拟南芥干旱和过氧化氢突变体远红外成像技术的筛选及其初步定性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类的经济发展和人口膨胀,水资源短缺现象日趋严重,这直接导致了干旱地区的扩大与干旱化程度的加重,在许多地区已成为限制农业发展的瓶颈。开展作物抗旱机制的研究,提高作物抗旱性是解决水资源短缺、实现农业节水、保障农业可持续发展的重要选择。通过对作物抗旱分子机制的阐明可进一步揭示植物适应环境的生命本质,是最终实现人为操纵植物生命活动的基础,因此也是生命科学领域中研究的重大的科学问题。
     在生长发育过程中植物往往会遭遇到各种各样的胁迫。环境胁迫会导致活性氧(ROS)的产生,主要包括H_2O_2、O_2~(·-)、·OH、~1O_2等,研究表明过氧化氢(H_2O_2)可能作为第二信使参与植物细胞的许多生理代谢过程,因而有关H_2O_2信号转H导途径的研究就愈显重要。到目前为止,对有关植物细胞中H_2O_2信号转导的细节及其与胞内其它信号分子的时空关系、作物抗旱的分子生物学和遗传学知识及其所涉及到的分子机制,特别是对作物抗旱主效基因的的表达调控及上游的信号传递知之甚少。而突变体作为剖析复杂生物学过程强有力的工具,已被广泛用于植物发育、代谢途径及细胞信号转导的研究。
     远红外成像技术是利用物体自身各部分对红外热辐射的差异把红外辐射图像转换为可视图像的技术。随着红外探测器在技术上的不断突破,应用的领域也不断拓宽,如在生命科学研究中的应用就是其中的典型范例。
     本实验首先是对利用远红外成像技术筛选拟南芥突变体方法的可行性进行多方面的试验,优化筛选条件、确定筛选所需幼苗的生长时间、种植密度,界定用于筛选所需的胁迫(过氧化氢和干旱)选择压力。然后用0.4%的乙酰甲基磺酸(EMS)诱变拟南芥(Arabidopsis thaliana)野生型。以8-10天的干旱和5×10~(-3)mol/LH_2O_2进行胁迫处理,用远红外成像技术检测突变体和野生型叶面温度的微小差异,对M_2代幼苗进行了大规模的筛选。当植物叶片温度与野生型即正常植株的叶片温度有明显差异,大约温差可达到0.6-1.2℃,就被确定为对过氧化氢和干旱敏感和不敏感拟
    
    _..一.…__.__._二乡电爷贡早介呼些型丝鱼些竺困些述塑鲤竺塑竺型
     南芥侯选突变体。我们对这些拟南芥侯选突变体进行进一步的鉴定和遗传学分析,
    发现ro口口、doil、doi口Jlll3I等潜在突变株对ABA、过氧化氢及早胁迫有明显表型,
    同时对潜在突变体的生长发育进行了详细的观察,发现多数潜在突变株与同条件下
    野生型比出现了许多明显的形态改变,如:莲座基叶增多、分层、肥大,花期提前
    或延迟,主茎生轮座,株型矮化,产籽量少,不育,败育等,这些生理和形态上的
    差异很可能反映了它们内部某些基因的表达受到了影响、代谢调控发生了紊乱,具
    体和详细的作用机制还需要进一步的研究。
With the development of economy and increase of the population, the shortage of water is becoming serious in the worldwide . These directly result in enlarging of arid regions, which limit the agriculture production. Studying the mechanism of drought-resistant and enchancing capability of drought-resistant of crops is an important measure to solve the shortage of water, realize agriculture of saving water, guarantee the sustaining development of agriculture.
    Plants often encount many kinds of environmental stresses, The reactive oxygen species (ROS), including H2O2 primarily, O2- OH, 1O2 ,could be induced in plant cells in responsive to the stresses. Many phyisilogical and cell biological studies have indicates that hydrogen peroxide as second messager involved in ABA signaling in guard cells. Therefore, research on H2O2 signaling will be more important.
    So far, little is known the details of H2O2 signal transduction and its complicated relation with other signal molecular, knowledge about molecular mechanism of drought-resistant and its genetics, especially to expressions of main gene of drought-resistant and controls of upstream signal transduction. Mutant, a powerful tool of analyzing genetic process , has already been extensively used for research in plant growth, metabolism and signal transduction
    Infrared imaging techniques utilize every part of difference of infrared radiation of objects to obtain the details of the thermal images. With the breakthroughs of infrared thermography, upgrade of infrared imaging aparatus will be quicker; scope of application more wider continuously; precision and accuracy of measurement more accurate. Particularly application in the life science also continuous changes and improves.
    Firstly we maked sure method of isolating Arabidopsisis mutant by thermal imagings in many ways on trial, optimize conditions for isolation, and confirm the good
    
