泄浊除痹方治疗高尿酸血症物质基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中药复方物质基础研究是中药现代化和国际化的前提和基础,是目前亟待解决的中药(复方)现代化关键问题之一。中药(复方)现代化的进程中,首先要揭示中药(复方)发挥作用的药效物质基础。中药复方物质基础是中药复方中发挥药理学治疗作用的化学成分的集合。目前中药复方物质基础研究方法包括中药化学与药效学结合的方法、血清药物化学和血清药理学结合的方法、细胞膜色谱法等。
     本研究采用中药化学与药效学结合的方法对中药泄浊除痹方治疗高尿酸血症的物质基础进行了初步探讨:采用现代液相分析技术,对泄浊除痹方中活性成分进行了含量测定;采用色谱技术对泄浊除痹方含量较高的总黄酮部位进行了分离纯化研究,并系统研究了泄浊除痹方总黄酮部位体外对小鼠肾脏近曲小管上皮细胞(RTECs)增值、尿酸吸收及小鼠尿酸转运蛋白(RST)基因的负性调控,初步证实泄浊除痹方总黄酮为其治疗高尿酸血症的有效部位之一。
     本研究主要包括以下研究内容:
     1、泄浊除痹方中活性物质含量测定
     本研究采用HPLC法测定泄浊除痹方中薯蓣皂苷元、蜕皮甾酮、落新妇苷的含量。Agilent HC-18柱(250 mm×4.6 mm,5μm);以乙腈-甲醇(2:3)为流动相,流速为1mL-min"1,检测波长为206 nm,测定方中薯蓣皂苷元的含量,回收率为104.51%;AgilentTC-18柱(250 mm×4.6 mm,5μm),以乙腈-水(17:83)为流动相,流速为1mL-min-1,检测波长为243 nm,测定方中蜕皮甾酮的含量,回收率为93.94%;KromasilC-18柱(250 mm×4.6 mm,5μm),以乙腈-磷酸-水(20:0.025:80)为流动相,检测波长为290 nm,测定方中落新妇苷的含量,回收率为99.46%;以上含量测定方法经方法学验证,分析快速、准确、灵敏度高、重现性好。
     2、泄浊除痹方总黄酮有效部位纯化分离研究
     本研究以黄酮类成分为研究指标,完善补充了君药土茯苓的定性、定量方法,采用薄层色谱法进行了落新妇苷的鉴别,高效液相法(HPLC)建立了落新妇苷、黄杞苷的含量测定方法;采用高效液相法测定了提取溶液中落新妇苷含量,比色法测定了提取溶液中总黄酮含量,以正交试验进行了土茯苓总黄酮有效部位的提取工艺优化,考察了乙醇浓度、提取温度、固液比、提取次数等因素,确定提取工艺为以10倍量60%乙醇,沸水浴回流提取2次,经验证,总黄酮提取率可达95.99%。以土茯苓总黄酮、落新妇苷、黄杞苷含量为指标,通过考察静态、动态吸附试验,筛选了聚酰胺颗粒分离纯化土茯苓及泄浊除痹方总黄酮有效部位的科学合理的工艺条件,聚酰胺富集物中总黄酮含量为75.63%,转移率为68.24%,落新妇苷含量为12.77%,转移率为73.05%。
     3、泄浊除痹方化学成分分离纯化及结构研究
     本研究采用系统溶剂法、硅胶柱色谱法、聚酰胺柱色谱法等分离纯化技术分离泄浊除痹方化学成分;利用理化性质、红外吸收光谱、核磁共振碳谱与氢谱、质谱等鉴别化合物结构,并与相关文献对照,确认化合物。从泄浊除痹方中分离出7个化学成分,其中六个已鉴定结构,分别是p-谷甾醇(晶Ⅰ,β-Sitosterol)、齐墩果酸(晶Ⅱ,Oleanolic acid)、熊果酸(晶Ⅲ,Ursolic acid)、落新妇苷(晶Ⅳ, Astilbin)、黄杞苷(晶V, Engelitin)及p-蜕皮甾酮(晶Ⅵ,β-Ecdysterone)。
     4、泄浊除痹方总黄酮降尿酸机理研究
     进行了小鼠肾脏近曲小管上皮细胞原代培养条件优化及功能测试研究:经机械破碎的肾脏皮质组织在400U胶原酶Ⅰ处理20 min时,肾小管节段贴壁率达到最高,为54.5%;首次换液最佳时间为72 h;细胞在原代培养第4-7天生长达到对数期,在第10天状态开始下降。在1500μmol-L-1尿酸浓度的吸收培养基中,吸收实验进行30 min时,其对尿酸吸收速率达到最大。阳性药物丙磺舒和苯溴马隆在不同的浓度下,对尿酸吸收的抑制率不同,苯溴马隆的抑制率高于丙磺舒。
     泄浊除痹方总黄酮对小鼠肾脏近曲小管上皮细胞增殖及尿酸吸收的影响:将原代培养的小鼠肾脏近曲小管上皮细胞用不同浓度泄浊除痹方总黄酮孵育48h,四甲基偶氮唑蓝(MTT)法检测细胞活性;进行尿酸吸收实验,采用尿酸检测试剂盒测定尿酸吸收值。结果显示:高浓度组总黄酮(10、7.5、5 g·L-1)对细胞生长有不同程度的抑制作用,低浓度组药物(2.5、0.5 g·L-1)对细胞生长活性无显著影响;在对细胞生长活性无显著影响的低浓度梯度范围内(2.5、2、1.5、1.0、0.5 g·L-1),药物对尿酸吸收表现出不同程度的抑制作用。该研究表明泄浊除痹方总黄酮对小鼠肾脏近曲小管上皮细胞尿酸吸收功能有一定的抑制作用。
     泄浊除痹方总黄酮对RST基因的负性调控:利用分子生物学实验手段检测不同药物作用浓度下,细胞中RST蛋白的基因扩增。结果显示:泄浊除痹方总黄酮在1-2.5 g·L-1浓度范围内对尿酸吸收有显著抑制,且RST基因扩增明显下调。该研究表明泄浊除痹方有能够通过下调RST基因扩增,降低RTECs尿酸吸收作用。
Study on material basis for efficacy of Chinese herbal formula is the precondition and base of modernization and internationalization of Chinese materia medica, also is one of the problems demanded to be settled urgently of this course. In this course, it is the most important thing to open out material basis for efficacy of Chinese herbal formula. Material basis for efficacy of Chinese herbal formula is an aggregate of all effective components. At present, the methods to study on material basis for efficacy of Chinese herbal formula include combining Chinese medicinal chemistry and pharmacodynamics together, pharmaceutical chemistry and pharmacyology in serum, cell membrane chromatography, and also.
     This research investigates the substance foundation of Xiezhuo Chubi Fang (XZCBF) for hyperuricemia using the first method:contents of active elements of XZCBF were determined by modern analyzing technology (HPLC); Total flavonoids in XZCBF were isolated and purified by chromatography, its effects on renal tubular epithelial cells' (RTECs) proliferation, uric uptake and RST gene expression were investigated systematically, these experimentation results show that Total flavonoids in XZCBF were one of the effective part to treat hyperuricemia.
