汽车四轮转向和主动悬架的综合控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对汽车操纵稳定性、安全性、乘坐舒适性等性能要求的提高,决定这些性能的两个主要的系统——转向系统和悬架系统也取得了很大的发展,如近几十年出现的四轮转向系统、主动悬架系统等。许多研究表明,汽车的转向系统与悬架系统之间存在强耦合,彼此互相影响。对汽车转向系统和悬架系统的单独控制在理论上忽视其它子系统的存在,也忽视对其它系统性能目标的影响,其效果并不是两个子系统单独控制效果的简单叠加,往往会出现控制效果的相互削弱,有必要进行两个子系统的综合控制。针对该领域研究存在的耦合机理不清晰、协调机制不健全等关键问题开展研究,发展出一种四轮转向和主动悬架的综合控制新方法,对提高车辆的综合性能具有重要意义。
     本文建立了包含四轮转向和主动悬架的整车统一动力学模型,模型包括了悬挂质量的侧向、横摆、垂直跳动、俯仰、侧倾和非悬挂质量的垂直跳动,共9个自由度。采用了能够反映轮胎非线性特性和侧向垂向耦合特性的侧向力半经验模型。对车辆动力学模型进行了试验验证。在整车9自由度模型的基础上进一步简化,分别建立了2自由度四轮转向模型和7自由度主动悬架模型,并分别设计了四轮转向和主动悬架最优控制器。建立了四轮转向系统的硬件在环仿真平台,采用步进电机作为后轮转向的执行机构,分别安装了两个角位移传感器检测前后轮转角。进行了四轮转向硬件在环仿真实验,结果表明,后轮转向的响应滞后时间小于30ms,对车辆转向系统响应的影响很小,在四轮转向的控制算法中可以不用考虑。
     通过灵敏度分析,研究了转向系统和悬架系统的耦合关系。由于簧上质量的耦合作用,车辆转向时簧上质量的离心力引起车身侧倾角和内外侧车轮垂直载荷的变化。一方面,由于悬架导向系的耦合作用,车身侧倾引起车轮侧倾转向和车轮外倾,影响车辆稳态转向特性;另一方面,由于轮胎侧向垂向耦合特性,内外侧车轮垂直载荷发生变化,导致前轴或后轴等效侧偏刚度减小,影响车辆转向特性。
     通过主动悬架的控制,转向时车身侧倾角明显减小,车轮侧倾转向和车轮外倾产生的侧向力也明显减小,车辆的稳态转向特性改变。考虑轮胎侧向垂向耦合特性,研究了四轮转向和主动悬架控制对车辆转向性能的影响。
     提出了一种基于车身姿态控制的四轮转向和主动悬架的协调控制策略。在引入主动悬架控制的同时,引入四轮转向的控制,并且对四轮转向的控制量进行调整。在此基础上,提出了一种基于前后悬架刚度匹配的协调控制策略,得到二者综合的协调控制策略。根据车辆横摆角速度响应与参考值的偏差,对主动悬架的控制量进行调整。
     通过方向盘角阶跃输入仿真,研究了采用不同控制系统时车辆的极限性能。结果表明,四轮转向系统对提高车辆极限性能几乎没有任何帮助;主动悬架系统能够有效控制轮胎垂直载荷,提高轮胎侧向力,从而显著提高车辆的极限性能;四轮转向和主动悬架的协调控制,能够提高内侧车轮垂直载荷,并合理分配前后轴轮胎侧向力,进一步提高了车辆的极限性能。
With the increasing demand of handling and stability, safety, ride performance of vehicle, the steering and suspension systems which affect those performances have a great development, such as Four-Wheel Steering and Active Suspension systems introduced in the last decades. Many research papers indicate that vehicle steering and suspension systems have strong coupling effect and interact with each other. The independent control of steering and suspension systems ignore the existence of other system theoretically and the effect to other system performance, the result is not the simple overlap of the two separate control systems, but usually weakened by each other. So it is necessary to develop integrated control of the two systems. Aiming at the main problems of this research area such as coupling mechanism and coordination strategy, developing a new method for the integrated control of 4WS and Active Suspension shows great significance on vehicle performance.