    
    period of seedlings and fine density for isolation, select correct isolating pressure(drought and H2O2) that is fit for isolate mutant.Secondly we obtain an Ml population derived from 0.4%ethyl methanesulfonate (EMS)-mutagenized wild type Arabidopsis thaliana. With the tiny difference of temperature leaf between mutant and wild type for index sign,We isolate Ml seedlings by 8-10 days drought-stress and 5X 10-3mol/L H2O2-stress treatment by infrared thermography in a large scale.A great deal of roi ros doi and dos Arabidopsis mutant were isolated (the difference of leaf temperature between candidate mutant and wild type is very obvious,about 0.6-1.210). The future characterization and genetic analysis for candidate mutant were carried out and find that some candidate mutant (such as roi30 doil-1 doi0311131)have good phenotype by drought H2O2 ABA -stressed treatment.At the same time we also observe the development of candidate mutant at different growth stages carefully. Many modal difference between mutant an
    d wild type at the same period were found, such as more rosette layering fatty and big in leaves, advancment or delay for the flower period, rosettes living in the main stem, shorten in figure, the amount of seed little,sterilization etc. These physiological and modal changes may reflect with maladjustment in expressions of some gene and confusion on their inner control,. We will futher study concrete and detailed function mechanism.
引文
安国勇,宋纯鹏,张骁,荆艳彩,阳冬梅,黄美娟,周培爱,吴才宏。过氧化氢对蚕豆气孔运动和质膜K+通道的影响。植物生理学报,2000,26:458-464
    安国勇,宋纯鹏。超氧阴离子通过提高[Ca~(2+)]cyt调节保卫细胞K+通道和气孔运动。生物物理学报,2004,2:143-150
    白书农,谭克辉。拟南芥菜-植物发育分子生物学研究的重要模式材料。植物学集刊,1992,6:31-43
    蔡仪莹,陈珈。植物防御反应中的活性氧的产生和作用。植物学通报,1999,16:107-112
    陈吉龙,马海飞。拟南芥菜突变体及植物发育研究的遗传学途径。发育生物学进展,高等教育出版社,1994,p328-340
    陈璋。拟南芥:植物分子生物学研究的模式物种。植物学通报,1994,11:6~11
    董汉松。植物诱导抗病性原理和研究。科学出版社,1995,p160-170
    董敏,刘进元。植物抗病的信号转导途径。生命科学,1998,10:227-228
    杜秀敏,殷文旋,赵彦修,张慧。植物中活性氧的产生及清除机制。生物工程学报,2001,17:121-125
    方宗熙,江乃萼著。遗传与育种。科学出版社,1979,1:3-8
    郭岩,张莉,肖岗。甜菜碱醛脱氧酶基因在水稻中的表达及转基因植株的耐盐性研究。中田科学,1997,27:151~155
    郭文明。生物遗传与变异。人民教育出版社,1981,p124-135
    郭泽建,李建葆。活性氧与植物抗病性。植物学报,2000,42:881-891
    郝林。拟南芥—植物发育生物学和分子生物学实验的好材料,植物生理学通讯,1999,35:218~230
    胡含,陈英。植物体细胞遗传与作物改良。北京大学出版社,1988,p268-295
    蒋明义。水分胁迫下植物体内OH-的产生与细胞的氧化损伤。植物学报,1999,41:229-234
    