     The research include follow contents:
     1. Contents determination of active elements of XZCBF by HPLC
     Contents of diosgenin, ecdysterone and astilbin in XZCBF were determined by HPLC:For diosgenin, with a agilent HC-18 column (250 mm×4.6 mm,5μm), acetonitrile:methanol (3:2) severed as the mobile phase, the speed was 1 mL-min-1 and the detection wavelength was at 206 nm, the recovery of diosgenin was 104.51%; For ecdysterone, with a agilent TC-18 (250 mm×4.6 mm,5μm) column, acetonitrile: water (17:83) severed as the mobile phase, the speed was 1 mL-min-1 and the detection wavelength was at 243 nm, the recovery of ecdysterone was 93.94%; For astilbin, with a KromasilC-18 (250 mm×4.6 mm,5μm) column, acetonitrile-phosphoric acid-water (20:0.025:80) severed as the mobile phase, the speed was 1 mL-min-1 and the detection wavelength was at 290 nm, the recovery of astilbin was 99.46%. These methods are sensitive, accurate, reproducible, specific and can be used for quality control of XZCBF efficiently.
     2. Separation and purification of total flavonoids in XZCBF
     Quality and quantity analysis methods of Smilax Glabra Roxb.(principal drug) were established, astilbin in it was identified by TLC, contents of astilbin and engelitin in Smilax Glabra Roxb. were determined by HPLC simultaneously; extraction procedure of total flavonoids was optimized by using orthogonal experiment, four factors-alcohol concentration, temperature, dosage and extraction times-were investigated, content of total flavonoid was assessed by colorimetry, and astilbin was assessed by HPLC. The best extraction procedure is the medical material should be extracted by 10 times (V/W) 60% alcohol twice in boiling water bath, the extraction efficiency is as high as 95.99%. With the contents of total flavonoids, astilbin and engelitin as indexes, the optimum process of separating and purifying flavonoid was screened by static and dynamic adsorption tests. The content of total flavonoids was 75.63% in the extractive, the transfer rate was 68.24%; the content of astilbin was 12.77% in the extractive, the transfer rate was 73.05%.
     3. Isolations and structure identifications of chemical constituents of XZCBF
     In this research, chemical constituents of XZCBF were isolated with systematic solvent, silica gel-column chromatogram and polyamide-column chromatogram; the structures of chemical constituents were identified with dates of IR,1HNMR,13CNMR, physical-chemical characters, compared with related documents reported.7 chemical compounds were isolated in this research; among them six have been identified, they wereβ-Sitosterol (I), Oleanolic acid (II), Ursolic acid (Ⅲ), Astilbin (IV), Engelitin (V) andβ-Ecdysterone (VI).
     4. Study of action mechanism of total flavonoids in XZCBF in treating hyperuricemia
     Firstly, conditions of RTECs primary culture were optimized and cultures underwent functional tests. The adherent rate of segments of renal proximal tubules reached 54.5% after the digestion using 400U collagenase type I for 20 minutes; the most suitable time for the first change of the culture medium was 72 hours; Log phase began from the fifth day and the cell's growth conditions became unsuitable in the tenth day. In the transport medium contained 1500μmol-L-1 uric acid, the 30-min uptake of uric acid was the highest and was taken as a measure of an initial rate. Different uric acid-uptake inhibitory effects appeared due to different concentrations of the indicate drugs probenecid and benzbromarone. The inhibition influence of benzbromarone was higher than probenecid. The mouse renal proximal tubular epithelial cells cultured by the modified method will yield rich and homogeneous harvest, and present well function of uric acid uptake.
     Next, effects of total flavonoids on cell proliferation and uric acid-uptake were investigated. The RTECs were isolated from the renal of mouse by the utilized method and were cultured with total flavonoids from XZCBF at different concentrations. The proliferation of RTECs was assessed by MTT assay. The uric uptake medium was prepared and the uric acid-uptake values were determined by the kit. The interest cells were isolated and it has the function of uric acid-uptake. The proliferation of the RTECs was inhibited by high concentrations (10,7.5,5 g-L-1) of the drug, while no significant effects on the proliferation of the RTECs were observed at the low concentrations (2.5,0.5 g-L-1). Moreover, uric acid-uptake tests were undertaken at this range of concentrations, and different inhibitory degrees by the drug were also determined.
     Effects of total flavonoids on gene RST expression were detected to reveal its molecular mechanism. The uric acid-uptake essay was carried out on the mouse renal tubular epithelia cells and the different effects of different levels of total flavonoids in XZCBF on the uric acid uptake were studied. The expression of mouse renal-specific transporter (RST) in the cells was detected by RT-PCR. Results indicated that total flavonoid in XZCBF at the concentration range from 0.5 g-L-1 to 2.5 g-L-1 was proved to inhibit the uric acid-uptake function of RTECs and the expression of RST was lower under treatment at these concentrations. The uric acid-uptake can be reduced by total flavonoids in XZCBF by inhibiting the expression of RST.
引文
[1]孙维峰,徐伟,姚富庆,王浩.中药泄浊除痹汤降低痛风患者血尿酸的作用[J].中国临床康复,2003,7(21):2962-2963.
    [2]孙维峰,张娴娴,梁静,徐伟.泄浊除痹汤2种组方对高尿酸血症小鼠血尿酸的影响[J].中国实验方剂学杂志,2010,16(10):106-107+112.
    [3]孙维峰,罗平,徐伟,詹纯列,石玉玲.泄浊除痹汤对高尿酸血症小鼠血清尿酸的影响[J].中国实验方剂学杂志,2006,12(9):36-39.
    [4]孙维峰,罗平,徐伟,詹纯列,石玉玲.泄浊除痹汤促尿酸排泄作用的实验研究[J].中国中医药科技,2007,14(1):18+32.
    [5]孙维峰,张娴娴,梁静,徐伟.泄浊除痹汤2种组方对高尿酸血症小鼠血尿酸的影响[J].中国实验方剂学杂志,2010,16(10):106-107+112.
    [6]霍听,高玉琼,刘建华,等.土茯苓挥发性成分研究[J].生物技术,2006,16(3):60-62.
    [7]余孝东,梁卫文,徐燕,等.土茯苓喷雾干燥粉总黄酮含量测定[J].中药材,2003,26(9):671.
    [8]曹正中,易以军,洪武奇.土茯苓化学成分的研究Ⅰ[J].中草药,1993,24:234.
    [9]易以军,曹正中,杨文红,等.土茯苓化学成分的研究Ⅲ[J].药学学报,1995,30(9):718-720.
    [10]易以军,曹正中,杨大龙,等.土茯苓化学成分的研究Ⅳ[J].药学学报,1998,33(7):873-875.
    [11]张敏,李海棠,李范,等.土茯苓的化学成分研究(一)[J].中药材,1995,18(4):191-192.
