake Engineering,1993,11 (8):445-456.
    [55]Lee V. W., Karl J.. On deformations of near a circular underground cavity subjected to incident plane P waves. European Journal of Earthquake Engineering, 1993,1 (1):29-36.
    [56]Lee V. W.. On deformations of near a circular underground cavity subjected to incident SH waves. Proceedings of the Symposium of Applications of Computer Methods in Engineering, University of Southern California, Los Angeles,1977, 951-961.
    [57]Lee V. W., Triufnac M. D.. Response of tunnels to incident SH waves, Jounral of Engineering Mechanics Division,1979,105(4):643-659.
    [58]Lethuillier S., Conoir J. M., Pareige P., et al.. Resonant acoustic scattering by a finite linear grating of elastic shells. Ultrasonics,2003,41(8):655-662.
    [59]Li X.. Stress and displacement fields around a deep circular tunnel with partial sealing. Computers and Geotechnics,1999,24(2):125-140.
    [60]Li X., Flores-berrones R.. Time-dependent behavior of partially sealed circular tunnels. Computers and Geotechnics,2002,29(6):433-449.
    [61]Liu D. K., Gai B. Z., Tao G Y. Applications of the Method of Complex Functions to Dynamic Stress Concentrations. Wave Motion,1982,4(3):293-307.
    [62]Luco J. E., Barros de F. C. P.. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space. Earthquake Engineering and Structural Dynamics 1994,23(3):321-340.
    [63]Manolis G D., Beskos D. E.. Dynamic stress concentration studies by boundary integrals and Laplace transform. International Journal for Numerical Methods in Engineering,1981,17(4):573-599.
    [64} Mie G. Beitrage zur optik truber medien, speziell koiloidaler metallosungen. Annalen der Physik,1908,330(3):377-445.
    [65]Miklowitz J.. Plane-stress unloading waves emanating from a suddenly punched hole in a stretched elastic plate. Journal of Applied Mechanics,1960,27(1):165-171.
    [66} Mitri F. G, Fellah Z. E. A., Chapelon J. Y. Acoustic backscattering form function of absorbing cylindertargets. Journal of the Acoustical Society of America,2004, 115(4):1411-1413.
    [67]Moore I. D., Guan F.. Three-dimensional dynamic response of lined tunnels due to incident seismic waves. Earthquake Engineering and Structural Dynamics,1996, 25(4):357-369.
    [68]Moodie T. B., Barclay D. W.. Wave Propagation from a Cylindrical Cavity. Acta Mechanica,1977,27(1-4):103-120.
    [69]Moodie T. B., Haddow J. B., Mioduchowski A., Tait R. J.. Plane Elastic Waves Generated by Dynamical Loading Applied to Edge of Circular Hole. Journal of Applied Mechanics,1981,48(3):577-581.
    [70]Mow C. C., Mente L. J.. Dynamic stresses and displacements around cylindrical discontinuities due to plane shear waves. Journal of Applied Mechanics,1963,30(4): 598-604.
    [71]Mow C. C., Workman J. W.. Dynamic stresses around a fluid-filled cavity. Journal of Applied Mechanics,1966,33(4):793-799.
    [72]Nishimura G., Jimbo Y.. A dynamical problem of stress concentration-stresses in the vicinity of a spherical matter included in an elastic solid under dynamical force. Journal of the Faculty of Engineering, University of Tokyo,1955,24:101.
    [73]Ohtaki H., Kotosaka S., Nagasaka Y.. Deriving the dynamic stress function using complex function and its application to the analysis of the stress distribution around an elliptical hole. International Journal of Engineering Science,2008,46 (1):66-85.
    [74]Pao Y. H., Mow C. C. Diffraction of elastic waves and dynamic stress concentrations. New York:Crane and Russak,1973,115-136.
    [75]Payton R. G. Diffraction in a cylindrically orthotropic elastic solid containing a stress free crack. Zeitschrift fur angewandte Mathematik und Physik,2007,58 (5):876-888.
