抗高血压药物合成及其电纺载药纳米纤维膜的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高血压病是最常见的心血管疾病,也是全球范围内的重大公共卫生问题。由于高血压的频发性和容易引发心脑血管病、肾脏病的发生,使它成为了死亡的首位危险因素和致残的主要因素,因此防治高血压显得尤其重要。而肺动脉高压(PAH)属于高血压病的一种,是非常严重的致残或致死疾病。已经有一些用于治疗PAH的药物应用于临床,例如抗凝血类药物、利尿剂等等,口服内皮素受体拮抗剂波生坦就是其中一种。安贝生坦和达卢生坦也属于口服内皮素受体拮抗剂。安贝生坦于2007年被FDA批准上市。关于这两种药物,近些年文献报道集中在药理和合成目标分子上,而对合成中所需要的两种重要中间体以及此类药物的新剂型涉及较少。
     基于前人的工作,本论文完成了安贝生坦和达卢生坦的合成,探讨了中间体4,6-二甲(氧)基-2-甲磺酰基嘧啶合成情况。探讨了催化下含巯基化合物的碳酸二甲酯(DMC)甲基化反应情况及机理特征。并以聚乙烯吡咯烷酮(PVP)和聚丙烯腈(PAN)为载体材料,采用静电纺丝技术制备了含有抗高血压药物的两种类型载药纤维膜,对载药纤维膜的结构和性能进行了表征,评价了其体外药物缓释性能。主要研究成果总结如下:
     (1)以2-巯基苯并噻唑(MBT)与DMC合成2-甲硫基苯并噻唑为模型反应,研究了季铵盐型相转移催化剂与K2CO3联用的催化效果。考察几种反应条件对反应的影响情况。从实验结果分析,Bu4NBr催化效果最好;甲基化反应最佳物料配比为:n(MBT):n(DMC):n(K2CO3):n(Bu4NBr)=1:18:1.5:0.2,90℃下反应3小时,收率76.4%;副产物为N-甲基化物,讨论了生成副产物的可能机理。同时对几类含巯基的杂环化合物的甲基化做了初步探索,发现DMC用于巯基的甲基化是方便而有效的。特别是4,6-二甲基-2-巯基嘧啶的巯基甲基化反应,高收率获得4,6-二甲基-2-甲硫基嘧啶,对优化4,6-二甲基-2-甲磺酰基嘧啶的合成路线提供了有益帮助。所有目标化合物经1H NMR、13C NMR、MS确证其化学结构。
     (2)选用MBT与DMC合成2-甲硫基苯并噻唑为模型反应,研究了离子液催化下以及改变几种反应条件对该反应的影响情况。从实验结果分析,[Bmim]Cl是所考察对象中最好的催化剂;甲基化反应最佳物料配比为:n(MBT):n(DMC):n([Bmim]Cl)=1:2:2,110℃下反应3小时,收率82.0%,副产物为N-甲基化物。扩大反应底物的适应范围,对几类含巯基的杂环化合物甲基化做了初步探索。得到了一些反应规律:温度对反应产物的收率及副反应影响明显;脂肪烃类硫醇活性明显较低;芳香类和杂环类活性明显较高。考察了[Bmim]Cl的催化循环能力。对于所关注的4,6-二甲基-2-巯基嘧啶的巯基甲基化反应,以92.3%收率获得了甲基化产物,对合成4,6-二甲基-2-甲磺酰基嘧啶打下了基础。所有目标化合物经1H NMR、13C NMR,MS确证其化学结构。选用氢质子相对简单的2-巯基嘧啶作为目标物,利用1H NMR追踪反应物的氢质子化学位移变化情况,讨论了离子液催化下DMC甲基化可能的反应机理,推测含巯基的化合物和DMC甲基化反应符合BAl2反应机理,并提出了催化循环机理图。
     (3)完成了4,6-二甲基-2-甲磺酰基嘧啶合成。甲基化反应一步中,离子液[Bmim]Cl为溶剂和催化剂,4,6-二甲基-2-巯基嘧啶(DLMP)与DMC可在适宜条件下反应并以高收率得到4,6-二甲基-2-甲硫基嘧啶。确定了反应的最佳工艺条件:常压下,反应温度110℃,物料配比为n(DLMP):n(DMC):n([Bmim]Cl)=1:1.5:2,3小时反应,收率93.5%。[Bmim]Cl重复使用四次,收率略有下降。经氧化反应,以92.7%收率得到4,6-二甲基-2-甲磺酰基嘧啶。该工艺总收率86.7%;完成了4,6-二甲氧基-2-甲磺酰基嘧啶合成。以硫酸二甲酯(DMS)甲基化方法为参考,以2-硫代巴比妥酸为原料进行甲基化,收率66.7%。经氧化反应,以91.2%收率得到4,6-二甲氧基-2-甲磺酰基嘧啶。该工艺总收率60.8%。目标化合物经FTIR、1H NMR、13C NMR、MS确证其化学结构。
     完成了安贝生坦和达卢生坦这两种内皮素受体拮抗剂的全合成。以二苯甲酮为原料,经与氯乙酸甲酯进行Darzens缩合,然后该中间体在对甲苯磺酸催化下醇解,经碱条件下水解,生成2-羟基-3-甲氧基-3,3-二苯基丙酸。再以甲基叔丁基醚为溶剂,与(S)-对氯苯乙胺成盐反应进行对应异构体拆分,得到(S)-2-羟基-3-甲氧基-3,3-二苯基丙酸与(S)-对氯苯乙胺成的盐(9),总收率为20.5%。达卢生坦的合成:(9)与2-甲磺酰基-4,6-二甲氧基嘧啶缩合,然后调节反应溶液为酸性,得到目标化合物达卢生坦,该工艺总收率为16.8%。安贝生坦的合成:(9)与2-甲磺酰基-4,6-二甲基嘧啶缩合,经调节反应溶液为酸性,得到目标化合物安贝生坦,该工艺总收率为16.2%。对2-羟基-3-甲氧基-3,3-二苯基丙酸外消旋体的化学拆分效果进行了分析,确定了(S)-2-羟基-3-甲氧基-3,3-二苯基丙酸的液相分离条件。确定了达卢生坦和安贝生坦的液相分离条件。重要中间体和目标化合物经FTIR、1H NMR、13C NMR、MS确证其化学结构。
     (4)以安贝生坦为模型药物,应用静电纺丝技术以PVPK60为载体高分子材料制备出两组载药量不同的安贝生坦/PVP载药纳米纤维膜,确定了电纺过程的工艺参数。对所制备的载药纤维进行了表征和体外快速溶解实验,结果表明:SEM显示药物分子很好地分散于PVP高分子中,随着PVP载药纳米纤维中载药量的增加,载药纤维的表面没有安贝生坦药物晶体析出。DSC和XRD分析表明药物分子很好地分散于PVP高分子中,IR分析表明药物安贝生坦与PVP之间能以氢键方式相结合,两者具有较好的相容性。体外快速溶解实验结果表明PVP载药纳米纤维具有明显的快速溶解现象,对可能的原因做了解释。这种快速溶解的载药纤维膜可能在高血压药物的新剂型上有所应用。
     (5)以卡托普利(Cpl)为模型药物,应用静电纺丝技术以PAN为载体高分子材料制备出三组载药量不同的Cpl/PAN载药纳米纤维膜,确定了电纺过程的工艺参数。对所制备的载药纤维进行了表征和体外释药性研究,结果如下:SEM显示药物分子很好地分散于PAN高分子中,随着PAN载药纳米纤维中载药量的增加,载药纤维的表面没有Cpl药物晶体析出。DSC和XRD分析表明药物分子很好地分散于PAN高分子中,IR分析表明药物Cpl与PAN之间能以氢键方式相结合,两者具有较好的相容性。体外溶出实验结果表明PAN载药纳米纤维具有明显的初期突释现象,随着PAN载药纳米纤维中载药量增加,初期突释现象更加明显,而药物释放度也会随之提高。载药纤维(d)的最高释放量在48小时内达到79.7%。拟合结果表明,PAN载药纳米纤维(d)释放最符合Ritger-Peppas模型。按照Ritger-Peppas方程处理三种载药纳米纤维1-8小时的药物释放数据,结果表明药物按照扩散机制从所制备的载药纳米纤维中释放出来。这种载药纤维可能在治疗高血压病的透皮给药系统上具有实际应用价值。
Hypertension is a very common and serious condition that can lead to many health problems. It is also an important worldwide public-health challenge because of its high frequency and concomitant risks of cardiovascular and kidney disease. It has been identified as the leading risk factor for mortality, and is ranked third as a cause of disability-adjusted life-years. Therefore cost effective approaches to optimally control blood pressure are very much needed. Pulmonary arterial hypertension (PAH) is perhaps one of the most severe and disabling type of hypertension. PAH disease progression leads to right heart failure and death. Treatment options for PAH include various standard cardiovascular drugs, such as anticoagulants, diuretics and so on. A number of agents specifically approved for PAH have also been available for several years. The oral endothelin-receptor antagonist bosentan is one of these. As two other endothelin-receptor antagonists, ambrisentan and darusentan have been assessed in clinical trials for PAH, and ambrisentan has been FDA-approved for this indication in 2007. In recent years, much research work has been done in preparation of ambrisentan and darusentan, but most reports focus on the synthesis of the targeted molecule. The intermediates in the process of preparation and the new dosage forms about these drugs have not been discussed.
     Base on the fruit of those works, the processing, the affecting factors and announcements in the process of preparation for ambrisentan and darusentan are primarily discussed in this paper. The two intermediates,4,6-Dimethyl-2-(methylsulfonyl)pyrimidine and 4,6-Dimethoxy-2-(methylsulfonyl)pyrimidine were synthesized. The possible mechanism of S-methylated and the effect of by product formation were discussed. And then ambrisentan and darusentan were prepared. As the new dosage forms, drug-loaded nanofibres have been successfully prepared by an electrospinning technique, using ambrisentan or captopril as model drug. The structures of the electrospun drug-loaded nanofibers were characterized. And the in vitro dissolution tests were also systematically examined. The main research can be summarized as following:
     (1) 2-(Methylthio)benzothiazole was synthesized from 2-mercaptobenzothiazole(MBT) and dimethyl carbonate(DMC) in the presence Phase-transfer catalyst(PTC) and K2CO3. The processing, the affecting factors and announcements in the process of preparation for 2-(Methylthio)benzothiazole were discussed. Tetrabutylammonium bromide(Bu4NBr) was the best PTC. The optimum reaction conditions were n(MBT):n(DMC):n(K2CO3): n(Bu4NBr)=1:18:1.5:0.2, reaction temperature 90℃under atmospheric pressure, and reaction time 3h. The yield of 2-(Methylthio)benzothiazole was 76.4% while the conversion of MBT was 100% under these conditions. Meanwhile, the results of GC-MS showed that the byproducts were N-methylated derivative. The possible formation mechanism of N-methylated derivative and the effect of by product formation on the yield of 2-(Methylthio)benzothiazole were discussed. The S-methylated of some kinds of SH-containing heterocycles with DMC was studied in the presence of K2CO3 and Bu4NBr under the same conditions. Methylation with DMC has been found to be a convenient method to prepare heteroaryl methyl thioethers. K2CO3-Bu4NBr showed a high catalytic activity for SH-methylating types of mercapto group on heterocyclic rings. SH-containing heterocycles can be converted into their corresponding thioethers in high selectivity and yields. Therefore, it provides an alternative clean and easy route to S-methylated of SH-containing heterocycles and is help to synthesize 4,6-Dimethyl-2-(methylsulfonyl) pyrimidine. The structures of products were determined by 1HNMR,13CNMR and MS.