    [12]陈广耀,沈连生,江佩芬,等.土茯苓化学成分的研究[J].北京中医药大学学报,1996,19(1):44.
    [13]陈广耀,沈连生,江佩芬,等.土茯苓中二氢黄酮醇甙的研究[J].中国中药杂志,1996,21(6):355-357.
    [14]李伊庆,易杨华,汤海峰,等.土茯苓化学成分研究[J].中草药,1996, 27(12):712-714.
    [15]袁久志,窦德强,陈英杰,等.土茯苓二氢黄酮醇类成分研究[J].中国中药杂志,2004,29(9):867-870.
    [16]陈红梅,秀兰,吴占泉.土茯苓的化学与药理研究进展[J].中国民族医药杂志,2008,(11):71-73.
    [17]袁久志,窦德强,陈英杰,等.土茯苓酚苷类成分研究[J].中草药,2004,35(9):967-969.
    [18]YIN Jun, KOUDAK, TEZUKAY, et al. Steroidal glycosides from the rhizomes of Dioscorea spongiosa[J].J Nat Prod,2003,66:646-650.
    [19]LIU Hong-wei,WANG San-long, CAI Bing, et al. New furostanol glycosides from the rhizomes of Dioscorea futschauensis Uline ex R Kunth[J].J Asian Nat Prod Res,2003,5(4):241-247.
    [20]刘承来,陈延镛.薯蓣属植物化学成分的研究Ⅲ福州薯蓣中甾体皂苷和甾体皂苷元的分离和鉴定[J].中草药,1984,15(9):10-12.
    [21]LIU Hong-wei, XIONG Zhi-li, LI Fa-mei, et al.Two new pregnane glycosides from Dioscorea futschauensis Uline ex R. Kunth[J]. Chem Pharm Bull,2003,51(9):1089-1091.
    [22]李雪征.绵萆抗肿瘤活性成分的研究[D].延边:延边大学,2002:20-23.
    [23]娄伟,陈延镛.薯蓣属植物绵草中甾体皂苷元的分离和鉴定[J].植物学报,1983,25(4):353-355.
    [24]YIN Jun, KOUDAK, TEZUKAY, et al. New diarylheptanoids from the rhizomes of Dioscoreas pongiosa and their antiosteoporotic activity[J]. Planta Med,2004,70:54-58.
    [25]LIU Hong-wei, WANG San-long, CAI Bing, et al. Two new non-steroidal constituents from Dioscorea futschauensis Uline ex R. Kunth[J]. Die Pharmazie,2003,5(3):214-215.
    [26]劳爱娜,桑圣民.常用中药基础研究(第五章)[M].北京:高等教育出版社,2002,80-112.
    [27]Koik K, Jia Z, Nikaido T. Triterpenoid saponins from Vaccaria segetalis[J]. Phytochemistry,1998,47:1343.
    [28]Jia Z, Kaike K, Kudo M. Triterpenoid saponins and sapogenins from Vaccaria segetalis[J]. Phytochemistry,1998,48:529.
    [29]Sang SM, Lao AN, Wang HC. Triterpenoid saponins from Vaccaria segetais[J]. J Asian Nat Prod Res,1999,1:199.
    [30]Sang SM, Lao AN, Wang HC. Triterpenoid saponins from Vaccaria segetais[J]. Nat Prod Sci,1998,4:268.
    [31](a)Planta Med.1994,41,992; (b)Tetrahedron Lett.1994,35,9593; (c)Tetrahedron 1995,51,587; (d)Tetrahedron.1995,51,6003; (e)J. Nat. Prod.1997,60,216; (f)Med. Chem.1997,5,631; (g)Med. Chem.2006,16,4458.
    [32]Sang SM, Lao AN, Wang HC. Aphenlpropanoid glycoside from Vaccaria segetalis[J]. Phytochemistry,1998,48:569.
    [33]Baeva RT, Karryev MO, Amanmuradov K. Glycosides from Vaccarid segetalis Ⅵ[J]. Khim Prir Soed,1974,2:258.
    [34]桑圣民,劳爱娜,王洪诚,等.王不留行成分的研究[J].天然产物研究与开发,1998,10(4):1-4.
    [35]王晓娟,朱玲珍.牛膝皂甙的化学成分研究[J].第四军医大学学报,1996,17(6):427-430.
    [36]王广树,周小平,杨晓虹,等.牛膝中酸性三萜皂苷成分的分离与鉴定[J].中国药物化学杂志,2004,14(1):40-42.
    [37]Nikolov S, Phan Thi Hoa, Asenov I. A triterpene saponin from Achyranthes bidentata B1.[J].Farmatsiya,1991,41(2):14-18.
    [38]郭胜民,车锡平,范晓雯.怀牛膝皂苷A的抗生育作用和对动物子宫的作用[J].西北药学杂志,1996,11(增刊):46-48.
    [39]林大专,王广树,杨晓虹,等.牛膝中新蜕皮甾酮类成分的研究[J].中国药学杂志,2006,41(17):1295-1297.
    [40]赵婉婷,孟大利,李铣,等.牛膝的化学成分[J].沈阳药科大学学报,2007,4(4):207-210
    [41]Hikino Hiroshi, Ogawa Shuntaro Nishimoto, Nobuyoshi, et al. Rubrosterone[M], Japan,7121:472.
    [42]Nicolov stefan, Thuan Ngugen, Zheljazlov Valcho. Flaro onoids from Achyranthes bidentata B1.[J]. Acta Hoytic,1996,426.
    [43]惠永正,邹卫,田庚元.牛膝根中一活性寡糖(ABS)的分离和结构研究[J].化学学报,1989,47(6):621-622.
    [44]Yu Biao, Tian Zheng-yuan, HuiYong-zheng. Structral study on a bioactive fructan from the root of Achytanthes bidentata B1.[J].Chin J Chem,1995,13(6):539-544.
    [45]阎家麒,王九一.牛膝多糖工艺研究[J].中国医药工业杂志,1995,26(11):481-482.
    [46]方积年,张志花,刘柏年.牛膝多糖的化学研究[J].药学学报,1990,25(7):526-529.
    [47]巢志茂,何波,尚尔金.怀牛膝挥发油成分分析[J].天然产物研究与开发,1999,11(4):41-43.
    [48]巢志茂,尚尔金,何波.牛膝水提取物化学成分的研究[J].中国药学杂志,1999,34(9):587-588.
    [49]Rtra Parminder S. Alkaloids in two species of Achyranthes at different stages of their growth[J]. Curr Trends Life Sci,1979,4(Adv Ecol):81-85.
    [50]Bisht G, sandhu H. Chemical constituents and antimicrobial activity of Achyranthes bidentata[J]. J Indian Chem Sci,1990,67(12):1002-1003.
    [51]Kono K. Inorganic constituents of diuretic drugs[J]. J Pharm Soc Japan,1928, 48:1098-1102.
    [52]韦松,梁鸿,赵玉英,等.怀牛膝中化合物的分离鉴定[J].中国中药杂志,1997,22(5):293-295.