    [76]Payton R. G. Anti-plane wave motion in a cylindrically orthotropic elastic solid containing a stress-free crack. Wave Motion.2004,40(4):373-385.
    [77]Pekeris, C. L.. The seismic surface pulse. Proc. Nat. Acad. Sci.1955,41(7): 469-480.
    [78]Providakisl C. P., Sotiropoulosl D. A., Beskos D. E.. BEM analysis of reduced dynamic stress concentration by multiple holes. Communications in Numerical Methods in Engineering,1993,9(11):917-924.
    [79]Ramskaya E. I., Shul'ga N. A.. Study of the velocities and modes of propagation of axisymmetric waves along an orthotropic hollow cylinder. Soviet Applied Mechanics,1983,19(3):207-211.
    [80]Rayleigh L.. On the scattering of light by small particles. Philosophical magazine. A, Physics of Condensed Matter, Defects and Mechanical Properties,1871,41:447.
    [81]Robert S., Conoir J. M., Franklin H., et al.. Resonant elastic scattering by a finite number of cylindrical cavities in an elastic matrix. Wave Motion,2004,40(3): 225-239.
    [82]Sagaseta C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique,1987,37(3):301-320.
    [83]Sancar S., Pao Y. H.. Spectral analysis of elastic pulses backscattered from two cylindrical cavities in a solid-Part Ⅰ. Journal of the Acoustical Society of America, 1981,69(6):1591-1596.
    [84]Sancar S., Sachse W.. Spectral analysis of elastic pulses backscattered from two cylindrical cavities in a solid-Part II. Journal of the Acoustical Society of America, 1981,69(6):1597-1609.
    [85]Sanchez-Sesma F. J., Brvao M. A., Herreral J.. Suarfce motion of topographical irregularities for incident P SV and Ryaleigh waves. Bull.Seism.Soc.Am.,1985, 75:263-269.
    [86]Schuetz L. S., Neubauer W. G.. Acoustic reflection from cylinders-nonabsorbing and absorbing. Acoust. Soc. Am.,1977,62(3):513-517.
    [87]Segol G., Lee P. C. Y., Abel J. F.. Amplitude reduction of surface waves by trenches. Engrg. Mech. Div., ASCE,1978,104(3):621-641.
    [88]Senjuntichai T., Rajapakse R. K. N. D. Tranisent response of a circular cavity in a poroelastic medium. Int J for Numerical and Analytical Method in Geomechanies, 1993,17(3):57-383.
    [89]Sezawa K.. Scattering of elastic waves and some allied problems. Bull of Earthquake Research Institute, Tokyo Imperial Univerty,1927,47(3):35-39.
    [90]Shul'ga N. A.. Propagation of axisymmetric elastic waves in an orthotropic hollow cylinder. Soviet Applied Mechanics,1974,10(9):936-939.
    [91]Sladek J., Sladek V.. Dynamic stress intensity factors studied by boundary integro-differential equations. International Journal for Numerical Methods in Engineering,1986,23(5):919-928.
    [92]Smerzini C., Aviles J., Paolucc R., Sanchez-sesma F. J.. Effect of underground cavities on surface earthquake ground motion under SH wave propagation. Earthquake Engineering and Structural Dynamics,2009,38(12):1441-1460.
    [93]Triufnac M. D.. Scattering of plane SH wave by a semi-cylindrical canyon. Earthquake Engineering and Sturcutral Dynamics,1973,1(3):267-281.
    [94]Veksler N., Izbicki J. L., Conoir J. M.. Elastic wave scattering by a cylindrical shell. Wave Motion,1999,29(3):195-209.
    [95]Verruijt A.. Soil dynamics. Delft University of Technology,1994,103-123.
    [96]Wang X. L., Guo J. H.. On the dynamic stress concentration in the neighbourhood of a cavity under impulse loading. Earthquake Engineering and Engineering Vibration,1984,4:004.
    [97]Wang J. H., Zhou X. L., Lu J. F.. Dynamic stress concentration around elliptic cavities in saturated poroelastic soil under harmonic plane waves. International Journal of Solids and Structures,2005,42(14):4295-4310.