     (2) In order to investigate the catalytic activity of room temperature ionic liquids(RTILs) and the effect of other conditions, the reaction of MBT with DMC was selected as a model reaction. [Bmim]Cl was the best catalyst. The optimum reaction conditions were n(MBT): n(DMC):n([Bmim]Cl)=1:2:2, reaction temperature 110℃under atmospheric pressure, and reaction time 3h. The yield of 2-(Methylthio)benzothiazole was 82.0% while the conversion of MBT was 100% under these conditions. The byproducts were N-methylated derivative. The S-methylated of some kinds of SH-containing thiols with DMC was studied in the presence of [Bmim]Cl under the same conditions. Results indicated that the alkyl thiols were found to lower the reactivity. Higher yields of aryl methyl thioethers were obtained compared to alkyl methyl thioethers. Heterocyclic thiols were converted into the corresponding heteroaryl methyl thioethers giving high yields and good regioselectivity. Clearly temperature is an influencing factor on the yields and reaction time. We further investigated the recyclability of ionic liquid. [Bmim]Cl was further recycled in four subsequent runs with little decrease in activity. The yield of 4,6-dimethyl-2-(methylthio) pyrimidine was 92.3%. And this research lays a foundation for the preparation of 4,6-Dimethyl-2-(methylsulfonyl)pyrimidine. The structures of products were determined by 1H NMR,13C NMR and MS. To study the possible mechanism relating to the S-methylated using DMC in [Bmim]Cl, the change of proton chemical shift of mercapto group of the pyrimidine was investigated using 1H NMR. Results indicated that the possible mechanism relating to the S-methylated is BAl2 mechanism.
     (3) 4,6-Dimethyl-2-(methylsulfonyl)pyrimidine was synthesized from 4,6-dimethyl-2-mercaptopyrimidine(DLMP) by the methylation and oxidation via environment-friendly processes. The optimum reaction conditions in the methylation were n(DLMP):n(DMC):n([Bmim]Cl)=1:1.5:2, reaction temperature 110℃under atmospheric pressure, and reaction time 3h. The yield of 4,6-dimethyl-2-(methylthio)pyrimidine was 93.5%. [Bmim]Cl can be recycled in four subsequent runs with only a gradual decrease in activity. The yield of the oxidation was 92.7%. And the total yield of 4,6-Dimethyl-2-(methylsulfonyl) pyrimidine was 86.7%.4,6-Dimethoxy-2-(methylsulfonyl) pyrimidine was synthesized from 2-thlobarblturic acid(TBA) by the methylation and oxidation via environment-friendly processes. The yield of 4,6-Dimethoxy-2-(methylthio)pyrimidine was 66.7%. The yield of the oxidation was 91.2%. And the total yield of 4,6-Dimethoxy-2-(methylsulfonyl)pyrimidine was 60.8%. The structures of products were determined by FTIR,1H NMR,13C NMR and MS.
     Ambrisentan and darusentan, two ETA selective endothelin receptor antagonists, were synthesized using diphenyl ketone as a starting material. The target compound was synthesized via several steps, involving in Darzens condensation with ethyl chloroacetate, methanolysis catalyzed by p-toluene sulfonic acid, alkaline hydrolysis, and salt-formation. The total yield of (S)-p-Chlorophenylethylammonium-(S)-2-hydroxy-3-methoxy-3, 3-diphenylprop-ionate(9) was 20.5%. Darusentan was obtained via two steps, involving in a nucleophilic substitution by treating (9) with 4,6-Dimethoxy-2-(methylsulfonyl)pyrimidine in the presence of LiNH2 and acidizing with dilute sulfuric acid. The process for the synthesis of darusentan achieved a total yield of 16.8%. Ambrisentan was obtained via two steps, involving in a nucleophilic substitution by treating (9) with 4,6-Dimethyl-2-(methylsulfonyl)pyrimidine in the presence of LiNH2 and acidizing with dilute sulfuric acid. The process for the synthesis of ambrisentan achieved a total yield of 16.2%. The HPLC methods were established for the enantiomeric separation and determination of intermediate, darusentan and ambrisentan. The chemical structures of the target compounds were verified using FTIR,1H NMR,13C NMR and MS.
     (4) Drug-loaded nanofibre membranes have been successfully prepared by an electrospinning technique, using ambrisentan, polyvinylpyrrolidone K60 (PVP K60) and dimethylacetamide (DMAC) as the starting materials. The effect of fabrication parameters was determined. The structures of the electrospun drug-loaded nanofibers were characterized by SEM, DSC and XRD et al. The results indicated that the products were the three-dimensional continuous web structure nanofibres with 300-600 nm in average outer-diameter. The state of ambrisentan in the nanofibres was also discussed. Results from SEM, DSC and XRD showed that the drug was distributed evenly in nanofibers. FTIR results demonstrated that the main interactions between PVP and ambrisentan were hydrogen bonding. In vitro wetting and dissolution tests showed that the drug-loaded nanofiber membranes were able to absorb water and dissolve on the water surface in 60s through the polymer-controlled mechanism. The drug-loaded nanofibers obviously improved ambrisentan's solubility. The Drug-loaded PVP nanofiber was useful for the possible applications as new dosage forms of antihypertensive drugs.
     (5) Ultrafine captopril(Cpl)-loaded polyacrylonitrile(PAN) fibers were successfully prepared by electrospinning method from co-dissolving solutions of PAN and captopril in dimethylacetamide (DMAC) as the spinning solutions. The effect of fabrication parameters was determined. The samples thereby obtained were characterized by SEM, DSC, XRD and FTIR measurements. SEM was carried out to observe the morphology of the nanofibers. DSC and XRD were conducted to clarify the states of the drug. FTIR was conducted to clarify the interactions between the drug and the polymer. Drug release profiles were investigated using in vitro dissolution tests. Results from SEM, DSC and XRD showed that the drug was distributed evenly in PAN nanofibers. FTIR results demonstrated that the main interactions between PAN and Cpl were hydrogen bonding. In vitro release study showed that after a burst release at the early stage, a sustained release was achieved and 79.7% of Cpl was released from the sample in 48h. It was shown that the drugs were capsulated inside of the fibers and the drug release in the presence of Cpl followed nearly Ritger-Peppas model. All the results demonstrated that the Drug-loaded PAN nanofiber was useful for the possible applications as transdermal drug delivery systems.
引文
[1]王文,陈伟伟,王增武,刘力生.1990年至2005年我国城乡居民主要疾病死亡率及构成比变化.中国循证心血管医学杂志,2009,1(3):129-130.
    [2]田琳.抗高血压药物的研究进展和展望.中国实用医药,2009,4(14):236-238.
    [3]黄恒.对付高血压,得像对传染病一样才成.新华每日电讯,第008版,2007.5.17.
    [4]刘力生,王文,姚崇华.中国高血压防治指南(2009年基层版).中华高血压杂志,2010,18(1):11-30.
    [5]张元宏.高血压病的药物治疗新进展.实用医技杂志,2007,14(3):382-385.
    [6]郭凡礼.2010-2015年中国抗高血压药物市场投资分析及前景预测报告.2010.7. http://www.ocn.com.cn/reports/2009851kanggaoxueyayao.htm
    [7]杜鹏,翟振武,陈卫.中国人口老龄化百年发展趋势.人口研究,2005,29(6):90-93.
    [8]尾前照雄,任常陵.回眸20世纪和展望21世纪十、高血压学.日本医学介绍,2001,22(11):524-526.
    [9]Chobanian A. V., Bakris G. L., Black H. R., Cushman W. C., Green L. A., Izzo J. L., Jones D. W., Materson B. J., Oparil S., Wright J. T., Roccella E. J., the National High Blood Pressure Education Program Coordinating Committee. The seventh report of the joint national committee on prevention, detection, evaluation and treatment of high blood pressure:the JNC-7 report. JAMA,2003,289(22): 2560-2572.
    [10]尹桂华.抗高血压药物的分类与合理使用.中国热带医学,2007,7(8):1400-1401.
    [11]龚培力.抗高血压药物的评价与研究进展.医药导报,2007,26(4):334-339.
    [12]SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in the older persons with isolated systolic hypertension, final results from systolic hypertension in the elderly program (SHEP). JAWA,1991, 265(24):3255-3264.
    [13]胡大一,许玉韵.高血压与冠心病.临床内科杂志,1999,16(1):7-8.
    [14]赵秀丽.高血压药物治疗进展.临床药物治疗杂志,2005,3(3):15-18.
    [15]李秀真,陈显德,辛怀玉.p-受体阻滞在心血管疾病中的临床应用研究进展. 医学综述,2006,12(16):1015-1017.
    [16]CIBIS Ⅱ Investigators and Committees. The cardiac insufficiency bisoprolol study Ⅱ:A randomised trial. Lancet,1999,353(9146):9-13.
    [17]李宏,徐晓霞.p受体阻滞剂的不良反应及合理应用.中国药物警戒,2006,3(6):365-368.
    [18]罗永强,张万金.二氢吡啶类钙拮抗剂——巴尼地平.国际医药卫生导报,2003,9(10):40-42.
    [19]Hart W., Holwerda N. J.. Barnidipine, a novel calcium antagonist for once-daily treatment of hypertension:a multicenter, double-blind, placebo-controlled, dose-ranging study. Cardiovasc. Drugs Ther.,1997,11(5):637-643.
    [20]王俊敏.抗高血压药物的研究进展.医药论坛杂志,2005,26(1):77-79.
    [21]张首国,王林,彭涛.抗心绞痛药物构效关系的研究进展.国外医学药学分册,2005,32(4):217-222.
    [22]Duty S., Weston A. H.. Potassium channel openers pharmacological effect and future uses. Drugs,1990,40(6):785-791.
    [23]Cook N. S. Quast U., Hof R. P., Baumlin Y, Pally C.. Similarities in the mechanism of actions of two new vasodilator drugs, pinacidil and BRL34915. J. Cardiovasc. Pharmacol.,1988,11(1):90-99.
    [24]Francisco Perez-Vizcaino, Angel L. Cogolludo, Eduardo Villamor, Juan Tamargo. Role of K+channel opening and stimulation of cyclic GMP in the vasorelaxant effects of nicorandil in isolated piglet pulmonary and mesenteric arteris:relative efficacy and internation between both pothways. Br. J. Pharmacol.,1998,123(5): 847-854.
    [25]Mira M. L., Silva M. M., Manso C. F.. The scavenging of oxygen free radicals by angiotensin converting enzyme inhibitors:the importance of the sulfhydryl group in the chemical structure of the compounds. Ann. N. Y. Acad. Sei.,1994; 723: 439-441.
    [26]郑兴.血管紧张素转化酶抑制剂研究进展.现代诊断与治疗,1999,10(3):186-188.
    [27]泮卫红,周金培,吴晓明.作用于血管紧张素受体的新药研究进展.药学进展,2008,32(2):1-7.
    [28]赵秀丽.血管紧张素转换酶抑制剂与血管紧张素Ⅱ受体拮抗剂在原发性高血压治疗中的临床应用.临床药物治疗杂志,2007,5(5):11-15.
    [29]Thomas U.. Neurohormonal modulation in cardiovascular disease. Am. Heart J., 2000,139(1):2-8.
    [30]Goa K. L., Wagstaff A. J.. Losartan potassium:use in hypertension. Drugs,1996, 51(5):820.
    [31]Devereux R. B.. Therapeutic options in minimizing left ventricular hypertrophy. Am. Heart J.,2000,139(1):9-14.
    [32]周大燕,史若飞,张晓刚.常用血管紧张素受体拮抗剂研究进展.心血管病学进展,2008,29(4):654-656.
    [33]Julius S., Kjeldsen S. E., Weber M., Brunner H. R., Ekman S., Hansson L., Hua T., Laragh J., McInnes G. T., Mitchell L., Plat F., Schork A., Smith B., Zanchetti A., VALUE trial group. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine:the VALUE tandomised trial. Lancet,2004,363(9426):2022-2031.
    [34]Parving H. H., Lehncrt H., Brochner-Mortensen J., Gomis R., Andersen S., Arner P., Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Enel J. Med.,2001,345(12):870-878.