     A full vehicle dynamic model including steering and suspension systems is constructed. There are 9 degrees of freedom, i.e., lateral, yaw, heave, pitch, roll of sprung mass and vertical displacement of four unsprung masses. A semi-empirical tire lateral force model is used to describe tire non-linear characteristic and lateral vertical coupling characteristic. Several experiments were carried out to validate the model. At the base of 9dof full vehicle model, a 2dof 4WS model and 7dof Active Suspension model are built separately. A hardware in-loop simulation platform of 4WS is constructed, the actuator of rear steering system is a step motor, the front and rear steering angle is measured by two angular displacement sensors. Hardware in-loop experiment is carried out. The response time of rear wheel steering system is less than 30 milliseconds, almost has no influence on steering system response, and could be left out in the 4WS control algorithm.
     The coupling mechanism is studied by means of sensitivity analysis. Vehicle body rolls and lateral weight transfers due to centrifugal force of sprung mass. On one side, due to guide mechanism of suspension, roll motion affects roll steering and wheel camber, thus affects steady state cornering characteristics. On the other side, due to tire lateral vertical coupling characteristic, lateral weight transfer affects tire effective cornering stiffness of front and rear axles, and affects steering characteristic.
     With active suspension control, body roll angle decreases greatly, so does lateral forces produced by roll steering and wheel camber, and steady state cornering characteristic changes. Considering tire lateral vertical coupling characteristic, effect of 4WS and active suspension control on cornering characteristic is also studied.
     An coordinated control strategy of 4WS and active suspension is proposed based on body roll control. Control quantity of 4WS is adjusted when active suspension is introduced. On the basis of previous control strategy, another coordinated control strategy based on front and rear suspension stiffness distribution is proposed. And the two control strategies are integrated. Control quantity of active suspension is adjusted accoording to the error between the actual yaw rate and the demand yaw rate.
     By simulating steering wheel step input, the limit performance of vehicle with different control system is researched. 4WS system almost has no effect on vehicle limit performance. Active suspension system has great improvement on vehicle limit performance due to tire load and lateral force improvement. Coordinated control of 4WS and active suspension has further enhancement on vehicle limit performance because of lateral load improvement and force distribution between front and rear active suspension.
引文
常志权,罗虹,褚志刚,邓兆祥. 2004.谐波叠加路面输入模型的建立和数字模拟[J].重庆大学学报, Vol. 27, No. 12:5-8.
    陈龙,徐凯,江浩斌,袁传义. 2006.车辆转向与主动悬架集成系统控制[J].江苏大学学报(自然科学版), Vol. 27, No. 5:405-408.
    陈无畏,王妍旻,王其东,王启瑞,刘俊. 2005.电动助力转向与主动悬架系统多变量自适应集成控制[J].振动工程学报, Vol. 18, No. 3:360-365.
    方敏,应艳杰,汪洪波,陈无畏. 2006.基于整车转向模型的汽车主动悬架控制研究[J].中国机械工程, Vol. 17, No. 4:431-434.
    符浩翔. 2005.汽车悬架与四轮转向系统的综合控制研究[D].硕士学位论文,重庆大学. 郭孔辉. 1991.汽车操纵动力学[M].吉林科学技术出版社.
    来飞,邓兆祥,董红亮. 2007.基于统一模型的转向悬架系统最优综合控制方法[J].汽车工程, Vol. 29, No. 3:238-242.
    李铂,耿聪,刘溧. 2004.四轮主动转向的两自由度鲁棒控制[J].中国机械工程, Vol. 15, No. 17:1580-1583.
    刘立强,谭继锦,王启瑞,陈无畏. 2004.转向工况下汽车悬架系统动力学特性仿真[J].合肥工业大学学报(自然科学版), Vol. 27, No. 8:886-890.
    屈求真,刘延柱,张建武. 2000.四轮转向汽车自适应模型跟踪控制研究[J].汽车工程, Vol. 22, No. 2:73-76.
    王启瑞,刘立强,陈无畏. 2005.基于随机次优控制的汽车电动助力转向与主动悬架集成控制[J].中国机械工程, Vol. 16, No. 8:743-747.
    王望予. 2002.汽车设计(第3版) [M].机械工业出版社.
    张保军. 2000.时变载荷下的轮胎侧偏特性及其对操纵稳定性的影响[D].博士学位论文,吉林大学.