    [53]Bishit G, Sandhu H, Verma S. Constituents of Achyranthes bidentata[J]. Fitotepia, 1993,64(1):85.
    [54]Li B, Yamaki M, Yamagata Y, et al. Shanciol, a dihydrophenanthropyran from Pleione bulbocodioides[J]. Phytochemistry,1996,41(2):625-628.
    [55]Li B, Yamaki M, Takagi S. Stilbenoids from Pleione bulbocodioides[J]. Phytochemistry,1996,42(3):853-856.
    [56]Li B, Yamaki M, Takagi S. Lignans and a bichroman from Pleione bulbocodioides[J]. Phytochemistry,1997,44(2):341-343.
    [57]Li B, Masukawa N, Yamaki M, et al. Two bibenzylglucosides from Pleione bulbocodioides[J]. Phytochemistry,1997,44(8):1565-1567.
    [58]Li B, Yamaki M,Takagi S. Flavan-3-ols and dihydrophenanthrophyrans from Pleione bulbocodioides[J]. Phytochemistry,1998,47(6):1125-1129.
    [59]Li B, Masukawa N, Yamaki M, et al. Apolyphenol and two bibenzyls from Pleione bulbocodioides[J]. Phytochemistry,1998,47(8):1637-1640.
    [60]Li B, Masukawa N, Yamaki M, et al. Fourstilbenoids from Pleione bulbocodioides[J]. Phytochemistry,1998,48(2):327-331.
    [61]Xue Z, Li S, Wang S J, et al. Mono-, bi-, and triphen-an-threnes from the tubers of Cremastra appendiculata[J]. J Nat Prod(天然产物杂志),2006,69(6):907-913.
    [62]Joong S S, Jin H K, Jiyong L, et al. Anti-angiogenic activity of ahomoisoflavanone from Cremastra appendiculata[J]. Planta Med,2004,70(2):171-173.
    [63]天素英,陈周全.山慈菇中秋水仙减醇提工艺的优选[J].中草药,2002,33(8):708-710.
    [64]刘净,于志斌,叶蕴华,等.山慈菇的化学成分[J].药学学报,2008,43(2):181-184.
    [65]周莉.痛风的发病机制[J].医学综述,2007,13(21):1626-1628.
    [66]Koepsell H, Endou H. The SLC22 drug transporter family[J]. Pflugers Arch,2004, 447(5):666-676.
    [67]Atsushi Enomoto, Hitoshi Endou. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease[J]. Clin Exp Nephrol, 2005,9(3):195-205.
    [68]Rafey MA, Lipkowitz MS, Leal-Pinto E, Abramson RG.Uric acid transport[J]. Curr Opin Nephrol Hypertens,2003,12(5):511-516.
    [69]Enomoto A, Niwa T, Kanai Y, Endou H. Urate transporter and renal hypouricemia[J]. Rinsho Byori,2003,51(9):892-897.
    [70]Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, Hosoya T. Clinical and molecular analysis of patients with renal hypouricemia in Japan influence of URAT1 gene on urinary urate excretion[J].J Am Soc Nephrol,2004,15(1):164-173.
    [71]Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kanai Y, Endou H. Molecular identification of a renal urate anion exchanger that regulates blood urate levels[J]. Nature,2002,417(6887):447-452.
    [72]Yu Z, Fong WP, Cheng CHK. The dual actions of morin (3,5,7,2',4'-pentahydroxyflavone) as a hypouricemic agent:uricosuric effect and xanthine oxidase inhibitory activity[J]. J Pharmacol Exp Ther,2006,316(1):169-175.
    [73]Uetake D, Ohno I, Ichida K, Yamaguchi Y, Saikawa H, Endou H, Hosoya T. Effect of fenofibrate on uric acid metabolism and urate transporter 1[J]. Inter Med,2010,49(2): 89-94.
    [74]王霞,付正菊,李长贵,等.罗格列酮对肾小管上皮细胞人尿酸转运子基因表达的影响[J].实用医学杂志,2008,24(9):1478-1480.
    [75]Dan T, Koga H, Onuma E, Tanaka H, Sato H, Aoki B. The activity of AA-193, a new uricosuric agent, in animals[J]. J Adv Exp Med Biol,1989,253A:301-308.
    [76]Satish A. Eraly, Volker Vallon, Timo Rieg, Gangoiti JA, Wikoff WR, Siuzdak G, Barshop BA, Nigam SK. Multiple organic anion transporters contribute to net renal excretion of uric acid[J]. J Physiol Genomics,2008,33(2):180-192.
    [77]Wang X, Wang C P, Hu Q H, Lv YZ, Zhang X, Ouyang Z, Kong LD. The dual actions of Sanmiao wan as a hypouricemic agent:Down-regulation of hepatic XOD and renal mURAT1 in hyperuricemic mice[J]. J Ethnopharmacology,2010,128(1):107-115.
    [78]Hu Q H, Jiao R Q, Wang X, Lv YZ, Kong LD. Simiao pill ameliorates urate underexcretion and renal dysfunction in hyperuricemic mice[J]. J Ethnopharmacology, 2010,128(3):685-692.
    [79]Makoyo Hosoyamada, Kimiyoshichida, Atsushi Enomoto, Hosoya T, Endou H. Function and Localization of Urate Transporter 1 in Mouse Kidney[J]. J Am Soc Nephrol, 2004,15(2):261-268.
    [80]Wu Di, Xu Guo-shuang, Chen Xiang-mei, Shi Suo-zhu, Hong Quan, Zhang Ping, Lu Yang. Generation of mouse anti-human urate anion exchanger antibody by genetic immunization and its identification[J]. J Chinese Medical Journal,2005,118(8):627-632.
    [81]Eddy AA. Progression in chronic kidney disease. J Adv Chronic Kidney Dis,2005, 12(4):353-365.
    [82]Blenis, J. Signal transduction via the MAP kinases:proceed at your own RSK[J]. J Proc. Natl Acad Sci USA,1993,90(13):5889-5892.
    [83]Davis RJ. The mitogen-activated protein kinase signal transduction patheway[J]. J Biol Chem,1993,268(20):14553-14556.
    [84]Patty J. Lee, Xuchen Zhang, Peiying Shan, Ma B, Lee CG, Homer RJ, Zhu Z, Rincon M, Mossman BT, Elias JA. ERK1/2 mitogen-activated protein kinase selectively mediates IL-13-induced lung inflammation and remodeling in vivo[J]. J Clin Invest,2006,116(1): 163-173.
    [85]Nishiyama A, Yao L, Fan Y, Kyaw M, Kataoka N, Hashimoto K, Nagai Y, Nakamura E, Yoshizumi M, Shokoji T, Kimura S, Kiyomoto H, Tsujioka K, Kohno M, Tamaki T, Kajiya F, Abe Y. Involvement of Aldosterone and Mineralocorticoid Receptors in Rat Mesangial Cell Proliferation and Deformablility[J]. J Hypertension,2005,45(4):710-716.