    [35]Brenner B. M., Cooper M. E., de Zeeuw D., Keane W. F, Mitch W. E., Parving H. H., Remuzzi G., Snapinn S. M., Zhang Z., Shahinfar S., RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Enel. J. Med.,2001,345(12):861-869.
    [36]Viberti C., Wheeldon N. M., Microalbum inuria reduction with valsartan in patients with type 2 diabetes mellitus blood pressure-independent effect. Circulation,2002,106:672-678.
    [37]Oqawa S., Takeuchi K., Mori T. et al, Effects of monotherapy of temocapril or candesartan with dose increments or combination the rapy with both drugs on the suppression of diabetic nephropathy. Hypertens Res.,2007,30(4):325-334.
    [38]吕卓人,梁磊,艾文婷.血管紧张素Ⅱ1型受体拮抗剂研究进展.中华心血管病杂志,2004,32(11):1054-1056.
    [39]谢娜.抗高血压药物研究新进展.中国现代药物应用,2009,3(14):198-200.
    [40]钱之玉.抗高血压药物的评价与研究进展.药学进展,2004,28(4):145-148.
    [41]梁晶.抗高血压药物的临床应用.中国实用医药,2009,4(10):153-154.
    [42]李葆华,陈以旺.抗高血压中药研究的进展.心血管康复杂志,2005,14(6):600-602.
    [43]张相宜,郭森良,吕圭源.抗高血压中药的降压作用机制研究进展.浙江中医学院学报,2005,29(1):84-86.
    [44]竺晓鸣,杜冠华.天然舒张血管活性物质研究进展.中国天然药物,2006, 4(2):81-86.
    [45]Yanagisawa M., Karihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T.. A novel potent vasoconstrictor peptide produced by vascular endothelial cell. Nature,1988,322(31):411-415.
    [46]Brunner F., Bras-Silva C., Cerdeira A. S., Leite-Moreira A. F.. Cardiovascular endothelins:Essential regulators of cardiovascular homeostasis. Pharmacol. Then, 2006,111(2):508-531.
    [47]Luscher T. F., Barton M.. Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs, Circulation, 2000,102(19):2434-2440.
    [48]Rich S., McLaughlin V. V.. Endothelin receptor blockers in cardiovascular disease. Circulation,2003,108(18):2184-2190.
    [49]D'Orleans-Juste P., Plante, M., Honore, J. C., Carrier, E., Labonte, J.. Synthesis and degradation of endothelin-1. Can. J. Physiol. Pharmacol.,2003,81(6): 503-510.
    [50]Motte S., McEntee K., Naeije R.. Endothelin receptor antagonists. Pharmacol. Ther.,2006,110(3):386-414.
    [51]唐轶.内皮素调节机制的分子生物学研究.首都医科大学学报,1996,17(4):324-327.
    [52]Fagan K. A., Mcmurtry L. F., Rodman D. M.. Role of endothehn-1 in lung disease. Respir. Res.,2001,21(2):90-101.
    [53]Attina T., Camidge R., Newby D. E., Webb D. J.. Endothelin antagonism in pulmonary hypertension, heart failure, and beyond. Heart,2005,91(6):825-831.
    [54]Nelson J., Bagnato A., Battistini B., Nisen P.. The endothelin axis:emerging role in cancer. Nat. Rev. Cancer,2003,3(2):110-116.
    [55]陈益奇,郭峰,吉民,华维一.抗肿瘤药物作用的新靶点:内皮素系统.药学进展,2005,29(2):62-68.
    [56]Bagnato A., Cart K. J.. Endothehns as autocrine regulators of tumor cell growth. Trends Endocrinol. Metab.,1998,9(9):378-388.
    [57]Grant K., Loizidou M., Taylor I.. Endothehn-1:a multifunctional molecule in cancer. Trends Endocrinol. Metab.,2003,88(2):163-166.
    [58]刘浩,刘志勇.内皮素系统与肺动脉高压关系的研究进展.医学研究生学报,2006,19(4):373-376.
    [59]潘雪峰,董华进,宫泽辉.内皮素与心血管功能研究的最新进展.国外医学药学分册,2007,34(1):12-16.
    [60]董化江,徐鹏霄.血管内皮素的研究进展.武警医学院学报,2009,18(16):557-560.
    [61]杨磊,王启贤.内皮素及其受体拮抗剂与心血管疾病关系的研究进展.医学综述,2010,16(2):191-193.
    [62]Masaki T.. Historical review: endothelin. Trends Pharmacol. Sci.,2004,25(4): 119-224.
    [63]Humbert M, Simonneau G. Drug Insight:endothelin-receptor antagonists for pulmonary arterial hypertension in systemic rheumatic diseases. Nat. Clin. Pract. Rheumatol.,2005,1(2):93-101.
    [64]Weir M. R.. Hypertension:endothelin-receptor antagonists for treating hypertension. Nature Reviews Nephrology.2010,6(4):192-194.
    [65]张军臣,张延庆,张春芬.内皮素受体拮抗剂对脑血管痉挛的治疗作用.国外医学脑血管疾病分册,2002,10(1):72-74.
    [66]张静,王秋娟.内皮素受体拮抗剂及对相关疾病的作用.药学进展,2002,26(4):215-220.
    [67]Newman J. H., Kar S., Kirkpatrick P., Ambrisentan. Nat. Rev. Drug Discovery, 2007,6(9):697-698.
    [68][68] Walker G, Mandagere A., Dufton C., Venitz J.. The pharmacokinetics and pharmacodynamics of warfarin in combination with ambrisentan in healthy volunteers. Br. J. Clin. Pharmacol.,2009,67(5):527-534.
    [69]Riechers H., Albrecht H. P., Amberg W., Baumann E., Bernard H., Bohm H. J., Klinge D., Kling A., Muller S., Raschack M., Unger L., Walker N., Wernet W.. Discovery and optimization of a novel class of orally active nonpeptidic endothelin-Areceptor antagonists.J. Med. Chem.,1996,39(11):2123-2128.
    [70]刘文芳,傅得兴,胡欣.治疗肺动脉高压新药安贝生坦的药理与临床研究.中国新药杂志,2008,17(23):2070-2073.
    [71]Rubin L. J., Dufton C., Gerber M., Ambrisentan for pulmonary arterial hypertension. Future Cardiology,2005,1(4):425-432.
    [72]Kingman M., Ruggiero R., Torres F.. Ambrisentan, an endothelin receptor type A-selective endothelin receptor antagonist, for the treatment of pulmonary arterial hypertension. Expert Opin. Pharmacother.,2009,10(11):1847-1858.
    [73]Kabunga P., Coghlan G. Endothelin recep tor antagonism:role in the treatment of pulmonary arterial hypertension related to scleroderma. Drugs,2008,68(12): 1635-1645.
    [74]郗砚彬,张宇,王国华,杨丽钦.新型肺动脉高压治疗药安贝生坦.国际药学 研究杂志,2009,36(1):54-56.
    [75]Raschack M., Unger L., Riechers H.. Klinge D.. Receptor selectivity of endothelin antagonists and prevention of vasoconstriction and endothelin-induced sudden death. J. Cardiovasc. Pharmacol.,1995,26(Suppl 3):397-399.
    [76]Nakov, R., Pfarr, E., Eberle, S., HEAT Investigators. Darusentan:an effective endothelin A receptor antagonist for treatment of hypertension. Am. J. Hypertens., 2002,15(7):583-589.
    [77]郭峰,陈益奇,吉民,华维一.选择性内皮素受体阻滞剂darusentan的合成.中国新药杂志,2005,14(2):172-173.
    [78]夏绘晶,万玫,戴德哉,吉民,郭峰.达芦生坦对大鼠心肌内皮素受体结合的影响及一次给药对肺动脉高压的治疗作用.中国临床药理学与治疗学,2006,11(3):261-265.
    [79]Black, H. R., Bakris, G L., Weber, M. A., Weiss, R., Shahawy, M. E., Marple, R. etal. Efficacy and safety of darusentan in patients with resistant hypertension: results from a randomized, double-blind, placebo-controlled dose-ranging study. J. Clin. Hypertens. (Greenwich),2007,9:760-769.
    [80]Weber M. A., Black H., Bakris G, Krum H., Linas S., Weiss R. Linseman J. V., Wiens B. L., Warren M. S., Lindholm L. H.. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension:a randomised, double-blind, placebo-controlled trial. Lancet,2009, 374(9699):1423-1431.
    [81]Enseleit F., Ruschitzka F.. Darusentan in resistant hypertension:lost in translation. Curr. Hypertens. Rep.,2010,12(1):1-3.
    [82]Enseleit F., Luscher T. F., Ruschitzka F.. Darusentan, a selective endothelin A receptor antagonist, for the oral treatment of resistant hypertension. Then Adv. Cardiovasc. Dis.,2010; 4(4):231-240.
    [83]Sorbera L.A., Silvestre J., Castaner J.. LU135252. Drugs Future,1999,24(2): 141.
    [84]Spieker, L. E., Mitrovic, V., Noll, G, Pacher, R., Schulze, M. R., Muntwyler, J., Schalcher C., Kiowski W., Luscher T. F.. Acute hemodynamic and neurohumoral effects of selective ET(A) receptor blockade in patients with congestive heart failure. ET 003 Investigators. J. Am. Coll. Cardiol.,2000,35(7):1745-1752.
    [85]Luscher, T. F., Enseleit, F., Pacher, R., Mitrovic, V., Schulze, M. R., Willenbrock, R., Dietz R., Rousson V, Hurlimann D., Philipp S., Notter T., Noll G, Ruschitzka F., Heart Failure ET(A) Receptor Blockade Trial.. Hemodynamic and neurohumoral effects of selective endothelin A (ET(A)) receptor blockade in chronic heartfailure:the Heart Failure ET(A) Receptor Blockade Trial (HEAT). Circulation,2002,106(21):2666-2672.
    [86]Witte K., Reitenbach I., Stolpe K., Schiling L., Kirchengast M., Lemmer B.. Effects of the endothelin A receptor antagonist darusentan on blood pressure and vascular contractility in type 2 diabetic Goto-Kakizaki rats. J. Cardiovasc. Pharmacol.,2003,41(6):890-896.
    [87]Schirger J. A., Chen H. H., Jougasaki M., Lisy O., Boerrigter G., Cataliotti A., Burnett J. C.. Endothelin A receptor antagonism in experimental congestive heart failure results in augmentation of the renin-angiotensin system and sustained sodium retention. Circulation,2004,109(2):249-254.
    [88]Anand, I., McMurray, J., Cohn, J.N., Konstam, M. A., Notter, T., Quitzau, K., Ruschitzka F., Luscher T. F., EARTH investigators. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the Endothelin A Receptor Antagonist Trial in Heart Failure (EARTH):rando-mised, double-blind, placebo-controlled trial. Lancet,2004,364 (9431):347-354.
    [89]Newman J. H., Fanburgb L., Archer S. L., Badesch D. B., Barst R. J., Garcia J. G., Kao P. N., Knowles J. A., Loyd J. E., McGoon M. D., Morse J. H., Nichols W. C., Rabinovitch M., Rodman D. M., Stevens T., Tuder R. M., Voelkel N. F., Gail D. B., National Heart, Lung and Blood Institute/Office of Rare Diseases.. Pulmonary arterial hypertension:future directions:report of a national heart, lung, and blood institute/office of rare diseases workshop. Circulation,2004,109(24): 2947-2952.
    [90]Smonneau G., Galie N., Rubn L. J., Langleben D., Seeger W., Domenighetti G., Gibbs S., Lebrec D., Speich R., Beghetti M., Rich S., Fishman A.. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol.,2004,43(Suppl 1):5-12.
    [91]Farber H. W., Loscalzo J.. Pulmonary arterial hypertension. N. Engl. J. Med., 2004,351(16):1655-1665.
    [92]Humbert M., Sitbon O., Simonneau G. Treatment of pulmonary arterial hypertension. N. Engl. J. Med.,2004,351(14):1425-1436.