    
    李文泽。植物生物技术与作物改良。中国科学出版社,1995,p171-178
    李向辉。植物遗传操作技术。科学出版社,1988,p132-139
    廖祥儒,朱新产。活性氧代谢和植物抗盐性。生命化学,1996,16:19-21
    林植芳,李双顺,林桂株,孙谷畴,郭俊彦。水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系。植物学报,1984,26:605-615
    孟繁霞,张蜀秋,娄成后。气孔功能的结构基础。植物学通报,2000,17:27~33
    苗雨晨,宋纯鹏,董发才,王学臣。ABA诱导蚕豆气孔保卫细胞H_2O_2的产生。植物生理学报,2000,26:53-58
    缪树华等,氨基酸过量合成的玉米突变体的选择与营养品质改良 植物体细胞无性系变异与育种,江苏科学技术出版社,1991,p313-321
    缪树华等,抗赖氨酸加苏氨酸玉米突变体的选择,植物学报,1987,29:565-572
    沈义国,杜保兴,张劲松。.山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析。生物工程学报,2001,17:1~6
    孙大业,郭艳林,马力耕。细胞信号转导。科学出版社,1998,p171-180
    汤章城。植物对水分胁迫的反应性和适应性。植物生理学通讯,1983,4:1~7
    王洪春。植物生理学专题讲座。北京:科学出版社,1987,p36~341
    王建华,刘鸿先.超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用。植物生理通讯,1989,1:1-7
    许长成。硫代巴比妥酸(TBA)法检测脂质过氧化水平的探讨。植物生理学通讯,1989,6:58-60
    许智宏,刘春明。植物分子生物学研究中的“果蝇”—拟南芥.植物发育的分子机理。科学出版社,1998,p225-239
    许智宏,植物生物技术。上海科学技术出版社,1997,p226-241
    严小龙,张福锁。植物营养遗传学。1995,p219-223
    张宏明,陈珈。激发子与植物抗病信号转导。植物生理通讯,1999,35:221-226
    张举仁。玉米耐盐植株的再生及其后代的特性。植物体细胞无性系变异与育种,江苏科学技
    
    术出版社,1991,p294-301
    张骁,张霖,安国勇,高俊风,宋纯鹏。共聚焦显微技术研究ABA诱导蚕豆气孔保卫细胞H_2O_2的产生。实验生物学报。2001,34:71-74
    郑慧琼,赵毓橘.植物激素突变体。植物生理学报,1997,33:321-329
    Allan AC, Fluhr R. Two district sources of elicited reactive oxygen species in tobacco epidermal cells. Plant cell, 1997, 9: 1559-1572
    Alvarez ME, Penndll RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C. Reactive oxygen intermediates mediate a systemic signal networks in the establishment of plant immunity. Cell, 1998, 92: 773-784
    Apse M P, Aharon G S, Snedden W A. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis. Science, 1999, 285: 1256~1258
    Arrigoni O, De Gara L, Tommasi F, Liso R. Changes in the ascorbate system during seed development of Vicia faba. Plant Physiol, 1992, 99: 235-238
    Assmann SM, Snyder JA,Jnlie YL. ABA-deficient(abal) and ABA-insensitive(abil-1,abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity Plant, Cell & Environment 2000, 23: 387-395
    Assmann SM. OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells Trends in Plant. Science, 2003, 8: 151-153
    Assmann SM. Signal transduction in guard cell. Annu Rev cell Biol, 1993, 9: 345-375
    Aver AA, Djawakhin VG. Active oxygen mediates heat-induced resistance of rice plant to blast disease. Plant Sci, 1993, 92: 27-34
    Baxter A, Burrell, Yang Z, Springer PS, Bailey-Serres J. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science, 2002, 296: 2026-2028
    Beverly D, Hung Y C, Prussia S E. Thermography as a nondestructive method to detect invisible quality damage in fruits and vegetables. HortScience, 1987, 22: 1056-1062
    