    赵君卿,王其东. 2005.汽车电动助力转向与主动悬架集成控制及其仿真[J].合肥工业大学学报(自然科学版), Vol. 28, No. 3:234-237.
    Al-Assaf Yousef. 1995. Adaptive control for vehicle active suspension systems[J]. Proceedings of the American Control Conference, Vol.2:1183-1185.
    Andrzej G. Nalecz. 1987. Investigation into the effects of suspension design on stability of light vehicles[J]. SAE:2512-2545.
    Andrzej G. Nalecz et al. 1989. Handling properties of four wheel steering vehicles[J]. SAE, Vol.98:63-82.
    Anthony B. Will, Marcelo C.M, Teixeira, Stanislaw H. Zak. 1997. Four wheel steering control system design using fuzzy models[J]. Proceedings of the 1997 IEEE International Conference on Control Applications:73-78.
    Ashari Alireza Esna. 2004. Sliding-mode control of active suspension systems: unit vector approach[J]. Proceedings of the IEEE International Conference on Control Applications, Vol.1:370-375
    Bender E.K. 1968. Some Fundamental Limitations of Active and Passive Vehicle Suspension System[J]. SAE, No.680750.
    Chen H.F., Guenther D.A. 1989. Self-tuning optimal control of an active suspension[J]. SAE, No.892485.
    Crolla D.A., Abdel-Hady M.B.A. 1991. Active suspension control: performance comparisons using control laws applied to a full vehicle model[J]. Vehicle System Dynamics, Vol.20, No.2:107-120.
    Crolla D.A., Horton D.N.L., Pitcher R.H., Lines J.A. 1987. Active suspension control for an off-road vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, Vol.201, No. D1:1-10.
    Daniel E. Williams, Wassim M. Haddad. 1995. Nonlinear control of roll moment distribution to influence vehicle yaw characteristics[J]. IEEE Transactions on Control Systems Technology, Vol.3, No.1:110-116.
    Eguchl T, Saklta Y, Kawagoe K. 1989. Development of“Super Hicas”-A new rear wheel steering system with phasereversal Control[J]. SAE, No.891978.
    Fukunage Y., et al. 1987. Improved handling and stability using four-wheel steering[J]. 11th International Technical Conference on Experimental Safety Vehicles, Washington DC. Goodall, R.M., Kortam, W. 1983. Active control in ground transportation– a review of the state-of-the art and future potential[J]. Vehicle System Dynamics, Vol.12, No.4-5:225~257.
    Grosby, M. J., Karnopp, D. C. 1973. The Active Damper——A New Concept for Shock and Vibration Control[J]. The Shock and Vibration Bull, Vol.43, part.4:119~133.
    Hac A. 1987. Adaptive control of vehicle suspension, Vehicle System Dynamics[J]. Vol.16, No.2:57-74.
    Harada M. et al. 1998. Improvement of vehicle stability in cornering on uneven road[J]. Proceedings of AVEC’98:117~122.
    Heddrick, J. K. et al. 1975. Active Suspension for Ground Transport Vehicle - A State of the Art Review[J]. ASME, Vol.15:21~40.
    Ichiro Kangeyama, Hee-Young Jo. 1998. An Advanced Vehicle Control Method Using IndependentFour-Wheel-Steering System[J]. IEEE, Vol.42, No. 4:954-959.
    Jie Xiao, Bohdan T.Kulakowski. 2003. Sliding mode control of active suspension for transit buses based on a novel air-spring model[J]. Proceedings of the American Control Conference:3768-3773.
    Junichi E. 1994. Development of the semi-active suspension system based on the sky-hook damper theory[J]. SAE, No.940863:1110–1119.
    Karnopp D. 1995. Active and semi-active vibration isolation[J]. Transactions of ASME, Vol.117B:177–185.
    Karnopp Dean, Margolis Donald. 1984. Adaptive suspension concepts for road Vehicle[J]. Vehicle System Dynamics, Vol.13, No.3:145–160.
    Kawakami Hirosi, Sato Hiroki, Tabata Masaaki, Inoue Hideo, Itimaru Hidenori. 1992. Development of integrated system between active control suspension, active 4WS, TRC and ABS[J]. SAE, Vol.101:326-333.