    [86]Yukiko Nagai, Kayoko Miyata, Guang-Ping Sun, Rahman M, Kimura S, Miyatake A, Kiyomoto H, Kohno M, Abe Y, Yoshizumi M, Nishiyama A. Aldosterone Stimulates Collagen Gene Expression and Synthesis via Activation of ERK1/2 in Rat Renal Fibroblasts[J]. J Hypertension,2005,46(4):1039-1045.
    [87]Gekle M, Freudinger R, Mildenberger S, Silbernagl S. Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells[J]. Am J Physiol Renal Physiol, 2002,282(4):669-679.
    [88]许国双,陈香美.尿酸转运相关蛋白表达变化与慢性肾脏病患者高尿酸血症的关系及其机制研究[D].北京:中国人民解放军军医进修学院,2006:50.
    [89]高碧珍,李延平,李灿东,等.不同方药对高尿酸血症大鼠模型黄嘌呤氧化酶及肾功能的影响[J].中华中医药杂志,2008,23(2):97-99.
    [90]谭万初,唐健元,张怡,等.温肾化瘀法治疗高尿酸血症的机理探讨[J].时珍国医国药,2006,17(1):11-13.
    [91]郭小李,瞿伟菁,张雯,等.越桔果渣黄酮对高尿酸血症的影响[J].营养学报,2007,29(2):199-201.
    [92]孙维峰,罗平,徐伟,等.泄浊除痹汤促尿酸排泄的试验研究[J].中国中医药科技,2007,14(1):18-19.
    [93]王亮,袁鹰,李长贵,等.高脂血症阶段自发代谢综合征及2型糖尿病模型大鼠肾小管上皮细胞电压敏感性尿酸盐转运体的表达[J].中国组织工程研究与临床康复,2007,11(29):5749-5752.
    [94]洪权,吴镝,陈香美,等.人尿酸转运蛋白基因的克隆与序列分析[J].第一军医大学学报,2005,25(6):623-625+629.
    [95]洪权,吴镝,陈香美,等.人尿酸转运蛋白在肾小管上皮细胞的定位表达研究[J].中华肾脏病杂志,2005,21(9):527-533.
    [96]杨红莲,张冰,刘小青,等.雌性鹌鹑高尿酸血症模型的建立及病理特征研究[J].山西中医,2008,24(9):53-55.
    [97]匡红艳,程太平,胡建兵,等.鸡持续高尿酸血症模型的制备方法研究[J].四川动物,2008,27(4):554-558.
    [1]张白嘉,刘亚欧,刘榴,等.土茯苓及落新妇苷抗炎、镇痛、利尿作用研究[J].中药药理与临床,2004,20(1):11-12.
    [2]吴丽明,张敏。土茯苓中落新妇甙的利尿和镇痛作用[J].中药材,1995,18(12):627-630.
    [3]徐楠杰,郭月英,李铣.蜕皮甾酮的药理作用研究进展[J].沈阳药科大学学报,1997,14(4):300-302
    [4]苏红艳,刘玉强.高效液相色谱法测定土茯苓中薯蓣皂苷元的含量[J].辽宁中医药大学学报,2008,10(5):159-160.
    [5]雷艳红.痛风止痛胶囊中薯蓣皂苷元的含量测定[J].吉林中医药,2008,28(3):221-222.
    [6]李金亭,滕红梅,胡正海.牛膝营养器官中蜕皮甾酮的积累动态研究[J].中草药,2007,38(10):1570-1573.
    [7]赵玉梅,王静,梁生旺,等.牛膝“泛糖”前后脱皮甾酮的含量变化研究[J].中药材,2006,29(1):32-33.
    [8]刘姣,周亚球,彭超.怀牛膝蜕皮甾酮的含量测定[J].安徽中医学院学报,2005,24(3):43-44.
    [9]陈有军,赵瑞芝,赵莹,等.HPLC-PDA测定银屑灵流膏中5种成分含量[J].中成药,2010,32(9):1522-1525.
    [10]方圆,王雪彦,晁若冰.土茯苓药材中落新妇苷和总黄酮的含量测定方法研究[J].药物分析杂志,2010,30(9):1738~1741.
    [11]吴新荣,刘志刚,颜仁梁,等.高效液相色谱法同时测定土茯苓中落新妇苷、黄杞苷的含量[J].中国医院药学杂志,2010,30(10):886-887.
    [12]刘志刚,邓伟杰,孙维峰,等.HPLC测定泄浊除痹方中薯蓣皂苷元、蜕皮甾酮含 量[J].中成药,2010,32(2):243-246.
    [13]张翠英,梁生旺,张广强.不同产地牛膝中蜕皮甾酮的含量测定[J].中国药学杂志,2001,36(10):699-700.
    [14]帅琴,秦永超,江祖成,等.高效液相色谱法测定中成药金水清中蜕皮甾酮的研究[J].分析科学学报,1999,15(4):293-296.
    [15]张笑颜,詹丽茵,曾祥腾.高效液相色谱法测定不同产地土茯苓药材中落新妇苷的含量[J].中国医药导报,2010,7(1):90-91.
    [16]周军,曲佳,寿国香,等.HPLC法测定土茯苓中落新妇苷及黄杞苷[J].中国药品标准,2009,10(5):372-374.
    [17]李文莉,汪文涛,雷玉萍,等.RP-HPLC测定脉络宁注射液中蜕皮甾酮的含量[J].华西药学杂志,2001,16(4):382-383.
    [1]国家药典委员会.中国人民共和国药典(一部)[S].北京:化学工业出版社,2005:14.
    [2]苑辉卿,薛克亮,任红玉.土茯苓的研究概况[J].中国中药杂志,1997,22(5):315-371.
    [3]李玉琪.土茯苓化学成分研究及药理研究进展[J].实用中西医结合杂志,1998,11(7):643.
    [4]张白嘉,刘亚欧,刘榴,等.土茯苓及落新妇苷抗炎、镇痛、利尿作用研究[J].中药药理与临床,2004,20(1):11-12.
    [5]吴丽明,张敏.土茯苓中落新妇甙的利尿和镇痛作用[J].中药材,1995,18(12):627-630.
    [6]杜钰桂,张戈力,赵秀兰.土茯苓与粉萆薢的饮片鉴别[J].中医药研究,1995,11(2):52-53.
    [7]蔡建平.土茯苓与菝葜、萆薢及其制剂妙济丸的紫外光谱鉴别[J].江西中医学院学报,2000,13(3):155.
    [8]王清伟.菝葜、土茯苓、萆薢的临床鉴别及应用[J].陕西中医,2000,21(8):378.
    [9]王涛,王燕青,徐长江,等.菝葜、土茯苓和土萆薢的薄层色谱鉴别[J].现代食品与药品杂志,2007,17(2):37-38.
    [10]任辉.再论土茯苓和粉草薢的鉴别[J].湖北中医杂志,2008,30(1):58.
    [11]陈幸,李彬,黎万寿,等HPLC法测定土茯苓中落新妇苷的含量[J].药物分析杂志,2004,24(4):437-439.