    
    Borkird C. Developmental regulation of embryogenic genes in plants. Proc Natl Acad Sci USA, 1988, 85:6399-6403
    Bowler C, Van Montagn M, Inze D. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 83-116
    Bowling SA, Guo A, Hui Cao, Susan Gordon A, kidssig DF, Dong XN. A mutant in Arabidopsis thaliana that leads to constitutive expression of systimic acquired resistance. Plant Cell, 1994, 6: 1845-1857
    Bowman JL. Genes directing flower development in Arabidopsis. Plant Cell, 1989, 1: 37-42
    Bradley DJ, Kjellbom P, Lamb CJ. Elicitor and wouned -induced oxidative cross-linking of a protein-rich plant cell wall protein: a novel, rapid defense reponse. Cell, 1992, 70: 21-30
    Bray EA. Plant responses to water deficit. Trends plant Sci, 1997, 2: 48~54
    Burdon RH. Superoxide and hydrogen peroxide in relation to mammlian cell proliferation. Free Radic Biol Med, 1995,18: 775-794
    Cao Y, Glass AM, Crawford NM. Ammonium inhibition of Arabidopsis root growth can be reversed by potassium and by auxin resistance mutations auxl, axrl, and axr2. Plant Physiol, 1993,102: 983-989
    Chaerle,L.Vander. Straeten, D. Imaging techniques and the early detection of plant stress[J].Trends Plant Sci, 2000, 5: 495-501
    Choi HI, Hong JH, Ha JO, Kang JY, Kim SY. ABFs, a Family of ABA-responsive Element Binding Factors J. Biol. Chem, 2000, 275: 1723-1730
    Conklin PL, Williams EH, Last R. Environment stress sensitivty of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA, 1996, 93: 9970-9974
    Cosh JA. Infrared detection in the assessment of rheumatoid arthritis. Proc R Soc Med,1966, 59: 88-93
    
    
    Crandell CE, Hill RIP. Thermography in dentistry: a pilot study. Oral Surg Oral Med Oral Pathol, 1966, 21: 316-320
    Daley P F. Chlorophyll fluorescence analysis and imaging in plant stress and disease[R]. Canadian Journal of Plant Pathology, 1995, 17:167-173
    David W, Meinke. A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science. 1992, 4:1647-1650
    Doke N. Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal cell wall components of phytophthora infestans and specific inhibition of the reaction by suppressors of Hpersensitivity. Physiol Plant Pthol, 1983, 23: 359-367
    Estelle MA, Somerville C. Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genel, 1987, 206: 200-206
    Fujioka S. Qualitative and quantitative analysis of gibberllins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedings of Zea mays L. Plant Physiol, 1992, 88: 1367-1372
    Harris DL, Greening WP, Aiehroth PM. Infra-red in the diagnosis of a lump in the breast. Br J Cancer, 1966, 20: 710-721
    Hashimoto Y, Ino T, Kramer. Dynamic analysis of water stress of sunflower leaves by means of a thermal image processing system. Plant Physiol, 1984, 76: 266-269
    Hobbie L. Estelle M. Genetic approaches to auxin action. Plant Cell and Envir, 1994, 17: 525-540
    Howden H, Cobbett CS. Cadmium-sensitive mutant of Arabidopsis thaliana. Plant Physiol, 1992,99: 100-107 and close dependence on plant water stress. Science, 1970, 24: 519~524
    Inoue Y, Kimball B A, Jacklon R D. Remote estimation of leaf transpiration rate and stomatal resistance based on infrared thermometry. Agricultural and Forest Jamieson DJ,
    
    Storz G. In: Scandalios JG (ed). Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press,1997. 91~115
    Inoue Y. Remote detection of physiological depression in crop plants with infrared thermal imagery. Japan Jour Crop Sci, 1990, 59: 762-768
    Inze D, Van Montagn M. Oxdative stress in plants. Curr Opin Biotechnol, 1995, 6: 153-158
    Ishitani M, Xiong LM, Stevenson B, Zhu JK. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: Interactions and convergence of Abscisic Acid-dependent and Abscisic Acid-independent pathways. Plant Cell, 1997, 9: 1935-1949
    James KR, Aidous DE. Thermal imaging: Tool for measurement of turfgrass stress. 1997, 4th ATRI Turf Research Conference, Proceedings of the 4th ATRI Research Conference, 80-83, Concord West, NSW: Australian Turfgrass Research Institute Ltd
    Jones, H.G. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ, 1999, 22: 1043-1055
    Kelly MO, Bradford KJ. Insensitivty of the diageotropica tomato mutant to auxin. Plant Physiol, 1986, 82: 713-722
    Kitaya Y, Kawai M, Tsuruyama J, et al. The effect of gravity on surface temperatures of plant leaves. Plant Cell Environ,2003, 26: 497-503
    Kilo DA, Birnbum SJ. Thermographic studies of wound healing. Am J Obstet Gyneco 1965,93: 515-21
    Koonneef M, Rnuling G, Karssen C.The isolation and characterization of abscisic acidinsensitive mutants of Arabidopsis thaliana. Physiol Plant, 1984, 81: 377-385
    Koonneef M, Vander JH. Induction and analysis of gibberellin senstitive mutants in Arabidopsis thaliana. Thevr. Appl.Genet, 1980, 58: 257-263
    