    [98]Watanabe K., Payton R. G. SH wave in a cylindrically anisotropic elastic solid a general solution for a point source. Wave Motion,1996,25(2):197-212.
    [99]Watanabe K.. Transient response of an inhomogeneous elastic solid to an impulsive SH-wave. The Japan Society of Mechanical Engineers,1982, 25(201-2):315-319.
    [100]Watson G. N.. Theory of Bessel Function. England:Cambridge University Press, 1995,38-72.
    [101]White R. M.. Elastic Wave scattering at a cylindrical discontinuity in a solid. Acoust. Soc. Am.,1958,30(8):405-418.
    [102]Wong H. L.. Effect of surface topography on the diffraction of P, SV and Rayleigh Waves. Bull, seism, soc. Am.,1982,72(4):1167-1153.
    [103]Wong H. L., Jennings P. C. Effects of canyon topography on strong ground motion. Bull. Seism. Soc. Am.,1975,65(5):1239-1259.
    [104]Wong H. L., Triufnac M. D.. Suarfce motion of semi-elliptical alluvial valley for incident Plane SH waves. Bull. Seism. Soc. Am.,1974,64(1):1389-1408.
    [105]Xia T. D., Sun M. M., Chen C., Chen W. Y, Xu P.. Analysis of Multiple Scattering by an Arbitrary Configuration of Piles as Barriers for Vibration Isolation. Soil Dynamics and Earthquake Engineering,2011,31(3):535-545.
    [106]Zakout U., Akkas N.. Transient response of a cylindrical cavity with and without a bonded shell in an infinite elastic medium. International Journal of Engineering Science,1997,35(12-13):1203-1220.
    [107]Zeng X., Cakmak A. S.. Scattering of plane SH waves by multiple cavities. Proceedings of the Pressure Vessels and Piping Conference, New Orleans, LA, USA, 1985,98:155-163.
    [108]Zirka I., Malezhik M. P., Chernyshenko I. S.. Stress concentration in an orthotropic plate with a circular hole under dynamic loading. International Applied Mechanics,2004,40(2):226-230.
    [109]蔡袁强,陈成振,孙宏磊.黏弹性饱和土中隧道在爆炸荷载作用下的动力响应.浙江大学学报(工学版),2011,45(9):1657-1663.
    [110]蔡中民,高经武,张兵,杨桂通.横向爆炸载荷下开孔板的动应力集中因子.爆炸与冲击,2005,24(2):112-118.
    [111]陈志刚.SH波作用下界面任意形状孔洞附近的动应力集中.固体力学学报,2006,27(4):408-413.
    [112]陈志刚.SH波作用下各向异性弹性半空间中浅埋圆孔附近的动应力集中研究.岩土力学,2012,33(3):899-905.
    [113]丁美.地下圆形衬砌隧洞对柱面SH波的散射解析解.天津大学硕士学位论文,2004,天津:天津大学.
    [114]盖秉政.论弹性波绕射与动应力集中问题.力学进展,1987,17(4):447-464.
    [115]高盟,高广运,王滢等.饱和土与衬砌动力相互作用的圆柱形孔洞内源问题解答.固体力学学报,2009.30(5):481-488.
    [116]高盟,高广运,王滢等.内部荷载作用下圆柱形孔洞的动力响应解答.力学季刊,2009,30(2):266-272.
    [117]顾红军.爆炸及冲击载荷下多排圆柱壳的结构响应.南京理工大学博士学位论文,2003,南京:南京理工大学.
    [118]胡超,刘殿魁.无限大板开孔弹性波的散射及动应力集中.力学学报,1995,27(增刊):125-134.
    [119]胡亚元.横观各向同性饱和土中波的传播.浙江大学博士学位论文,1998,杭州:浙江大学.
    [120]胡亚元,王立忠,陈云敏等.饱和土中平面应变波在圆柱体上的散射和折射.地震学报,1998,20(3):300-307.
    [121]纪晓东.半空间中圆形洞室对弹性波的散射.天津大学博士论文,2005,天津:天津大学.