    [12]曲佳,周军,侯文彬,等.HPLC法测定黄杞叶中落新妇苷和黄杞苷[J].中草药,2009,40(2):306-307.
    [13]周艳林,钟小清,吕高荣,等.RP-HPLC同时测定菝葜中落新妇苷和黄杞苷的含量[J].中国药学杂志,2008,43(14)1103-1105.
    [14]袁久志,窦德强,陈英杰,等.土茯苓二氢黄酮醇类成分研究[J].中国中药杂志,2004,29(9)867-870.
    [15]国家药典委员会.中国人民共和国药典(一部)[S].北京:中国医药科技出版社,2010:17.
    [16]杜芳艳,付凯卿.花生蔓不同部位黄酮含量的研究[J].食品科学,2008,29(1):137-140.
    [17]王晋黄,池汝安,陈少峰,等.土茯苓提取总黄酮的工艺研究[J].植物研究,2006,26(3)370~373.
    [18]吕圭源.中药新产品开发学[M].北京,人民卫生出版社,1997:72~73.
    [19]乔蓉,钟世安,邓潇君,等.聚酰胺树脂纯化荷叶碱的工艺研究[J].化学与生物工程,2008,25(5):35-38.
    [20]黄少伟,池汝安,张越非,等.大孔树脂分离纯化土茯苓总黄酮[J].中国中药杂志,2008,33(10):1133-1138.
    [l]谢晓燕,贡济宇,王立岩,等.山刺玫根的化学成分研究[J].时珍国医国药,2009,20(2):366-367.
    [2]白玉华,于辉,常乃丹,等.日本苦苣菜的化学成分[J].中国药科大学学报,2008,39(3):279-281.
    [3]邓刚,蒋才武,黄健军,等.壮药风车子化学成分的研究(Ⅰ)[J].时珍国医国药,2010,21(10):2518-2519.
    [4]袁干军,易延逵.海南五层龙根的化学成分研究[J].中药材,2005,28(1):27-29.
    [5]纵伟,夏文水,崔宝良.大叶紫薇叶中熊果酸的分离纯化及结构[J].无锡轻工大学学报,2005,24(1):65-68.
    [6]肖崇厚.中药化学[M].上海,上海科学技术出版社,1997:313.
    [7]王映红,李磊,张宏桂,等.HPLC-MS与HPLC-1H-NMR联用鉴定土茯苓中的二氢黄酮醇苷异构体[J].中国中药杂志,2008,33(11):1281-1284.
    [8]尚小雅,李帅,王映红,等.红绒毛羊蹄甲中的二氢黄酮醇苷和黄烷醇类成分[J].中国中药杂志,2007,32(9):815-818.
    [9]邵波,郭洪祝,果德安.菝葜中黄酮和二苯乙烯类成分的研究[J].中草药,2009, 40(11):1700-1703.
    [10]杨安金,郭晓秋.长托菝葜化学成分研究[J].中国中药杂志,2010,35(17):2293-2295.
    [9]邵波,郭洪祝,果德安.菝葜中黄酮和二苯乙烯类成分的研究[J].中草药,2009,40(11):1700-1703.
    [10]杨安金,郭晓秋.长托菝葜化学成分研究[J].中国中药杂志,2010,35(17):2293-2295.
    [11]肖崇厚.中药化学[M].上海,上海科学技术出版社,1997:312.
    [12]冯锋,柳文媛,陈优生,等.菝葜中黄酮和芪类成分的研究[J].中国药科大学学报,2003,34(2):119-121.
    [13]徐燕,梁敬钰,邹忠梅.菝葜的化学成分研究[J].中国中药杂志,2008,33(21):2497-2499.
    [14]贾爱群,谭宁华,周俊.传统中药漆姑草(Sagina japonica)中的-27甾体成分[J].天然产物研究与开发,2008,20(5):830-832.
    [15]高辉,马小军,温学森,等.巴西人参的化学成分研究[J].中草药,2009,40(4):522-525.
    [16]谭成玉,王金辉,李霞,等.露水草中的植物甾酮类成分[J].沈阳药科大学学报,2001,18(2):263-265.
    [17]赵婉婷,孟大利,李铣,等.牛膝的化学成分[J].沈阳药科大学学报,2007,24(4):207-210.
    [18]李月,陈锦屏,段玉峰,等.植物甾醇功能及开发前景展望[J].粮食与油脂,2004(5):11-13.
    [19]刘慧琼,郭书好,沈英森,等.半夏中p-谷甾醇的抗氧化作用研究[J].广东药学院学报,2004,20(3):281-283.
    [20]吴国欣,林跃鑫,欧敏锐,等.白芥子提取物抑制前列腺增生的实验研究[J].中国中药杂志,2003,28(7):643-646.
    [21]董贺,张太平,李俊,等.山楂中谷甾醇抑制肿瘤细胞的研究[J].中国生化药物杂志,2009,30(4):270-272.
    [22]王莉,杨永杰,陈松华,等.p-谷甾醇对子宫颈癌细胞微管系统的影响[J].中华医学杂志,2006,86(39):2771-2775.
    [23]Von Holtz R L, Fink CS, Awad AB et al. beta-Sitosterol activates the sphingomyelin cycle and induces apoptosis in LNCaP human prostate cancer cells. [J]. Nutr Cancer,1998, 32(1):8-12.
    [24]Awad A B, Gan Y, Fink CS. Effect of beta-sitosterol, a plant sterol, on growth, protein phosphatase 2A, and phospholipase D in LNCaP cells[J]. Nutr cancer,2000,36(1):74-78.
    [25]Berges RR, Windeler J, Trampisch HJ, et al. Randomised, placebo-controlled, double-blind clinical trial of beta-sitosterol in patients with benign prostatic hyperplasia. Beta-sitosterol Study Group[J]. Lancet,1995,345:1529-1532.
    [26]Kassen A, Berges R, Senge T. Effect of beta-sitosterol on transforming growth factor-beta-1 expression and translocation protein kinase C alpha in human prostate stromal cells in vitro. [J]. Eur Urol,2000,37(6):735-741.
    [27]华福洲,张杰,许仄平,等.齐墩果酸预处理对大鼠肝脏缺血再灌注损伤中PI3K-AKT-GSK-3β信号传导通路的影响[J].南京医科大学学报(自然科学版),2010,30(3):295-298+370.
    [28]柳占彪,张小平,胡刚.齐墩果酸对四氧嘧啶性高血糖大鼠肝糖原含量的动态研究[J].中国民族医药杂志,2002,8(4):29-30.
    [29]蔺美玲,陈红梅,张小郁,等.齐墩果酸抑制高脂饮食肥胖大鼠体重的实验研究[J].成都医学院学报,2010,5(1):16-20.
    [30]吴勃岩,高明,徐绍娜.女贞子有效成分齐墩果酸对180荷瘤小鼠抑瘤作用及存活时间的影响[J].中医药信息,2010,27(1):37-38.