    
    Leckie GP, Mcainsh MR. Second messengers in guard cells. J Exp Bot, 1998, 49: 339-349
    Lee S, Choi HS, Sub, Doo IS, Oh KY, Choi EJ., Taylor ATS, Low PS. Lee Y. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 1999, 121: 147-152
    Levine A, Tenhaken R, Dixon RA, Lamb C. H_2O_2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79:583-593
    Linke M, Beuche H, Geyer M, Hellebr HJ. Possibilities and limits of the use of thermography for the examination of horticultural products. Agrartechnische Forschung, 2000, 6: 110-114
    Low RS, Merida JR. The oxidative burst in plant defense: Function and signal transduction. Physiol Plant, 1996, 96: 533-542
    Maliga P. Resistance mutants and their use in genetic manipulation, In: Frontiers of Plant Tussue Culture(Thorpe, T. A. Ed), 1978, 381-392
    Mansfied TA, Mc Arinsh, Clayton H, Hetherington AM. Changes in stomatal behavior and cytosolic free calcium in response to oxidative stress. Plant Physiol, 1996, 111: 1031-1042
    Merlot S, Mustilli AC, Genty B. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J, 2002, 30: 601-609
    Meyer M, Schreck R. H_2O_2 and antioxidants have opposite effects on secondary antioxidant-reponsive factor. EMBO J, 1993,12: 2005-2015
    Meyerowitz EM, PruttRE. Arabidopsis thaliana and plant molecular genetics. Sience,1985,229: 1214-1218
    Meyerowitz EM. Arabidopsis thaliana. Ann Rev Genet, 1987, 21: 93-111
    Mishra NP, Mishra RK, Singhal GS. Changes in the activeties of antioxidant enzymes
    
    during exposure of intact wheat leaves to strong visible light at different temperature of intact in the presence of protein synthesis inhibitors. Plant Physiol, 1993, 102: 903-908
    Miyzazot M, Ishiguro E, Danno A. Quality evaluation of agricultural products by infrared imaging method. Memoirs Fac Agric 14, 123-138
    Moran M S. Thermal infrared measurement as an indicator of plant ecosystem health. USDA-ARS Southwest Watershed Research Center, Tuscon Arizona, 2000, 21: 42-48
    Morgan JM, Aust JM, Osmoregulation and water stress in higher plant. Plant Physiol,1984, 5: 299~319
    Murata Y., Pei Z.-M., Mori IC, Schroeder J. Abscisic acid activation of plasma membrane Ca~(2+) channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abil-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell, 2001, 13: 2513-2523
    Mustilli AC, Merlot S, Vavasseur A, et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 2002,14: 3089-3099
    Nakamura M, Mochizuki N, Nagatani A. Isolation and characterization of an Arabidopsis mutant, fireworks(fiw), which exhibits premature cessation of inflorescence growth and early leaf senescence. Plant Cell Physiol, 2000, 41: 94-103
    Neuenschwander U, Vernooij B, Friderich L, Uknes S, Kessmann H, Ryals J. Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J, 1995, 8: 227-233
    Nillson H E. Remote sensing and image analysis in plant pathology. Canadian Journal of Plant Pathology, 1995,17: 154-166
    Orozco-cardenas M, Ryan CA. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci, 1999, 96: 6553-6557
    