    [93]Jacobs A., Preston I. R., Gomberg-Maitland M.. Endothelin receptor antagonism in pulmonary arterial hypertension-a role for selective ETA inhibition. Curr. Med. Res. Opin.,2006,22(12):2567-2574.
    [94]Vatter H., Zimmermann M., Jung C., Weyrauch E., Lang J., Seifert V.. Effect of the novel endothelin (A) receptor antagonist LU 208075 on contraction and relaxation of isolated rat basilar artery. Clin. Sci.(Lond),2002,103(Suppl 48): 408-413.
    [95]Fagan K. A., McMurtry I. F., Rodman D. M.. Role of endothelin-1 in lung disease. Respir. Res.,2001,2(2):90-101.
    [96]Giaid A., Yanagisawa M., Langleben D., Michel R. P., Levy R., Shennib H., Kimura S., Masaki T., Duguid W. P., Stewart D. J.. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med.,1993, 328(24):1732-1739.
    [97]Cheng J. W. M.. Ambrisentan for the management of pulmonary arterial hypertension. Clin. Then,2008,30(5):825-833.
    [98]Galie N., Badesch D., Oudiz R, Simonneau G., McGoon M. D., Keogh A. M., Frost A. E., Zwicke D., Naeije R., Shapiro S., Olschewski H., Rubin L. J.. Ambrisentan therapy for pulmonary arterial hypertension. J. Am. Coll. Cardiol., 2005,46(3):529-535.
    [99]Epstein B. J.. Efficacy and safety of darusentan:a novel endothelin receptor antagonist. Ann. Pharmacother.,2008,42(7):1060-1069.
    [100]Oudiz R. J., Galie N., Olschewski H., Torres F., Frost A., Ghofrani H. A., Badesch D. B., McGoon M. D., McLaughlin V. V., Roecker E. B., Harrison B. C., Despain D., Dufton C., Rubin L. J.. Long-term ambrisentan therapy for the treatment of pulmonary arterial hypertension. J. Am. Coll. Cardiol.,2009,54(21): 1971-1981.
    [101]Galie N., Olschewski H., Rubin L. J., The ARIES study group. Ambrisentan therapy for pulmonary arterial hypertension:an integrated analysis of the ARIES-2 and ARIES-2 studies, Am. J. Respir. Crit. Care. Med.,2007,175:A397.
    [102]Bako P., Seollosy A., Bombicz P., Toke L., Asymmetric C-C bond forming reactions by chiral crown catalysts. Darzens condensation and nitro alkane addition to the double bond. SynLett,1997, (3):291-292.
    [103]Bako P., Vizvardi K., Toppet S., Van der E. E., Hoornaert G J., Toke L. Synthesis, extraction ability and application in asymmetric synthesis of azacrown ethers derived from D-glucose. Tetrahedron,1998,54(49):14975-14988.
    [104]Bako P., Vizvardi K., Bajor Z., Vizvardi K., Toke L.. Synthesis and application in asymmetric synthesis of azacrown ethers derived from D-glucose. Chem.Commu.,1998,(11):1193-1194.
    [105]Bako P., Czinege E., Bako T., Czugler M., Toke L.. Asymmetric C-C bond forming reactions with chiral crown catalysts derived from D-glucose and D-galactose. Tetrahedron:Asymmetry,1999,10(23):4539-4551.
    [106]Bako P., Mako A., Keglevich G., Kubinyi M., Pal K.. Synthesis of D-mannose-based azacrown ethers and their application in enantioselective reactions.Tetrahedron:Asymmetry,2005,16(10):1861-1871.
    [107]Arai S., Ishida T, Shioiri T. Asymmetric synthesis of α, β-epoxy sulfones under phase-transfer catalyzed Darzens reaction. Tetrahedron Lett.,1998,39(45): 8299-8302.
    [108]Arai S., Shirai Y., Ishida T., Shioiri T.. Phase-transfer-catalyzed asymmetric Darzens reaction. Tetrahedron,1999,55(20):6375-6386.
    [109]Arai S., Shirai Y., Shioiri T., Ishida T.. Phase-transfer catalyzed asymmetric Darzens reaction of cyclic a-chloro ketones. Chem. Comm.,1999, (1):49-50.
    [110]Arai S., Suzuki Y., Tokumaru K., Shioiri T.. Diastereoselective Darzens reactions of a-chloroesters, amides and nitriles with aromatic aldehydes under phase-transfer catalyzed conditions. Tetrahedron Lett.,2002,43(5):833-836.
    [111]Arai S., Shioiri T. Asymmetric Darzens reaction utilizing chloromethyl phenyl sulfone under phase-transfer catalyzed conditions. Tetrahedron.2002, 58(7):1407-1413.
    [112]Arai S., Tokumaru K., Aoyama T.. Phase-transfer-catalyzed asymmetric Darzens reaction using a new chiral ammonium salt. Tetrahedron Lett.,2004, 45(9):1845-1848.
    [113]Koichi T., Ryusuke S.. Darzens condensation reaction in water. Green Chem., 2001,(3):135-136.
    [114]Wang Z. T., Xu L. W., Mu Z. G, Xia C. G, Wang H. Q.. Efficient Darzens condensation reactions of aromatic aldehydes catalyzed by polystyrene-supported phase-transfer catalyst. J. Mol. Catal. A:Chem.,2004,218 (2):157-160.
    [115]Srivastava P., Srivastava R... Catalytic investigations of calix[4]arene scaffold based phase transfer catalyst. Tetrahedron Lett.,2007,48(26):4489-4493.
    [116]Ku J. M., Yoo M. S., Park, H. G, Jew S. S., Jeong, B. S.. Asymmetric synthesis of a,b-epoxysulfones via phase-transfer catalytic Darzens reaction. Tetrahedron,2007,63(34):8099-8103.
    [117]Willi A., Stefan H., Heinz H., Rolf J., Georg K., Andreas K., Darmar K., Manfred R., Hartmut R., Liliane U.. Discovery and synthesis of (S)-3-[2-(3, 4-dimethoxyphenyl)ethoxy]-2-(4,6-dimethylpyrimidin-2-yloxy)-3,3-diphenylprop ionic acid(LU302872), a novel orally active mixed ETA/ETB receptor antagonist. J. Med. Chem.,1999,42(16):3026-3032.
    [118]Jansen R., Knopp M., Amberg W., Bernard H., Koser S., Mueller S., Muenster I., Pfeiffer T., Riechers H.. Structural similarity and its surprises: endothelin receptor antagonists-process research and development report. Org. Proc. Res. Dev.,2001,5(1):16-22.
    [119]王尧德,朱敬朋,鲁灵江,罗仕忠,杨先贵.4,6-二甲基-2-取代嘧啶的合成.合成化学,2005,13(5):518-519.
    [120]黄亚玲,李芬芳,余慧,金龙飞.4,6-二甲基-2-巯基嘧啶合成方法的改进.化学与生物工程,2007,24(10):67-68.
    [121]Ouf N. H.. Synthesis of new triazolopyrimidines and substituted pyrimidines. Boll. Chim. Farm.,2004,143(7):275-279.
    [122]Bolli M. H., Marfurt J., Grisostomi C., Boss, C.; Binkert, C.; Hess, P.; Treiber, A.; Thorin, E.; Morrison, K.; Buchmann, S.; Bur, D.; Ramuz, H.; Clozel, M.; Fischli, W.; Weller, T.. Novel benzo[1,4]diazepin-2-one derivatives as endothelin receptor antagonists.J. Med. Chem.,2004,47(11):2776-2795.
    [123]范钱君,沈德隆,陈建强.2-甲基磺酰-4,6-二甲氧基嘧啶的合成及应用.精细化工中间体,2005,35(3):39-41.
    [124]Venu T. D., Khanum S. A., Firdouse, A., Manuprasad, B. K., Shashikanth S., Mohamed, R., Vishwanth, B. S.. Synthesis and anti-inflammatory activity of 2-(2-aroylaroxy)-4,6-dimethoxy pyrimidines. Bioorg. Med. Chem. Lett.,2008,18(15): 4409-4412.
    [125]Hu Y, Chen Z. C., Le Z. G, Zheng Q. G. Organic reactions in ionic liquids: An efficient method for selective S-alkylation of 2-mercaptobenzothia(xa)zole with alkyl halides. Synth. Commun.,2004,34(11):2039-2046.
    [126]Dalal D. S., Pawar N. S., Mahulikar P. P.. Synthesis of 2-mercaptobenzothiazole and of 2-mercaptobenzimidazole derivatives using polymer-supported anions. Org. Prep. Proced. Int.,2005,37(6):539-546.
    [127]Mauleon P., Alonso I., Rodriguez Rivero M., Carretero J. C.. Enantioselective synthesis of chiral sulfones by Rh-catalyzed asymmetric addition of boronic acids to a, (3-unsaturated 2-pyridyl sulfones. J. Org. Chem.,2007,72(26):9924-9935.
    [128]Bethge L., Jarikote D. V., Seitz O.. New cyanine dyes as base surrogates in PNA:Forced intercalation probes (FIT-probes) for homogeneous SNP detection. Bioorg. Med. Chem.,2008,16(1):114-125.
    [129]Vernin G, Siv C., Metzger J.. Synthesis and physicochemical study of sulfides, sulfoxides and sulfones in the thiazole series. J. Heterocycl. Chem.,1978, 15(8):1361-1366.
    [130]Vlassa M., Kezdi M., Goia I.. Application of phase-transfer catalysis in the acridine series; I. S-Alkylation and S-acylation of thioacridone and of some halogenated thioacridone derivatives. Synthesis-Stuttgart,1980,10:850-851.
    [131]Heravi M. M., Ahari N. Z., Oskooie, H. A., Ghassemzadeh, M.. Solid state S-methylation of thiols and O-methylation of phenols and naphthols with dimethyl sulfate under microwave irradiation. Phosphorus Sulfur Silicon Relat. Elem.,2005,180(7):1701-1712.
    [132]Shaikh A. A., Sivaram S.. Organic carbonates. Chem. Rev.,1996,96(3): 951-976.
    [133]Ono Y.. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl. Catal.A,1997,155(2):133-166.
    [134]Tundo P.. New developments in dimethyl carbonate chemistry. Pure Appl. Chem.,2001,73(7):1117-1124.
    [135]Tundo P., Selva M.. The chemistry of dimethyl carbonate. Acc. Chem. Res., 2002,35(9):706-716.
    [136]Bomben A., Marques C. A., Selva M., Tundo P.. A new synthesis of 2-aryloxypropionic acids derivatives via selective mono-C-methylation of methyl aryloxyacetates and aryloxyacetonitriles with dimethyl carbonate. Tetrahedron, 1995,51(42):11573-11580.
    [137]Selva M., Bomben A., Tundo P... Selective mono-N-methylation of primary aromatic amines by dimethyl carbonate over faujasite X-and Y-type zeolites. J. Chem. Soc., Perkin Transactions 1,1997, (7):1041-1046.
    [138]Tundo P., Selva M., Bomben A.. Mono-C-methylation of arylacetonitriles and methyl arylacetates by dimethyl carbonate:a general method for the synthesis of pure 2-arylpropionic acids.2-phenylpropionic acid. Org. Synth.,1999,76: 169-177.
    [139]Tundo P., Selva M., Perosa A., Memoli S.. Selective mono-C-methylations of arylacetonitriles and arylacetates with dimethyl carbonate:a mechanistic investigation.J. Org. Chem.,2002,67(4):1071-1077.
    [140]Selva M., Tundo P.. Highly chemoselective methylation and esterification reactions with dimethyl carbonate in the presence of NaY faujasite. The case of mercaptophenols, mercaptobenzoic acids, and carboxylic acids bearing OH Substituents. J. Org. Chem.,2006,71(4):1464-1470.
    [141]Selva M., Tundo P., Brunelli D., Perosa A.. Chemoselective reactions of dimethyl carbonate catalyzed by alkali metal exchanged faujasites:the case of indolylcarboxylic acids and indolyl-substituted alkylcarboxylic acids. Green Chem.,2007,9(5):463-468.