    [31]李鸿梅,王敬春,齐占朋.齐墩果酸对顺铂耐药胃癌27901细胞增殖及细胞凋亡的影响[J].中国老年学杂志,2010,30(3):667-669.
    [32]吴林蔚,蒲蔷,陈晓珍,等.齐墩果酸对卵巢癌细胞IGROV1和乳腺癌细胞MDA-MB-231生长的抑制作用[J].应用与环境生物学报,2010,16(2):202-204.
    [33]卢静,关爽,姜玮,等.低纯度熊果酸对小鼠致变性及其拮抗作用的研究[J].毒理学杂志,2010,24(1):37-40.
    [34]冯莉苹.熊果酸对卵巢癌细胞株增殖、凋亡及顺铂敏感性的影响[D].济南:山东大学,2008.
    [35]赵晓艳,胡玉娜,康向东,等.熊果酸诱导人胃癌BGC823细胞凋亡及其作用机制初探[J].中国癌症杂志,2010,20(2):101-104.
    [36]卢静,张博超,姜玮,等.熊果酸抗氧化性能的研究[J].食品工业科技,2009,30(4):126-127.
    [37]王茜,樊明文,边专.熊果酸的提取及其对牙周病原菌的作用[J].中华口腔医学杂志,2002,37(5):388-390.
    [38]欧阳灿晖,朱萱,张煜和,等.熊果酸对肝纤维化大鼠肝组织TGF-β1和α-SMA表达的影响[J].世界华人消化杂志,2009,17(22):2237-2243.
    [39]卢静,郭文秀,关爽,等.熊果酸对小鼠肝细胞损伤的保护作用[J].毒理学杂志,2009,23(6):466-468.
    [40]吴丽明,张敏.土茯苓中落新妇甙的利尿和镇痛作用[J].中药材,1995,18(12):627-630.
    [41]张白嘉,刘亚欧,刘榴,等.土茯苓及落新妇苷抗炎、镇痛、利尿作用研究[J].中药药理与临床,2004,20(1):11-12.
    [42]宋少华,沈筱芸,刘芳,等.落新妇苷对大鼠肾脏缺血再灌注损伤的保护作用[J].中西医结合学报,2009,7(8):753-757.
    [43]李玉琪,周承明,王晓雯,等.赤土茯苓甙对异丙肾上腺素诱发的小鼠缺血心肌的保护作用[J].中草药,1996,27(7):418-420.
    [44]阿布拉海提·阿布都拉,周承明,张克锦.赤土茯苓苷对正常和高钾除极豚鼠心室乳头状肌动作电位的影响[J].中国药理学通报,1999,15(2):178-181.
    [45]新华·那比,艾尼瓦尔,周承明,等.赤土茯苓苷对离体大鼠心脏缺血再灌注损伤的保护作用[J].西北药学杂志,2000,15(3):110-112.
    [46]邵春红,新华,周承明,等.赤土茯苓苷对大鼠心肌缺血的保护作用[J].新疆医科大学学报,2000,23(3):205-207.
    [47]白丽,邬利娅·伊明,连军,等.赤土茯苓苷对正常小鼠免疫功能的影响[J].新疆医科大学学报,2003,26(6):573-574.
    [48]宋少华,沈筱芸,丁国善,等.落新妇苷对小鼠骨髓来源树突状细胞成熟及免疫功能的抑制作用[J].中西医结合学报,2010,8(2):145-151.
    [49]高思海,陈涛,潘铁成,等.落新妇甙对心脏移植排斥反应中活化T细胞穿孔素和颗粒酶B表达的影响[J].中国医师杂志,2006,8(10):1336-1338.
    [50]高思海,李平,陈涛,等.落新妇苷对心脏移植排斥反应中活化T细胞p38丝裂原激活蛋白激酶信号传导通路的影响[J].中国医院药学杂志,2007,27(2):153-156.
    [51]慕宁,王海梁,傅宏,等.落新妇苷通过促进lL-10表达保护小鼠缺血再灌注损伤肝脏[J].第二军医大学学报,2008,29(12):1429-1432.
    [52]丁岩,帕尔哈提·克里木,新华,等.赤土茯苓苷对小鼠海马CA1区神经元的缺血再灌注损伤的保护作用[J].新疆医科大学学报,2000,23(2):98-100.
    [53]丁岩,新华·那比,帕尔哈提,等.赤土茯苓苷对不完全脑缺血小鼠的保护作用[J].中国新药杂志,2000,9(4):238-239.
    [54]新华·那比,白丽,周承明,等.赤土茯苓苷对小鼠脑缺氧及记忆障碍的影响[J].西北药学杂志,2001,16(5):211-213.
    [55]杜鹏,薛洁,周承明,等.赤土茯苓苷对实验性胃溃疡的保护作用[J].中草药,2000,31(4):277-280.
    [56]Shuji T, Hisamitsu U, Kumatoshi I, et al. Potentiation of GABA-induced inhibition by 20-hydroxyecdysone, a neurosteroid, in cultured rat cortical neurous[J]. Jpn J Pharmacol, 1995,68(1):133-136.
    [57]Catalan RE, Aragones MD, Godoy JE, et al. Ecdysterone induces acetylcholinesterase in mammalian brain[J]. Comp Biochem Physiol,1984,78C(1):193-195.
    [58]Takei M, Endo K, Nishimoto N, et al. Effect of Ecdysterone on histamine release from rat peritoneal mast cells. J Pharm Sci,1991,80(4):309-310.
    [59]陈秋,夏永鹏,邱宗荫.蜕皮甾酮对胰岛素抵抗细胞模型胰岛素敏感性和糖代谢的影响[J].中国药理学通报,2006,22(4):460-464.
    [60]宋敏,李耀军,赖国旗,等.蜕皮甾酮对胰岛素抵抗HepG细胞的蛋白质组学研究[J].中国药理学通报,2009,25(12):1640-1644.
    [61]邹德平,许志忠,曹灵,等.蜕皮甾酮对实验性糖尿病大鼠肾组织氧化应激的影响[J].中国中西医结合肾病杂志,2010,11(1):28-31.
    [62]邹德平,许志忠,曹灵,等.蜕皮甾酮对早期糖尿病肾病大鼠的影响[J].中国新药与临床杂志,2010,29(11):842-846.
    [63]侯量,吴旭,王武军.蜕皮甾酮对伤口促愈作用的初步研究[J].南方医科大学学报,2007,27(3):312-314.
    [64]侯量,吴旭,王武军,等.植物药有效成分蜕皮街酮对伤口促愈作用的实验研究[J].新中医,2007,39(4):106-108.
    [65]周云峰,吴旭,吴昌昊,等.蜕皮甾酮对兔实验性皮肤创伤的促愈合作用及机制[J].实用医学杂志,2010,26(14):2494-2496.
    [66]李晓云,郭睿,李鹏.蜕皮甾酮对大鼠非酒精性脂肪性肝病肿瘤坏死因子α与核因子κB表达的影响[J].华西医学,2009,24(10):2669-2673.