    Kazuya Kitajima, Huei Peng. 2000. H∞Control for integrated side-slip, roll and yaw controls for ground vehicle[J]. Proceedings of AVEC, 5th Int’l Symposium on Advanced Vehicle Control. Krasnicki, E. J. 1980. The Experimental Performance of an on-off Active Damper[J]. The Shock and Vibration Bull, Vol.53, part.11:125~131.
    Litkouhi Bakhtiar B., Lee Allan Y. 1991. Robustness analysis of control systems with applications to four-wheel-steering vehicles[J]. American Society of Mechanical Engineers, Vol.40:449-464.
    Lu Jianbo et al. 2002. Multiobjective optimal suspension control to achieve integrated ride and handling performance[J]. IEEE Transactions on Control Systems Technology, Vol.10:807-821.
    Masaki Yamamoto. 1991. Active control strategy for improved handling and stability[J]. SAE, Vol.100:1638-1648.
    Masanori Harada, Hiroshi Harada. 1999. Analysis of lateral stability with integrated control of suspension and steering systems[J]. JSAE Review, Vol.20:465-470.
    Mohammadi Ardeshir Karami. 2005. Active control of vehicle active suspension with preview using a variable structure model reference adaptive controller[J]. International Journal of Vehicle Autonomous Systems, Vol.3, No.2-4:253-264.
    Mohan B., Phadke S.B. 1996. Variable structure active suspension system[J]. Industrial Electronics Conference, Vol.3:1945-1948.
    Moran Antonio, Nagai Masao. 1992. Analysis and design of active suspensions by H∞robust control theory[J]. JSME International Journal, Series C, Vol.35, No.3:427–437.
    Moran Antonio, Nagai Masao. 1993. Optimal rear suspension preview control of nonlinear vehicles using neural networks[J]. Vehicle System Dynamics, Vol.22, No.5-6: 321-334.
    Moran Antonio, Nagai Masao. 1994. Optimal active control of nonlinear vehicle suspensions using neural networks[J]. JSME International Journal, Series C, Vol.37, No.4:707–71.
    M. R. Mostavi, M. Shariatpanahi, R. Kazemi. 2004. A novel optimal four wheel steering control[J]. IEEE International Conference on Industrial Technology, Vol.3: 1596-1601.
    Nagai Masao, Moran Antonio, Ueda Etsuhiro. 1995. Integration of neural network and linear control theory applied to four-wheel-steering vehicles[J]. Transactions of the Japan Society of Mechanical Engineers, Vol.61, No.5:3282-3288.
    Nagai Masao, Shioneri, Toshikazu, and Hayase, Minoru. 1989. Analysis of Vibration Suppression Control System of Semi-Active Secondry Suspension[J]. SICE:929~932.
    Nagai Masao, Ueda Etsuhiro, Moran Antonio. 1995. Nonlinear design approach to four-wheel-steering systems using neural networks[J]. Vehicle System Dynamics, Vol.24, No.4-5:329-342.
    Nakamoto M., et al. 1987. The effect of vehicle speed sensing four-wheel steering system on handling performance[J]. 11th International Technical Conference on Experimental Safety Vehicles, Washington DC.
    Namio Irie, Junsuke Kuroki. 1990. 4WS technology and the prospects for improvement of vehicle dynamics[J]. SAE, Vol.99:1334-1342.
    Nurkan Yagiz et al. 1997. Sliding modes control of active suspensions[J]. Proceedings of the 12th IEEE International Symposim on Intelligent Control:349-353.
    Ono E., Hosoe S., Tuan H.D., Hayashi Y. 1996. Nonlinear H infinity control of active suspension[J]. Vehicle System Dynamics, Vol.25:489-501.
    Park J.H., Kim Y.S. 1998. Decentralized variable structure control for active suspensions based on a full-car model[J]. IEEE Conference on Control Applications Proceedings, Vol.1:383-387.
    Paul I. Ro, Hoyong Kim. 1994. Improvement of high speed 4-WS vehicle handling performance by sliding mode control[J]. Proceedings of the American Control Conference:1974-1978.
    Sam Yahaya Md., Osman Johari H.S., Ghani M.Ruddin A. 2004. A class of proportional-integral sliding mode control with application to active suspension system[J]. Systems and Control Letters, Vol.51, No.3-4:217-223.