    [142]Janin Y. L., Chiki J., Legraverend M., Huel C., Bisagni E.. On the methylation of 3-cyano-6-hydroxypyridin-2(1H)-ones. Tetrahedron,1999,55(44): 12797-12804.
    [143]Jyothi T. M., Raja T., Talawar M. B., Rao B. S.. Selective O-methylation of catechol using dimethyl carbonate over calcined Mg-Al hydrotalcites. Appl. Catal.,A,2001,211(1):41-46.
    [144]Ouk S., Thiebaud S., Borredon E., Legars P., Lecomte L.. O-Methylation of phenolic compounds with dimethyl carbonate in solid/liquid phase transfer systems. Tetrahedron Lett.,2002,43(14):2661-2663.
    [145]Ouk S., Thiebaud S., Borredon E., Legars P.. High performance method for O-methylation of phenol with dimethyl carbonate. Appl. Catal. A,2003,241(1-2): 227-233.
    [146]Romero M. D., Ovejero G., Rodriguez A., Gomez J. M., Agueda I.. O-Methylation of phenol in liquid phase over basic zeolites. Ind. Eng. Chem. Res., 2004,43(26):8194-8199.
    [147]Shen Z. L., Jiang X. Z., Mo W. M., Hu B. X., Sun N.. Catalytic O-methylation of phenols with dimethyl carbonate to aryl methyl ethers using [BMIm]Cl. Green Chem.,2005,7(2):97-99.
    [148]Luque R., Campelo J. M., Conesa T. D., Luna D., Marinas J. M., Romero A. A.. Catechol O-methylation with dimethyl carbonate over different acid-base catalysts. New J. Chem.,2006,30(8):1228-1234.
    [149]Wu G. D., Wang X. L., Chen B., Li J. P., Zhao N., Wei W., Sun Y. H.. Fluorine-modified mesoporous Mg-Al mixed oxides:Mild and stable base catalysts for O-methylation of phenol with dimethyl carbonate. Appl. Catal. A, 2007,329:106-111.
    [150]Jiang X. L., Tiwari A., Thompson M., Chen Z. H., Cleary T. P., Lee T. B. K.. A practical method for N-methylation of indoles using dimethyl carbonate. Org. Proc. Res. Dev.,2001,5(6):604-608.
    [151]Shieh W. C., Dell, S., Repic O.1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and microwave-accelerated green chemistry in methylation of phenols, indoles, and benzimidazoles with dimethyl carbonate. Org. Lett.,2001,3(26):4279-4281.
    [152]Selva M., Tundo P., Perosa A.. Reaction of functionalized anilines with dimethyl carbonate over NaY faujasite.3. chemoselectivity toward mono-N-methylation. J. Org. Chem.,2003,68(19):7374-7378.
    [153]Ouk S., Thiebaud S., Borredon E., Chabaud, B. N-Methylation of nitrogen-containing heterocycles with dimethyl carbonate. Synth. Commun.,2005, 35(23):3021-3026.
    [154]Selva M., Perosa A.. Green chemistry metrics:a comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chem.,2008,10(4):457-464.
    [155]Juarez R., Padilla A., Corma A., Garcia H.. Organocatalysts for the reaction of dimethyl carbonate with 2,4-diaminotoluene. Ind. Eng. Chem. Res.,2008, 47(21):8043-8047.
    [156]Fu X. L., Zhang Z., Li C. M., Wang L. B., Ji H. Y., Yang Y, Zou T., Gao G H.. N-heterocyclic carbomethoxylation catalyzed by ionic liquids in the presence of dimethyl carbonate. Catal. Commun.,2009,10(5):665-668.
    [157]Lissel M., Schmidt S., Neumann B.. Use of dimethyl carbonate as a methylating agent under phase transfer-catalyzed conditions. Synthesis,1986,5: 382-383.
    [158]O'Donnell M. J., Bennett W. D., Wu S.. The stereoselective synthesis of alpha-amino acids by phase-transfer catalysis. J. Am. Chem. Soc.,1989,111(6): 2353-2355.
    [159]Naik S. D., Doraiswamy L. K.. Phase transfer catalysis:Chemistry and engineering. AIChE J.,1998,44(3):612-646.
    [160]Maruoka K., Ooi T.. Enantioselective Amino Acid Synthesis by Chiral Phase-Transfer Catalysis. Chem. Rev.,2003,103 (8):3013-3028.
    [161]Shibuguchi T., Mihara H., Kuramochi A., Sakuraba S., Ohshima T., Shibasaki M.. Short synthesis of (+)-cylindricine C by using a catalytic asymmetric michael reaction with a two-center organocatalyst. Angew. Chem. Int. Ed.,2006,45(28):4635-4637.
    [162]Dupont J., de Souza R. F., Suarez P. A. Z.. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev.,2002,102(10):3667-3692.
    [163]Plaquevent J., Levillain J., Guillen F. Malhiac C., Gaumont, A.. Ionic liquids: new targets and media for a-amino acid and peptide chemistry. Chem. Rev.,2008, 108(12):5035-5060.
    [164]Santini J. T., Richards A. C., Scheidt R., Cima M. J., Langer R.. Microchips as controlled drug-delivery devices. Angew. Chem. Int. Ed.,2000,39(14): 2396-2407.
    [165]Haag R... Supramolecular drug-delivery systems based on polymeric core-shell architectures, Angew. Chem. Int. Ed.,2004,43(3):278-282.
    [166]Allen T. M., Cullis P. R.. Drug delivery systems:Entering the mainstream. Science,2004,303(5665):1818-1822.
    [167]Dzenis Y.. Spinning continuous fibers for nanotechnology. Science,2004, 304(5679):1917-1919.
    [168]Huang Z. M., Zhang Y. Z., Kotaki M., Ramakrishna S.. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci.Technol.,2003,63(15):2223-2253.
    [169]Sill T. J., von Recum H. A.. Electrospinning:Applications in drug delivery and tissue engineering. Biomaterials,2008,29(13):1989-2006.
    [170]Reneker D. H., Yarin A. L.. Electrospinning jets and polymer nanofibers. Polymer,2008,49(10):2387-2425.
    [171]Doshi J., Reneker D. H.. Electrospinning process and applications of electrospun fibers. J. Electrostal.,1995,35(2-3):151-60.
    [172]Yarin A. L., Koombhongse S., Reneker D. H.. Bending instability in electrospinning of nanofibers. J. Appl. Phys.,2001,89(5):3018-3026.
    [173]Shin Y. M, Hohman M. M., Brenner M. P., Rutledge G C. Electrospinning:a whipping fluid jet generates submicron polymer fibers. Appl. Phys. Lett.,2001, 78(8):1149-1151.
    [174]Deitzel J. M., Kleinmeyer J., Harris D., Tan N. C. B.. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer,2001,42(1):261-272.
    [175]Liu H. Q., Hsieh Y. L.. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci. B,2002,40(18):2119-2129.
    [176]Megelski S., Stephens J. S., Chase D. B., Rabolt J. F.. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules,2002,35(22):8456-8466.
    [177]Fong H., Chun I., Reneker D. H., Beaded nanofibers formed during electrospinning. Polymer,1999,40 (16):4585-4592.
    [178]Yoshimoto H., Shin Y M., Terai H., Vacanti J. P.. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials,2003,24(12):2077-2082.
    [179]Bognitzki M., Czado W., Frese T., Schaper A., Hellwig M., Steinhart M., Greiner A., Wendorff J. H.. Nanostructured fibers via electrospinning. Adv. Mater., 2001,13(1):70-72.
    [180]Thakur R. A., Florek C. A., Kohn J., Michniak B. B.. Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int. J. Pharm.,2008,364(1):87-93.
    [181]Larsen G, Velarde-Ortiz R., Minchow K., Barrero A., Loscertales I. G. A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. J. Am. Chem. Soc.,2003,125(5):1154-1155.
    [182]Sun Z., Zussman E., Yarin A. L., Wendorff J. H., Greiner A.. Compound core-shell polymer nanofibers by co-electrospinnig. Adv. Mater.,2003,15(22): 1929-1932.
    [183]Katta P., Alessandro M., Ramsier R. D., Chase G. G. Continuous electrospinning of aligned polymer nanofibers onto a wir drum collector. Nano. Iett.,2004,4(11):2215-2218.
    [184]Smit E., Buttner U., Sanderson R. D.. Continuous yarns from electrospun fibers. Polymer,2005,46(8):2419-2423.
    [185]Prausnitz M. R., Langer R.. Transdermal drug delivery. Nat. Biotechnol., 2008,26(11):1261-1268.
    [186]Subedi R. K, Oh S. Y., Chun M. K., Choi H.K.. Recent advances in transdermal drug delivery. Arch. Pharmacol Res.,2010,33(3):339-351.
    [187]Katti D. S., Robinson K. W., Ko F. K., Laurencin C. T.. Bioresorbable nanofiber-based systems for wound healing and drug delivery:Optimization of fabrication parameters. J. Biomed. Mater. Res. B,2004,70(2):286-296.
    [188]He C. L., Huang Z. M., Han X. J., Liu L., Zhang H. S., Chen L.S.. Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery. J. Macromol. Sci., Phys.,2006,45(4):515-524.
    [189]He C. L., Huang Z. M., Han X. J.. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications. J. Biomed. Mater. Res. A,2009, 89(1):80-95.
    [190]Yang D. J., Xiong C. D., Govender T., Wang Y. Z.. Preparation and drug-delivery potential of metronidazole-loaded PELA tri-block co-polymeric electrospun membranes.J. Biomater. Sci., Polym. Ed.,2009,20(9):1321-1334.
    [191]Kenawy E. R., Abdel-Hay F. I., El-Newehy M. H., Wnek G. E.. Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater. Chem. Phys.,2009,113(1):296-302.
    [192]Wei A. F., Wang J. A., Wang X. Q., Wei Q. F., Ge M. Q., Hou D. Y. Preparation and characterization of the electrospun nanofibers loaded with clarithromycin, J. Appl. Polym. Sci.,2010,118(1):346-352.
    [193]Wu X. M., Branford-White C. J., Zhu L. M., Chatterton N. P., Yu D. G. Ester prodrug-loaded electrospun cellulose acetate fiber mats as transdermal drug delivery systems. J. Mater. Sci. Mater. Med.,2010,21(8):2403-2411.
    [194]Wang H., Song H. R., Chen X. S., Deng Y J.. Release of ibuprofen from PEG-PLLA electrospun fibers containing poly(ethylene glycol)-b-poly (alpha-hydroxy octanoic acid) as an additive. Chin. J. Polym. Sci.,2010,28(3): 417-425.
    [195]Ignatious F., Sun L. H., Lee C. P., Baldoni J.. Electrospun nanofibers in oral drug delivery. Pharm. Res.,2010,27(4):576-588.
    [196]Verreck G., Chun I., Peeters J., Rosenblatt J., Brewster M. E.. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res,2003,20(5):810-817.
    [197]Yu D. G, Shen X. X., Branford-White, C., White K., Zhu, L. M., Bligh S. W.. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology,2009,20(5):055104.
    [198]Charernsriwilaiwat N., Opanasopit P., Rojanarata T., Ngawhirunpat T., Supaphol P.. Preparation and characterization of chitosan-hydroxybenzotriazole/ polyvinyl alcohol blend nanofibers by the electrospinning technique, Carbohydr. Polym.,2010,81(3):675-680.
    [199]Ren J., Liu W. Q., Zhu J., Gu S. Y. Preparation and characterization of electrospun, biodegradable membranes. J. Appl. Polym. Sci.,2008,109(5): 3390-3397.
    [200]Xie J., Tan R. S., Wang C. H.. Biodegradable microparticles and fiber fabrics for sustained delivery of cisplatin to treat C6 glioma in vitro. J. Biomed. Mater. Res. A,2008,85(4):897-908.