    [67]黄秀榕,祁明信,郭娜,等.蜕皮甾酮对氧化损伤的人晶状体上皮细胞凋亡的防护作用[J].中华中医药学刊,2010,28(4):692-695.
    [1]Terkeltaub R, Zelman D, Scavulli J, Perez-Ruiz F, Liote F. Gout Study Group:Update on hyperuricemia and gout[J]. J Joint Bone Spine,2009,76(4):444-446.
    [2]孙维峰,张娴娴,梁静,徐伟.泄浊除痹汤2种组方对高尿酸血症小鼠血尿酸的影 响[J].中国实验方剂学杂志,2010,16(10):106-107+112.
    [3]孙维峰,张娴娴,徐伟.泄浊除痹汤两种组方对高尿酸血症患者血尿酸水平的影响[J].华南国防医学杂志,2009,23(4):35-37.
    [4]Koepsell H, Endou H. The SLC22 drug transporter family[J]. Pflugers Arch,2004, 447(5):666-676.
    [5]周莉.痛风的发病机制[J].医学综述,2007,13(21):1626-1628.
    [6]Enomoto A, Niwa T, Kanai Y, Endou H. Urate transporter and renal hypouricemia[J]. Rinsho Byori,2003,51(9):892-897.
    [7]Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, Hosoya T. Clinical and molecular analysis of patients with renal hypouricemia in Japan influence of URAT1 gene on urinary urate excretion[J].J Am Soc Nephrol,2004,15(1):164-173.
    [8]Yu Z, Fong WP, Cheng CHK. The dual actions of morin (3,5,7,2',4'-pentahydroxyflavone) as a hypouricemic agent:uricosuric effect and xanthine oxidase inhibitory activity[J]. J Pharmacol Exp Ther,2006,316(1):169-175.
    [9]Uetake D, Ohno I, Ichida K, Yamaguchi Y, Saikawa H, Endou H, Hosoya T. Effect of fenofibrate on uric acid metabolism and urate transporter 1[J]. Inter Med,2010,49(2): 89-94.
    [10]王霞,付正菊,李长贵,苗志敏.罗格列酮对肾小管上皮细胞人尿酸转运子基因表达的影响[J].实用医学杂志,2008,24(9):1478-1480.
    [11]Dan T, Koga H, Onuma E, Tanaka H, Sato H, Aoki B. The activity of AA-193, a new uricosuric agent, in animals[J]. J Adv Exp Med Biol,1989,253A:301-308.
    [12]Satish A. Eraly, Volker Vallon, Timo Rieg, Gangoiti JA, Wikoff WR, Siuzdak G, Barshop BA, Nigam SK. Multiple organic anion transporters contribute to net renal excretion of uric acid[J]. J Physiol Genomics,2008,33(2):180-192.
    [13]Wang X, Wang C P, Hu Q H, Lv YZ, Zhang X, Ouyang Z, Kong LD. The dual actions of Sanmiao wan as a hypouricemic agent:Down-regulation of hepatic XOD and renal mURAT1 in hyperuricemic mice[J]. J Ethnopharmacology,2010,128(1):107-115.
    [14]Hu Q H, Jiao R Q, Wang X, Lv YZ, Kong LD. Simiao pill ameliorates urate underexcretion and renal dysfunction in hyperuricemic mice[J]. J Ethnopharmacology, 2010,128(3):685-692.
    [15]Wu Di, Xu Guo-shuang, Chen Xiang-mei, Shi Suo-zhu, Hong Quan, Zhang Ping, Lu Yang. Generation of mouse anti-human urate anion exchanger antibody by genetic immunization and its identification[J]. J Chinese Medical Journal,2005,118(8):627-632.
    [16]高碧珍,李延平,李灿东,吴同玉,郑良仆.不同方药对高尿酸血症大鼠模型黄嘌呤氧化酶及肾功能的影响[J].中华中医药杂志,2008,23(2):97-99.
    [17]谭万初,唐健元,张怡,杨雯轩.温肾化瘀法治疗高尿酸血症的机理探讨[J].时珍国医国药,2006,17(1):11-13.
    [18]郭小李,瞿伟菁,张雯,庄秀园,王捷思,李家贵.越桔果渣黄酮对高尿酸血症的影响[J].营养学报,2007,29(2):199-201.
    [19]孙维峰,徐伟,姚富庆,王浩.中药泄浊除痹汤降低痛风患者血尿酸的作用[J].中国临床康复,2003,7(21):2962-2963.
    [20]张白嘉,刘亚欧,刘榴,李彬.土茯苓及落新妇苷抗炎、镇痛、利尿作用研究[J].中药药理与临床,2004,20(1):11-12.
    [21]Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature,2002,417:447-452.
    [22]Wu X, Lee CC, Muzny DM,et al. Urate oxidase:primary structure and evolutionary implications. Proc Natl Acad Sci USA,1989,86:9412-9416.
    [23]Wu X, Muzny DM, Lee CC,et al. Two independent mutational events in the loss of urate oxidase. Mol Evol,1992,34:78-84.
    [24]吴国娟,杨明,王典仁,等.小鼠肾小管上皮细胞的原代培养及鉴定[J].解剖学报,2007,38(6):765-767.
    [25]刘晓玲,邢淑华.Percoll法分离培养肾小管上皮细胞[J].徐州医学院学报,2006,26(2):100-103.
    [26]毛慧娟,王笑云,徐昌芬,等.人肾近端小管上皮细胞的原代培养、传代及鉴定方法研究[J].南京医科大学学报,2004,24(6):561-564.
    [27]Rochelle Cunningham, Marc Brazie, Srilatha Kanumuru, et al. Sodium-Hydrogen Exchanger Regulatory Factor-1 Interacts with Mouse Urate Transporter 1 to Regulate Renal Proximal Tubule Uric Acid Transport. American Society of Nephrology,2007, (18):1419-1425.
    [28]YU Z, FONG WP, CHENG CHK. The dual actions of morin (3,5,7,2',4'-pentahydroxyflavone) as a hypouricemic agent:uricosuric effect and xanthine oxidase inhibitory activity. J Pharmacol Exp Ther,2006,316:169-175.
    [29]严玉澄,钱家麒,戴慧莉,等.人近端肾小管上皮细胞的原代培养[J].上海第二医科大学学报,2005,25(4):388-391.
    [30]王东,吴雄飞,金锡御.大鼠肾小管上皮细胞的原代培养及传代[J].中华实验外科杂志,1999,3(2):179-180.
    [31]周峰,杜贤进,董长恒,等.原代肾上皮细胞改良培养方法[J].中国组织工程研究与临床康复,2009,13(11):2101-2104.
    [32]孙维峰,张娴娴,徐伟.泄浊除弊汤两种组方对高尿酸血症患者血尿酸水平的影响[J].华南国防医学杂志,2009,23(4):35-37.
    [33]吴新荣,刘志刚,颜仁梁,孙维峰.聚酰胺颗粒分离纯化土茯苓总黄酮研究[J].中药材.2009,32(10):1606-1609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700