    Sano Shoichi, Furukawa Yoshimi, Shiraishi Shuji. 1986. Four wheel steering system with rear wheel steer angle controlled as a function of steering wheel angle[J]. SAE Technical Paper Series.
    Sano S., et al. 1987. Operational and design features of the steer angle dependent four wheel steering system[J]. 11th International Technical Conference on Experimental Safety Vehicles, Washington DC.
    Sharp R. S., Hassan S. A. 1987. On the performance capabilities of active automobile suspensionsystems of limited bandwidth[J]. Vehicle System Dynamics, Vol.16, No.4:213–225.
    Shibahata Yasuji, Irie Namio, Itoh Hideo, Nakamura Kenji. 1986. The development of an experimental four-wheel-steering vehicle[J]. SAE Technical Paper Series.
    Shiotsuka Toshinari, Ohta Kazusige, Yoshida Kazuo, Nagamatsu Akio. 1993. Identification and Control of Four-Wheel-Steering Car by Neural Network[J]. Transactions of the Japan Society of Mechanical Engineers, Vol.59, No.559:708-713.
    Sohair F. Rezeka. 1995. A feedforward neural network for the automatic control of a four-wheel-steering passenger car[J]. Proceedings of the American Control Conference:2292-2296.
    Sunwoo Myoungho, Cheok Ka C. 1991. Investigation of adaptive control approaches for vehicle active suspension systems[J]. Proceedings of the American Control Conference, Vol.2:1542-1547.
    Sunwoo Myoungho, Cheok Ka C., Huang N. J. 1991. Model reference adaptive control for vehicle active suspension systems[J]. IEEE Transactions on Industrial Electronics, Vol.38, No.3:217-222.
    Taehyun Shim, Donald Margolis. 2005. Dynamic normal force control for vehicle stability enhancement[J]. Int. J. Vehicle Autonomous Systems, Vol. 3, No. 1:1-14.
    Takiguchi T., et al. 1986. Improvement of vehicle dynamics by vehicle speed sensing four wheel steering system[J]. SAE Paper, No.860624.
    Thompson A.G. 1976. An active suspension with optimal linear state feedback[J]. Vehicle System Dynamics, Vol.5:187–203.
    Thompson, A. G. 1970. Design of Active Suspension[J]. Proceedings of the Institution of Mechanical Engineers, Vol.185:553~563.
    Thompson A.G., Davis B.R., Pearce C.E.M. 1984. An optimal linear active suspension with finite road preview[J]. SAE, No.800520.
    Toshinari Shiotsuka, Akio Nagamatsu. 1994. Active control of drive motion of four wheel steering car with neural network[J]. SAE, No.940229.
    Williams R. A. 1985. Active suspensions: classical or optimal[J]. Vehicle System Dynamics, Vol.14, No.1-3:127-132.
    Wilson D.A., Sharp R.S., Hassan S.A. 1986. The application of linear optimal control theory to the design of active automotive suspensions[J]. Vehicle System Dynamics, Vol.15, No.2:105–118.
    Xiaoming Gao, Brian D. McVey, Robert L.Tokar. 1995. Robust controller design of four wheel steering systems usingμsynthesis techniques[J]. Proceedings of the 34th Conference on Decision & Control:875-882.
    Yagiz N., Yuksek I. 2001. Sliding mode control of active suspensions for a full vehicle model[J]. International Journal of Vehicle Design, Vol.26, No.2-3:264-276.
    Yean-Ren Hwang, Masayoshi Tomizuka. 1994. Fuzzy smoothing algorithms for variable structure system[J]. IEEE Transactions on Fuzzy Systems, Vol.2, No.4:277–284.
    Yoshimura Toshio. 1996. Active suspension of vehicle using fuzzy logic[J]. International Journal of Systems Science, Vol.27, No.2:215–219.
    Yu F., Crolla D.A. 1998. An optional self-tuning controller for an active suspension[J]. Vehicle System Dynamics, Vol.29, No.1:51–65.
    Yuji Yokoya, Ryohei Kizu, Hiroshi Kawaguchi, Kaoru Ohashi, Hiroyuki Ohno, 1990. Integrated control system between active control suspension and four wheel steering for the 1989 CELICA[J]. SAE, Vol.99:1546-1561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700