    [201]Li W. J., Mauck R. L., Tuan R. S.. Electrospun nanofibrous scaffolds: production, characterization, and applications for tissue engineering and drug delivery. J. Biomed. Nanotechnol.,2005,1(3):259-275.
    [202]Hadjiargyrou M., Chiu J. B.. Enhanced composite electrospun nanofiber scaffolds for use in drug delivery. Expert Opinion on Drug Delivery,2008,5(10): 1093-1106.
    [203]Chakraborty S., Liao I. C., Adler A., Leong K. W.. Electrohydrodynamics:A facile technique to fabricate drug delivery systems. Adv. Drug Delivery Rev.,2009, 61(12):1043-1054.
    [204]Wang B. C., Wang Y. Z., Tin T. Y., Yu Q. S.. Applications of electrospinning technique in drug delivery. Chem. Eng. Commun.,2010,197(10):1315-1338.
    [205]Wang Q., Zhang N., Hu X., Yang J., Du Y.. Chitosan/polyethylene glycol blend fibers and their properties for drug controlled release. Biomed. Mater. Res., 2008,6(1):49-52.
    [206]Qi M. B., Li X. H., Yang Y, Zhou S. B.. Electrospun fibers of acid-labile biodegradable polymers containing ortho ester groups for controlled release of paracetamol. Eur. J. Pharm. Biopharm.,2008,106(4):445-452.
    [207]Wang M., Wang L., Huang Y.. Electrospun hydroxypropyl methyl cellulose phthalate (HPMCP)/erythromycin fibers for targeted release in intestine.J. Appl. Polym. Sci,2007,106(4):2177-2184.
    [208]Huang H. H., He C. L., Wang H. S., Mo X. M.. Preparation of core-shell biodegradable microfibers for long-term drug delivery. J. Biomed. Mater. Res. A, 2009,90(4):1243-1251.
    [209]Wang C., Yan K. W., Lin Y. D., Hsieh P. C. H.. Biodegradable core/shell fibers by coaxial electrospinning:processing, fiber characterization, and its application in sustained drug release. Macromolecules,2010,43(15):6389-6397.
    [210]Li X. R., Zhang H., Li H., Yuan X. Y. Encapsulation of proteinase K in PELA ultrafine fibers by emulsion electrospinning:preparation and in vitro evaluation. Colloid. Polym. Sci.,2010,288(10-11):1113-1119.
    [1]Ramadas K., Janarthanan N.. Convenient synthesis of chloromethylthioaromatics. Synth. Commun.,1999,29(6):1003-1007.
    [2]Harizi A., Romdhane A., Mighri Z.. Synthesis and reactivity of benzoxa(thia)zole-2-thiones:new route to 2-alkylthiobenzoxa(thia)zoles. Tetrahedron Lett.,2000,41(31):5833-5835.
    [3]Narkhede H. P., More, U. B., Dalal D. S., Pawar N. S., More D. H., Mahulikar P. P.. Fly-ash-supported synthesis of 2-mercaptobenzothiazole derivatives under microwave irradiation. Synth. Commun.,2007,37(4):573-577.
    [4]宋健,冯荣秀,陈磊,王军波,谢扬.核酸荧光探针TOTO单体噻唑橙的合成研究.精细化工,2002,19(8):469-470.
    [5]Vernin G, Siv C., Metzger J.. Synthesis and physicochemical study of sulfides, sulfoxides and sulfones in the thiazole series. J. Heterocycl. Chem.,1978,15(8): 1361-1366.
    [6]Vlassa M., Kezdi M., Goia I.. Application of phase-transfer catalysis in the acridine series; I. S-Alkylation and S-acylation of thioacridone and of some halogenated thioacridone derivatives. Synthesis-Stuttgart,1980,10:850-851.
    [7]Heravi M. M., Ahari N. Z., Oskooie, H. A., Ghassemzadeh, M.. Solid state S-methylation of thiols and O-methylation of phenols and naphthols with dimethyl sulfate under microwave irradiation. Phosphorus Sulfur Silicon Relat. Elem.,2005,180(7):1701-1712.
    [8]Mauleon P., Alonso I., Rodriguez Rivero M., Carretero J. C.. Enantioselective Synthesis of Chiral Sulfones by Rh-Catalyzed Asymmetric Addition of Boronic Acids to a, p-Unsaturated 2-Pyridyl Sulfones. J. Org. Chem.,2007,72(26): 9924-9935.
    [9]Hu Y., Chen Z. C., Le Z. G, Zheng Q. G. Organic reactions in ionic liquids:An efficient method for selective S-alkylation of 2-mercaptobenzothia(xa)zole with alkyl halides. Synth. Commun.,2004,34(11):2039-2046.
    [10]Bethge L., Jarikote D. V., Seitz O.. New cyanine dyes as base surrogates in PNA: Forced intercalation probes (FIT-probes) for homogeneous SNP detection. Bioorg. Med. Chem.,2008,16(1):114-125.
    [11]Dalal D. S., Pawar N. S., Mahulikar P. P.. Synthesis of 2-mercaptobenzothiazole and of 2-mercaptobenzimidazole derivatives using polymer-supported anions. Org. Prep. Proced. Int.,2005,37(6):539-546.
    [12]Shimizu M.. Preparation of alkylthio-substituted azacyclic compounds without use of toxic alkylation agents:JP patent,2008184397.2008.
    [13]Shaikh A. A., Sivaram S.. Organic carbonates. Chem. Rev.,1996,96(3):951-976.
    [14]Ono Y.. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl. Catal.A,1997,155(2):133-166.
    [15]Tundo P.. New developments in dimethyl carbonate chemistry. Pure Appl. Chem., 2001,73(7):1117-1124.
    [16]Tundo P., Selva M.. The chemistry of dimethyl carbonate. Acc. Chem. Res.,2002, 35(9):706-716.
    [17]周奇志,二氧化碳和甲醇直接合成碳酸二甲酯的研究进展.化学通报,2009,72(3):222-228.
    [18]舒婷,李光兴.碳酸二甲酯作甲基化试剂的研究进展.化工中间体,2008,01:20-23.
    [19]Lissel M., Schmidt S., Neumann B.. Use of dimethyl carbonate as a methylating agent under phase transfer-catalyzed conditions. Synthesis,1986,5:382-383.
    [20]Harizi A., Romdhane A., Mighri Z.. Synthesis and reactivity of benzoxa(thia)zol-2-thiones:new route to 2-alkylthiobenzoxa(thia)zoles. Tetrahedron Lett.,2000,41(31):5833-5835.
    [21]Rani B., Radha Bhalerao, U. T., Rahman, M. F. An unusual S-and N-alkylation of mercapto-substituted heterocycles with O, O-dialkyl chlorophosphate /thiophosphate. Synth. Commun.,1990,20(19):3045-3052.
    [22]Akiba K., Shiraishi H., Inamoto N.. Direct synthesis of 2,2-diaryl-3-methyl-2,3-dihydrobenzothiazoles from 3-methyl-2,3-dihydrobenzothiazole-2-thione and some mechanistic aspects. Bull. Chem. Soc. Jpn.,1979,52(1): 156-159.
    [23]Shridhar D. R., Jogibhukta M., Rao P. S., Handa, V. K.. An improved method for the synthesis of 2-thioxo-2,3-dihydro-1,3-benzoxazoles [2(3H)-benzoxazole-thiones]. Synthesis,1983,11:936-937.
    [24]Quast H., Fuss A., Nahr U.. Photochemical formation of methylenecyclopropane analogs.11. Photochemical elimination of nitrogen from phenyl-substituted 1, 4-dihydro-5-imino-5H-tetrazoles. Products of phenyl-substituted tris(imino) methane diradicals. Chem. Ber.,1985,118(6):2164-2185.
    [25]Tochtermann W., Gustmann H., Wolff C. Carbon-13 NMR spectra of heterocycles.1. Nitrogen heterocycles,1. The reaction of bis(5-tetrazolyl) disulfides with diazoalkanes. Chem. Ber.,1978,111(2):566-573.
    [26]邓继勇,林原斌.4,6-二甲氧基-2-甲砜基嘧啶的合成研究.精细化工中间体,2005,35(3):9-10.
    [1]Jyothi T. M., Raja T., Talawar M. B., Rao B. S.. Selective O-methylation of catechol using dimethyl carbonate over calcined Mg-Al hydrotalcites. Appl. Catal.A,2001,211(1):41-46.
    [2]Ouk S., Thiebaud S., Borredon E., Legars P., Lecomte L.. O-Methylation of phenolic compounds with dimethyl carbonate in solid/liquid phase transfer systems. Tetrahedron Lett.,2002,43(14):2661-2663.
    [3]Ouk S., Thiebaud, S., Borredon E., Legars P.. High performance method for O-methylation of phenol with dimethyl carbonate. Appl. Catal. A,2003, 241(1-2):227-233.
    [4]Romero M. D., Ovejero G, Rodriguez A., Gomez J. M., Agueda I.. O-Methylation of Phenol in Liquid Phase over Basic Zeolites. Ind. Eng. Chem. Res.,2004,43(26):8194-8199.
    [5]Shen Z. L., Jiang X. Z., Mo W. M., Hu B. X., Sun N.. Catalytic O-methylation of phenols with dimethyl carbonate to aryl methyl ethers using [BMIm]Cl. Green Chem.,2005,7(2):97-99.
    [6]Luque R., Campelo J. M., Conesa T. D., Luna D., Marinas J. M., Romero A. A.. Catechol O-methylation with dimethyl carbonate over different acid-base catalysts. New J. Chem.,2006,30(8):1228-1234.
    [7]Wu G D., Wang X. L., Chen B., Li J. P., Zhao N., Wei W., Sun Y. H.. Fluorine-modified mesoporous Mg-Al mixed oxides:Mild and stable base catalysts for O-methylation of phenol with dimethyl carbonate. Appl. Catal. A,2007,329:106-111.
    [8]Lissel M., Schmidt S., Neumann B.. Use of dimethyl carbonate as a methylating agent under phase transfer-catalyzed conditions. Synthesis 1986, 5:382-383.
    [9]Tundo P., Trotta F., Moraglio G., Ligorati F.. Continuous-flow processes under gas-liquid phase-transfer catalysis (GL-PTC) conditions:the reaction of dialkyl carbonates with phenols, alcohols, and mercaptans. Ind. Eng. Chem. Res.,1988,27(9):1565-1571.
    [10]Selva M., Tundo P.. Highly Chemoselective Methylation and Esterification Reactions with Dimethyl Carbonate in the Presence of NaY Faujasite. The Case of Mercaptophenols, Mercaptobenzoic Acids, and Carboxylic Acids Bearing OH Substituents. J. Org. Chem.,2006,71(4):1464-1470.
    [11]Tundo P., Selva M., Perosa A., Memoli S.. Selective Mono-C-methylations of arylacetonitriles and arylacetates with dimethyl carbonate:a mechanistic investigation. J. Org. Chem.,2002,67(4):1071-1077.
    [12]Selva M., Tundo P., Highly chemoselective methylation and esterification reactions with dimethyl carbonate in the presence of NaY faujasite. The Case of mercaptophenols, mercaptobenzoic acids, and carboxylic acids bearing OH substituents. J. Org. Chem.,2006,71(4):1464-1470.
    [13]Selva M., Tundo P., Brunelli D., Perosa A.. Chemoselective reactions of dimethyl carbonate catalyzed by alkali metal exchanged faujasites:the case of indolylcarboxylic acids and indolyl-substituted alkylcarboxylic acids. Green Chem.,2007,9(5):463-468.
    [14]Jiang X. L., Tiwari A., Thompson M., Chen Z. H., Cleary T. P., Lee T. B. K.. A practical method for N-methylation of indoles using dimethyl carbonate. Org. Proc. Res. Dev.,2001,5(6):604-608.
    [15]Shieh W. C., Dell S., Repic O.. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and microwave-accelerated green chemistry in methylation of phenols, indoles, and benzimidazoles with dimethyl carbonate. Org. Lett.,2001,3(26): 4279-4281.