    [122]李伟华,赵成刚.饱和土半空问中圆柱形孔洞对平面P波的散射.岩土力学,2004,25(12):1867-1872.
    [123]李兴华,龙源,纪冲,周翔,路亮.爆破地震波作用下隧道围岩动应力集中系数分析.岩土工程学报,2013,35(3):578-581.
    [124]梁建文,丁美,杜金金.柱面SH波在地下圆形衬砌洞室周围散射解析解.地震工程与工程振动,2013,33(1):1-7.
    [125]梁建文,张浩,Lee V. W.平面P波入射下地下洞室群动应力集中问题解析解.岩土工程学报,2004,26(6):815-819.
    [126]梁建文,张浩,Lee V. W.地下洞室群对地面运动影响问题的级数解答-P波入射.地震学报,2004,26(3):269-280.
    [127]梁昆淼.数学物理方法.北京:高等教育出版社,2010,328-361.
    [128]刘殿魁.各向异性介质中SH波引起的圆孔附近的动应力集中.力学学报,1988,20(5):443-452.
    [129]林宏,刘殿魁.半无限空间中圆形孔洞周围SH波的散射.地震工程与工程振动,2002,22(2):9-16.
    [130]刘殿魁,林宏.SH波对双相介质界面附近圆形孔洞的散射.固体力学学报,2003,23(1):197-203.
    [131]刘殿魁,刘宏伟.SH波散射与界面圆孔附近的动应力集中.力学学报,1998,30(5):597-604.
    [132]刘国利,赵会滨,许贻燕.阶跃SH波作用下半圆形凹陷地形的瞬态反应-长期解.地震工程与工程振动,1995.15(1):92-99.
    [133]孙苗苗.多排非连续屏障对弹性波的多重散射研究.浙江大学博士学位论文,201,杭州:浙江大学.
    [134]史守峡,刘殿魁.SH波与界面多圆孔的散射及动应力集中.力学学报,2001,33(1):60-70.
    [135]史文谱,陈瑞平,张春萍.直角平面内弹性圆夹杂对入射平面SH波的散射.应用力学学报,2007,24(1):34-47.
    [136]王立忠.饱和各向异性土体中的弹性波.浙江大学博士学位论文,1995,杭州:浙江大学.
    [137]王熙.有界圆柱体的动应力和动应力集中现象.振动与冲击,1995,53(1):23-29.
    [138]吴世明.土介质中的波.北京:科学出版社,1997,62-65.
    [139]吴世明.土动力学.北京:中国建筑工业出版社,2000,12-35.
    [140]夏唐代.地基中表面波特性及其应用.浙江大学博士学位论文,1992,杭州:浙江大学.
    [141]夏唐代,孙苗苗,陈晨.任意排列的弹性实心桩屏障对平面SH波的多重散射.振动与冲击,2011,30(7):87-95.
    [142]徐平.弹性波的多重散射在工程中的应用.浙江大学博士学位论文,2006.杭州:浙江大学.
    [1431徐平,夏唐代,李晓龙.深埋圆形衬砌群对入射平面P波的多重散射.中国铁道科学,2008,29(3):46-51.
    [144]杨桂通,张善元.弹性动力学.北京:中国铁道出版社,1988,50-99.
    [145]杨峻,宫全美,吴世明等.饱和土体中圆柱形孔洞的动力分析.上海力学,1996,17(1):37-45.
    [146]易长平.爆炸振动对地下洞室的影响研究.武汉大学博士学位论文,2005,。武汉,武汉大学.
    [147]尤红兵.层状饱和半空间中凹陷地形或隧洞对弹性波的散射.天津大学博士学位论文,2005,天津:天津大学.
    [148]张庆元,战人瑞.爆轰载荷作用下球形空腔的动力响应.爆炸与冲击,1994,14(2):182-185.
    [149]周香莲,周光明.SH波对无限介质土中衬砌结构的动应力集中.岩土力学,2004,25(增刊):366-382.
    [150]赵志民.隧道施工引起土体位移与应力的镜像理论研究以及回归方法的应用.天津大学博士学位论文,2004,天津:天津大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700