    
    Parisky YR, Sardi A, HAMM R. Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions. A JR Am J Roentgenol, 2003, 180: 263-269
    Pearce RS, Fuller MP. Freezing of barley studied by infrared video thermography. Plant Physiol, 2001, 125: 227-40
    Pei ZM, Kuchitsu K, John M, Martin Schwarz W, Schroeder J. Differential Abscisic Acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abil and abi2 mutants. Plant Cell, 1997, 9: 409-423
    Peng M, Kuc J. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks, Phytopathol, 1992, 82: 696-699
    Perl A, Perl-treves R. Enhanced oxidative stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutase, Theor Appl Genet, 1993, 85: 568-576
    Potikha TS, Collins CC, Johnson DI. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton tiers. Plant Physiol, 1999, 119: 849-858
    Prasad TK, Anderson MD, Martim BA, Steward CR. Evidence for chilling-induced oxidative stress in maize seeding and regulatory role for hydrogen peroxide. Plant Cell, 1994, 6: 65-74
    Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ. Oxidative signal in tobacco increase cytosolic calcium, Plant Cell, 1994, 6: 1301-1310
    Purohit S, Kumar GP, Laloraya M, Laloraya MM. Involvement of superoxide radical in signal transduction regulation stomatal movements, Biochem Biophys Res Comm, 1994, 205: 30-37
    Raskin I. Ladyman, JAR. Isolation and characterization of a barley mutant with abscisic acid-insensitive stomata. Planta, 1988,173: 73-7
    Reid JB. Internode length in pisum. A new slender mutant gibberthins, Planta, 1992, 188: 62-71
    
    
    Schroeder JI, Kwak JM,Allen GJ.. Guard cell Abscisic acid singalling and engineering drought hardness in plants. Nature, 2001, 410: 327~330
    Shinozaki K, Yamaguchi- Shinozaki K. Gene expression and singal transduction in water stress response. Plant Physiol, 1997, 115: 327~334
    Singh SP, Paleg LG. A possible role for indole acetic acid, low temperature and phospholipid metabolism in the interaction of the induction of GA3 responsiveness in GA3 insensitive dwa rf wheat aleurone. Plant Physiol, 1986, 82: 688-694
    Steven Neill, Radhika Desikan, Hancock J, Hydrogen peroxide signalling Current Opinion in Plant Biology, 2002, 5: 388-395
    Tolluer EW, Brecht Jg, Upchurch BL. Nondestructive evaluation: Detection of external and internal attributes frequently associated with quality or damage, in "Postharvest-handling: a system-approach"[J]. Food Science and Technology Series, 1993, 7: 225-255
    Uknes S, Mauch-mani B, Moyer M, Potters S, Slusarenko A. Acquire resistance in Arabidopsis. Plant Cell, 1992, 4: 645-656
    Ulmasov T, Ohmiya A, Hagen G, Gnilfoyle T. Plant Physiol. 1995, 108: 919-927
    Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K. Yammaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci., 2000, 97: 11632-11637
    Van Hoogmoed LM, Snyder JR. Use of infrared thermography to detect injections and palmar digital neurectomy in horses. Vet J, 2002, 164: 129-41
    Willekens H, Langebartels C, Tire C. Differential expression of catalase genes in Micotiana plunbaginifolia. Proc Natl Acad Sic USA, 1994, 91: 10450-10454
    Winston C, Lanstear, Susan C. Thomson, John R. Speakman. Wing temperature in flying bats measured by infrared thermography. Journal of Thermal Biology, 1997, 22:
    
    109-116
    Wisniewski M, Lindow SE, Ashworth EN. Observations of Ice Nucleation and Propagation in Plants Using Infrared Video Thermography. Plant Physiol, 1997,113: 327-334
    Wojtasek P. Oxidative burst: an early plant response to pathogen infection. Biochem J, 1997, 322: 681-692
    Wright T, Mcgechan A. Breast cancer: new technologies for risk assessment and diagnosis. Mol Diagn, 2003 7: 49-55
    Wu AH, Assmann SM. Photosythesis by guard cell chloroplasts of Vicia faba L. Effect of factors associated with stomatal movement. Plant Cell Physiol, 1993, 34: 1015-1022
    Wu G, Shortt BJ, Lawrence EB. Disease rssistance conferred by expression of a gene encoding H_2O_2-gene rating glucose oxidase in transgenic potato plants. Plant Cell. 1995,7: 1357-1368
    Wu SJ, Ding L, Zhu JK. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 1996, 8: 617-627
    Xiong L, Schumaker K and Zhu JK. 2002. Plant Cell, 14: 165-S183
    Zhang X, Dong FC, Gao JF, Song CP. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure. Cell Research, 2001, 11: 37-43
    Zhu JK, Liu J, Xiong L. Genetic analysis of salt tolerance in arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell. 1998 10: 1181-91
    Zohar O, Ikeda M, Shinagawa H. Thermal imaging of receptor-activated heat production in single cells. Biophysical Journal, 1998, 74: 82-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700