    [16]Selva M., Tundo P., Perosa A.. Reaction of functionalized anilines with dimethyl carbonate over NaY faujasite.3. Chemoselectivity toward mono-N-methylation. J. Org. Chem.,2003,68(19):7374-7378.
    [17]Ouk S., Thiebaud S., Borredon E., Chabaud B.. N-Methylation of nitrogen-containing heterocycles with dimethyl carbonate. Synth. Commun., 2005,35(23):3021-3026.
    [18]Selva M., Perosa A.. Green chemistry metrics:a comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chem.,2008,10(4):457-464.
    [19]Juarez R., Padilla A., Corma A., Garcia H.. Organocatalysts for the Reaction of Dimethyl Carbonate with 2,4-Diaminotoluene. Ind. Eng. Chem. Res., 2008,47(21):8043-8047.
    [20]Fu X. L., Zhang Z., Li C. M., Wang L. B., Ji H. Y, Yang Y, Zou T., Gao G. H., N-heterocyclic carbomethoxylation catalyzed by ionic liquids in the presence of dimethyl carbonate. Catal. Commun.,2009,10(5):665-668.
    [21]辛嘉英,赵永杰,夏春谷,李树本.离子液中的生物催化反应.分子催化,2006,26(1):76-83.
    [22]Welton T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev.,1999,99(8):2071-2083.
    [23]Dupont J., de Souza R. F., Suarez P. A. Z., Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev.,2002,102(10):3667-3692.
    [24]Jain N., Kumar A., Chauhan S., Chauhan S. M. S.. Chemical and biochemical transformations in ionic liquids. Tetrahedron,61(5): 1015-1060.
    [25]Jain S. L., Joseph J. K., Bir S.. Ionic liquid promoted an improved synthesis of 3,4-dihydropyrimidinones using [Bmim]BF4 immobilized Cu (II) acetylacetonate as recyclable catalytic system. Catal. Lett.,2007,115(1-2): 52-55.
    [26]Lou F. W., Xu J. M., Liu B. K., Wu Q., Pan Q., Lin X.F., Highly selective anti-Markovnikov addition of thiols to vinyl ethers under solvent-and catalyst-free conditions. Tetrahedron Lett.,2007,48(50):8815-8818.
    [27]Plaquevent J., Levillain J., Guillen F., Malhiac C., Gaumont A.. Ionic liquids: new targets and media for a-Amino Acid and peptide chemistry. Chem. Rev., 2008,108(12):5035-5060.
    [28]Martins M. A. P., Guarda E. A., Frizzo C. P., Moreira D. N., Marzari M. R. B., Zanatta N., Bonacorso H. G. Ionic liquids promoted the C-acylation of acetals in solvent-free conditions. Catal. Lett.,2009,130(1-2):93-99.
    [29]李汝雄.绿色溶剂:离子液体的合成与应用.北京:化学工业出版社,2004.
    [30]乐长高.离子液体及其在有机合成反应中的应用.上海:华东理工出版社,2007.
    [31]Hu Y, Chen Z. C., Le Z. G, Zheng Q. G. Organic reactions in ionic liquids: An efficient method for selective S-alkylation of 2-mercaptobenzothia(xa)zole with alkyl halides. Synth. Commun.,2004, 34(11):2039-2046.
    [32]Harizi, A.; Romdhane, A.; Mighri, Z. Synthesis and reactivity of benzoxa(thia)zol-2-thiones:new route to 2-alkylthiobenzoxa(thia)zoles. Tetrahedron Lett.,2000,41(31):5833-5835.
    [33]Ogretir C., Ozturk I. I., Tay N.F., Quantum chemical studies on tautomerism, isomerism and deprotonation of some 5(6)-substituted benzimidazole-2-thiones. Arkivoc,2007,14:75-99.
    [34]Tundo P., Rossi L., Loris A., Dimethyl carbonate as an ambident electrophile. J. Org. Chem.,2005,70(6):2219-2224.
    [35]Yiannios C. N., Karabinos J. V. Oxidation of thiols by dimethyl sulfoxide. J. Org. Chem.,1963,28(11):3246-3248.
    [36]Shimizu, M., Shimazaki T., Kon Y., Konakahara T.. S-Methylation of N-containing heterocyclic thiols with conjugated acids of methoxy groups. Heterocycles,2010,81(2):413-420.
    [37]Klanderman B. H.. Novel thermal dequaternization of a benzimidazolium salt.J. Org. Chem.,1965,30(7):2469-2470.
    [1]Riechers H., Albrecht H. P., Amberg W., Baumann E., Bernard H., Bohm H.J, Klinge D., Kling A., Muller S., Raschack M., Unger L., Walker N., Wernet W.. Discovery and optimization of a novel class of orally active nonpepitidic endothelin-A receptor antagonists. J. Med. Chem.,1996,39(11):2123-2128.
    [2]张鸽,范鸣.治疗肺动脉高压新药Ambrisentan.药学进展,2006,30(4):192.
    [3]Newman J. H., Kar S., Kirkpatrick P., Ambrisentan, Nat. Rev. Drug Discovery,2007,6(9):697-698.
    [4]郭峰,陈益奇,吉民,华维一.选择性内皮素受体阻滞剂darusentan的合成.中国新药杂志,2005,14(2):172-173.
    [5]夏绘晶,万玫,戴德哉,吉民,郭峰.达芦生坦对大鼠心肌内皮素受体结合的影响及一次给药对肺动脉高压的治疗作用.中国临床药理学与治疗学,2006,11(3):261-265.
    [6]Enseleit F., Ruschitzka F.. Darusentan in resistant hypertension:lost in translation. Curr. Hypertens. Rep.,2010,12(1):1-3.
    [7]Enseleit F., Luscher T. F., Ruschitzka F.. Darusentan, a selective endothelin A receptor antagonist, for the oral treatment of resistant hypertension. Then Adv. Cardiovasc. Dis.,2010; 4(4):231-240.
    [8]Weber M. A., Black H., Bakris G., Krum H., Linas S., Weiss R. Linseman J. V., Wiens B. L., Warren M. S., Lindholm L. H.. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension:a randomised, double-blind, placebo-controlled trial. Lancet,2009,374(9699):1423-1431.
    [9]Sorbera L.A., Silvestre J., Castaner J.. LU135252. Drugs Future,1999, 24(2):141.
    [10]Witte K., Reitenbach I., Stolpe K., Schiling L., Kirchengast M., Lemmer B.. Effects of the endothelin A receptor antagonist darusentan on blood pressure and vascular contractility in type 2 diabetic Goto-Kakizaki rats. J Cardiovasc Pharmacol,2003,41(6):890-896.
    [11]Schirger J. A., Chen H. H., Jougasaki M., Lisy O., Boerrigter G, Cataliotti A., Burnett J. C. Endothelin A receptor antagonism in experimental congestive heart failure results in augmentation of the renin-angiotensin system and sustained sodium retention. Circulation,2004,109(2):249-254.
    [12]Anand, I., McMurray, J., Cohn, J.N., Konstam, M. A., Notter, T., Quitzau, K., Ruschitzka F., Luscher T. F., EARTH investigators. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the Endothelin A Receptor Antagonist Trial in Heart Failure (EARTH): rando-mised, double-blind, placebo-controlled trial. Lancet,2004,364 (9431):347-354.
    [13]Bako P., Vizvardi K., Toppet S., Van der E. E., Hoornaert G J., Toke L. Synthesis, extraction ability and application in asymmetric synthesis of azacrown ethers derived from D-glucose. Tetrahedron,1998,54(49): 14975-14988.
    [14]Bako P., Vizvardi K., Bajor Z., Vizvardi K., Toke L.. Synthesis and application in asymmetric synthesis of azacrown ethers derived from D-glucose. Chem.Commu.,1998,(11):1193-1194.
    [15]Bako P., Czinege E., Bako T., Czugler M., Toke L.. Asymmetric C-C bond forming reactions with chiral crown catalysts derived from D-glucose and D-galactose. Tetrahedron:Asymmetry,1999,10(23):4539-4551.
    [16]Bako P., Mako A., Keglevich G, Kubinyi M., Pal K.. Synthesis of D-mannose-based azacrown ethers and their application in enantioselective reactions. Tetrahedron:Asymmetry,2005,16(10):1861-1871.
    [17]Arai S., Suzuki Y, Tokumaru K., Shioiri T.. Diastereoselective Darzens reactions of α-chloroesters, amides and nitriles with aromatic aldehydes under phase-transfer catalyzed conditions. Tetrahedron Letters,2002,43(5): 833-836.
    [18]Arai S., Tokumaru K., Aoyama T.. Phase-transfer-catalyzed asymmetric Darzens reaction using a new chiral ammonium salt. Tetrahedron Lett.,2004, 45(9):1845-1848.
    [19]Wang Z. T., Xu L. W., Mu Z. G., Xia C. G., Wang H. Q.. Efficient Darzens condensation reactions of aromatic aldehydes catalyzed by polystyrene-supported phase-transfer catalyst. J. Mol. Catal. A:Chem.,2004, 218(2):157-160.
    [20]Srivastava P., Srivastava R.. Catalytic investigations of calix[4]arene scaffold based phase transfer catalyst. Tetrahedron Lett.,2007,48(26): 4489-4493.
    [21]Ku J. M., Yoo M. S., Park, H. G., Jew S. S., Jeong, B. S.. Asymmetric synthesis of a,b-epoxysulfones via phase-transfer catalytic Darzens reaction. Tetrahedron,2007,63(34):8099-8103.
    [22]Jansen R., Knopp M., Amberg W., Bernard H., Koser S., Mueller S., Muenster I., Pfeiffer T., Riechers H.. Structural Similarity and Its Surprises: Endothelin Receptor Antagonists-Process Research and Development Report. Org. Proc. Res. Dev.,2001,5(1):16-22.
    [23]郗砚彬,张宇,王国华,杨丽钦.新型肺动脉高压治疗药安贝生坦.国际药学研究杂志,2009;36(1):54-56.
    [24]黄亚玲,李芬芳,余慧,金龙飞.4,6-二甲基-2-巯基嘧啶合成方法的改进.化学与生物工程,2007.24(10):67-68.
    [25]王尧德,朱敬朋,鲁灵江,罗仕忠,杨先贵.4,6-二甲基-2-取代嘧啶的合成.合成化学,2005,13(5):518-519.
    [26]Ouf N. H.. Synthesis of new triazolopyrimidines and substituted pyrimidines. Boll. Chim. Farm.,2004,143(7):275-279.
    [27]Bolli M. H., Marfurt J., Grisostomi C., Boss, C.; Binkert, C.; Hess, P.; Treiber, A.; Thorin, E.; Morrison, K.; Buchmann, S.; Bur, D.; Ramuz, H.; Clozel, M.; Fischli, W.; Weller, T.. Novel benzo[1,4]diazepin-2-one derivatives as endothelin receptor antagonists. J. Med. Chem.,2004,47(11): 2776-2795.
    [28]范钱君,沈德隆,陈建强.2-甲基磺酰-4,6-二甲氧基嘧啶的合成及应用.精细化工中间体,2005,35(3):39-41.
    [29]Venu T. D., Khanum S. A., Firdouse A., Manuprasad B. K., Shashikanth S., Mohamed R., Vishwanth B. S.. Synthesis and anti-inflammatory activity of 2-(2-aroylaroxy)-4,6-dimethoxy pyrimidines. Bioorg. Med. Chem. Lett., 2008,18(15):4409-4412.
    [30]Hu Y., Chen Z. C., Le Z. G, Zheng Q. G. Organic reactions in ionic liquids: an efficient method for selective S-alkylation of 2-mercaptobenzothia(xa)zole with alkyl halides. Synth. Commun.,2004, 34(11):2039-2046.
    [31]郭峰,吉民,华唯一.2-甲磺酰基-4,6-二甲氧基嘧啶的简便合成.化学通 报,2005,68(11):876-877.
    [32]Tundo P., Selva M.. The chemistry of dimethyl carbonate. Acc. Chem. Res., 2002,35(9):706-716.
    [33]周奇志.二氧化碳和甲醇直接合成碳酸二甲酯的研究进展.化学通报,2009,72(3):222-228.
    [34]朱利民,谢建刚,李树白,权静,郑妍.碳酸二甲酯对含巯基的嘧啶杂环化合物进行甲基化的方法.CN 101391984,2009.
    [35]Dupont J., de Souza R. F., Suarez P. A. Z.. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev.,2002,102(10):3667-3692.
    [36]Plaquevent J., Levillain J., Guillen F., Malhiac C., Gaumont A.. Ionic liquids: new targets and media for-amino acid and peptide chemistry. Chem. Rev., 2008,108(12):5035-5060.
    [37]占昌朝,彭游,陶春元,李继红.钨酸钠催化过氧化氢合成4,6-二甲氧基-2-甲磺酰基嘧啶.中国钨业,2008,23(2):38-41.
    [38]Margolin A. L.. Enzymes in the synthesis of chiral drugs. Enzyme Microb. Technol.,1993,15(4):266-280.
    [39]Patel R. N.. Biocatalytic Synthesis of Chiral Intermediates, Food Technol. Biotech.,2004,42(4):305-325.
    [40]张玉彬.生物催化的手性合成.北京:化学工业出版社,2002.
    [41]Dashevskaya T. A., Cherkasov V. M.. Reaction of alkylsulfonylpyrimidines with amines. Ukr. Khim. Zh.,1978,44(8):835-838.
    [42]周付刚,谷建敏,苏信杰,邢松松,杜玉民,安贝生坦的合成.中国医药工业杂志,2010,41(1):1-3.
    [1]陈东,丁平田,邓意辉,王思玲.聚合物胶束用于口服给药的研究进展.药学学报,2010,45(5):560-564.
    [2]余灯广,张晓飞,申夏夏,Brandford-White C.,朱利民.电纺载药纳米纤维改善难溶药物溶解性能研究.药学学报,2009,44(10):1179-1182.
    [3]Yu D. G., Shen X. X., Brandford-White C., White K., Zhu L.M.; Bligh S. W. Annie. Oral fastdissolving drug delivery membranes prepared from electrospun PVP ultrafine fibers. Nanotechnology,2009,20(5): 055104/1-055104/9.
    [4]Dhirendra K., Lewis S., Udupa N., Atin, K.. Solid dispersions:a review. Pak J Pharm Sci,2009,22(2):234-246.
    [5]Folttmann H., Quadir A.. Polyvinylpyrrolidone (PVP)-one of the most widely used excipients in pharmaceuticals:an overview. Drug Deliv. Tec., 2008,8(6):22,24,26-27.
    [6]Chadha R., Kapoor V. K., Kumar A., Analytical techniques used to characterize drug-polyvinylpyrrolidone systems in solid and liquid states-an overview. J. Sci. Ind. Res.,2006,65(6):459-469.
    [7]Megelski S., Stephens J. S., Chase D. B., Rabolt J. F.. Micro-and nanostructure surface morphology on electrospun polymer fibers. Macromolecules,2002,35(22):8456-8466.
    [8]Kenawy E. R., Bowlin G. L., Mansfield K., Layman J., Simpson D. G., Sanders E. H., Wnek G. E.. Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Contr. Rel.,2002,81(1-2):57-64.
    [9]Reneker D. H., Yarin A. L.. Electrospinning jets and polymer nanofibers. Polymer,2008,49(10):2387-2425.
    [10]Chen Y., Li X. S., Neoh K. G., Shi Z. L., Kang E. T.. Surface modification and antibacterial activity of electro-spun polyurethane fibrous membranes with quaternary ammonium moieties. J. Membr. Sci.,2008,320(1-2): 259-267.
    [11]Dzenis Y.. Spinning continuous fibers for nanotechnology. Science,2004, 304(5679):1917-1919.
    [12]Rutledge G. C., Fridrikh S. V.. Formation of fibers by electrospinning. Adv. Drug Delivery Rev.,2007,59(14):1384-1391.
    [13]Sill T. J., von Recum H. A.. Electrospinning:Applications in drug delivery and tissue engineering. Biomaterials,2008,29(13):1989-2006.
    [14]Loscertales I. G., Barrero A., Guerrero I., Cortijo R., Marquez M., Ganan-Calvo A. M.. Micro/nano encapsulation via electrified coaxial liquid jets. Science,2002,295(5560):1695-1698.
    [15]Li D., Xia Y. N.. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano. Lett.,2004,4(5):933-938.
    [16]Newman J. H., Kar S., Kirkpatrick P., Ambrisentan. Nat. Rev. Drug Discovery,2007,6(9):697-698.
    [17]Walker G, Mandagere A., Dufton C., Venitz, J.. The pharmacokinetics and pharmacodynamics of warfarin in combination with ambrisentan in healthy volunteers. Brit. J. Clin. Pharmaco.,2009,67(5):527-534.
    [18]Riechers H., Albrecht H. P., Amberg W., Baumann E., Bernard H., Bohm H. J., Klinge D., Kling A., Muller S., Raschack M., Unger L., Walker N., Wernet W. Discovery and optimization of a novel class of orally active nonpeptidic endothelin-A receptor antagonists. J. Med. Chem.,1996,39(11): 2123-2128.
    [19]余灯广,申夏夏,张晓飞,Branford-White C.,朱利民.速溶电纺载药PVP纳米纤维膜制备与表征.高分子学报,2009,11:1170-1174.
    [20]Vasconcelos T., Sarmento B., Costa P.. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discovery Today,2007,12(23-24):1068-1075.
    [21]Yu D. G, Zhang X. F., Shen X. X., Brandford-White C., Zhu L. M.. Ultrafine ibuprofen-loaded polyvinylpyrrolidone fibermats using electrospinning. Polym. Int.,2009,58(9):1010-1013.
    [1]Kearney P. M., Whelton M., Reynolds K., Muntner P., Whelton P. K. He J.. Global burden of hypertension:analysis of worldwide data. Lancet,2005, 365(9455):217-223.
    [2]黄恒.对付高血压,得像对传染病一样才成.新华每日电讯,第008版,2007.5.17.
    [3]Safar M. E., Slama M., Safavian A., Tual J. L.. Effects of ACE inhibitors on arterial changes in hypertension. Drugs Today,1995,31(Suppl. A):11-14.
    [4]Fischer W., Klokkers K., Sendl-lang A.. Transdermally administrable medicament with ACE inhibitors. US Patent, No.6303141,1999.
    [5]Yatsu T., Aoki M., Uchida W., Inagaki O.. Comparison between YM099 and captopril in rats with renal mass reduction-induced progressive renal disease. Biol. Pharm. Bull.,2005,28(2):367-369.
    [6]宋益民,陈西广,唐学玺,刘成圣,孟祥红,于乐军.卡托普利缓释微球的制备及其性能研究.解放军药学学报,2005,21(1):11-16.
    [7]高迎春,文爱东,蒋永培,赵磊.卡托普利缓释片处方及制备工艺的优化.第四军医大学学报,2002,23(11):1040-1042.
    [8]张永祥,曹德英,张莉,卡托普利缓释微丸的制备.中国医院药学杂志,2005,25(11):1044-1045.
    [9]陈秀莹,黄健,刘振华.卡托普利缓释微丸的制备及处方因素考察.中国药师,2007,10(8):764-767.
    [10]夏盛杰,倪哲明,于尚琴,余锋,胥倩,王力耕,胡军.卡托普利插层锌铝水滑石的超分子结构、热稳定性及缓释性能研究.无机化学学报,2007,23(10):1747-1752.
    [11]Prisant L. M., Bottini B., DiPiro J.T., Carr A. A.. Novel drug-delivery systems for hypertension. Am. J. Med.,1992,93(2):45-55.
    [12]Reneker D. H., Yarin A. L.. Electrospinning jets and polymer nanofibers. Polymer,2008,49(10):2387-2425.
    [13]Sill T. J., von Recum H. A.. Electrospinning:Applications in drug delivery and tissue engineering. Biomaterials,2008,29(13):1989-2006.
    [14]Lee K. H., Kim H. Y., La Y. M., Lee D. R., Sung N. H.. Influence of a mixing solvent with tetrahydrofuran and N,N-dimethyl-formamide on electrospun poly(vinyl chloride) nonwoven mats. J. Polym. Sci. B:Polym. Phys.,2002,40(19):2259-2268.
    [15]Megelski S., Stephens J. S., Chase D. B., Rabolt J. F.. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules,2002,35(22):8456-8466.
    [16]Li D., Babel A., Jenekhe S. A., Xia Y. N.. Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Adv. Mater.,2004,16(22):2062-2066.
    [17]He W., Ma Z. W., Yong T., Teo W. E., Ramakrishna S.. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials,2005,26(36):7606-7615.
    [18]Thakur R. A., Florek C. A., Kohn J., Michniak B. B.. Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int. J. Pharm.,2008,364(1):87-93.
    [19]Xu F., Cui F. Z., Jiao Y. P., Meng Q. Y., Wang X. P., Cui X. Y. Improvement of cytocompatibility of electrospinning PLLA microfibers by blending PVP. J. Mater. Sci. Mater. Med.,2009,20(6):1331-1338.
    [20]Chew S. Y., Wen Y., Dzenis Y., Leong K. W.. The role of electrospinning in the emerging field of nanomedicine. Curr. Pharm. Des.,2006,12(36): 4751-4770.
    [21]Bolgen N., Vargel I., Korkusuz P., Menceloglu Y. Z., Piskin E.. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J. Biomed. Mater. Res. B:Appl. Biomater.,2007,81(2):530-543.
    [22]Cui W. G., Qi M. B., Li X. H., Huang S. Z., Zhou S. B., Weng J.. Electrospun fibers of acid-labile biodegradable polymers with acetal groups as potential drug carriers. Int. J. Pharm.,2008,361(1-2):47-55.
    [23]Yu D. G., Zhang X. F., Shen X. X., Brandford-White C., Zhu L. M.. Ultrafine ibuprofen-loaded polyvinylpyrrolidone fibermats using electrospinning, Polym. Int.,2009,58(9):1010-1013.
    [24]张晓飞.聚丙烯腈载药纤维的制备及其体外缓释性能评价.硕士学位论文.上海:东华大学,2009.
    [25]张晓飞,余灯广,朱思君,申夏夏,Brandford-White C.,朱利民.静电纺丝制备阿昔洛韦载药超细纤维垫.纺织学报,2009,30(4):1-4.
    [26]管迎梅,陈兆文,张强.丙烯腈纤维碱法水解机理研究.舰船科学技术,2006,2(6):125-127.
    [27]Zhang H., Guo S. H., Zou K., Duan X.. High-temperature chemical and microstructural transformations of an organic-inorganic nanohybrid captopril intercalated Mg-Al layered double hydroxide. Mater. Res. Bull., 2009,44(5):1062-1069.
    [28]Zeng J., Yang L. X., Liang O. Z., Zhang X. F., Guan H. L., Xu X. L., Chen X. S., Jing X. B.. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J. Contr. Rel.,2005, 105(1-2):43-51.
    [29]Ritger, P. L., Peppas N. A.. A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or disks. J. Contr. Rel.,1987,5(1):23-36.
    [30]Ritger, P. L., Peppas N. A.. A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J. Contr. Rel.,1987,5(1):37-42.
    [31]Siepmann J., Kranz H., Peppas N. A., Bodmeier, R.. Calculation of the required size and shape of hydroxypropyl methylcellulose matrices to achieve desired drug release profiles. Int. J. Pharm.,2000,201(2):152-164.
    [32]袁伟栋,孙进,何仲贵.格列吡嗪缓释微丸的制备及体外释放度考察.中国药剂学杂志,2009,7(6):409-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700