极限工况下汽车转向失稳的非线性动力学特性与主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会节奏的加快和高等级公路的发展,现代汽车的行驶速度越来越高,这给行车安全带来了极大的隐患,保持高速大转向即极限工况下汽车的转向稳定性是现代汽车发展所要面临的重要课题。通过主动前轮转向(Active Front Steering,AFS)、四轮转向(Fout Wheel Steering,4WS)和基于横摆力矩控制的稳定性控制系统(Electronic Stability Program,ESP)改善汽车的操纵稳定性代表了现代汽车主动安全技术的发展方向。本课题研究的重点之一就是极限工况下汽车转向失稳的非线性动力学特性分析。从车辆动力学的角度来讲,极限工况下汽车的转向行为与常规工况有很大的不同,轮胎力达到饱和,系统呈现强非线性特性,需要从非线性动力学的角度探索极限工况下汽车的转向特性,从而为汽车稳定性控制系统提供更为丰富的理论依据。
     本文重点讨论极限工况下汽车转向失稳的非线性动力学特性,包括分岔与稳定性等;研究基于状态流形的极限工况下汽车转向失稳的动态机制;探讨稳态转向失稳的预报方法及应用;研究大变化工况下底盘稳定性的鲁棒控制等内容。
     分析汽车转向动力学的基本问题,讨论了不足转向梯度、操纵图法等汽车稳态转向动力学特性的分析方法;分析了基于线性轮胎模型的汽车转向稳定性,并应用参数根轨迹的方法对汽车的转向稳定性与横摆阻尼特性进行了对比分析;在理论分析的基础上,进行了汽车操稳性的实车试验,验证了理论分析的结果,并通过试验指出了现有汽车转向动力学分析和评价方法的不足,直接应用于底盘稳定性控制比较困难,引出了下文研究的问题。
     研究了汽车稳态转向失稳的静态分岔特性。综合考虑轮胎的非线性特性和解析分析的需要,应用多项式平方轮胎模型建立了包含侧倾运动和平面运动的四维(4-D)非线性汽车转向动力学系统;借助于非线性动力学中心流形理论将高维系统降为一维中心流形系统,理论推导和实例分析表明,汽车稳态转向时不会出现Hopf分岔极限环现象,但是随着车速和前轮转角的增加将发生鞍结分岔,发生鞍结分岔后稳定的平衡点消失,若不采取措施,汽车将最终失去控制。研究了通过状态反馈并借助主动前轮转向系统对分岔点进行镇定,结果表明,对分岔点进行镇定可以延缓分岔的发生,增加了汽车稳态转向的稳定性。
     基于非线性动力学的分岔与状态流形理论研究了汽车稳态转向和非稳态转向失稳的动态机制,并用数值方法对极限工况下汽车转向的频率特性进行了分析和讨论。给出了描述汽车发生静态分岔后,转向失稳动态过程的状态流形演化图;提出了将稳态转向失稳的动态过程划分为发展阶段和失控阶段两个阶段的新思想,一方面方便了对转向失稳的动态机制的描述和理解,另一方面,通过这种划分思想将非线性分岔分析的结果直接应用于底盘稳定性控制,即根据质心侧偏角的状态响应来进行控制逻辑的设计和决策。在失稳的发展阶段状态运动缓慢,进入失控阶段,运动急剧加快,并在有限的时间内通向无穷远处,导致汽车失去控制。在非稳态转向操作中,即使转向角暂时超过分岔值,如果系统状态仍处于失稳的发展阶段,汽车并没完全失控,还可以通过主动转向等底盘主动安全系统来使汽车恢复到稳定的转向状态,一旦状态进入失控阶段,汽车将迅速失去控制,通过主动控制系统改善其稳定性比较困难。
     研究了汽车稳态转向失稳的实时预报方法及在汽车稳定性控制中的应用。研究了基于奇异值分解法和μ-δ,参数空间中实时追踪最近分岔点的汽车稳态转向失稳的预报方法,提出了基于稳态转向失稳预报的汽车稳定性控制的新思路,直接将非线性分岔分析的结果应用于汽车的稳定性控制系统的实时决策,迈出了将非线性动力学应用到底盘稳定性控制的关键的一步。讨论了极限转向角的取值对主动转向控制性能的影响,结果表明,极限转向角取小于分岔参数值时基本不影响控制性能,而超过分岔参数值后,对控制性能的影响明显,且随着极限转向角值的增加控制性能下降。
     研究了考虑模型参数不确定性和大变化工况下汽车转向稳定性的鲁棒控制问题。建立了多功能试验车的9-DOF非线性车辆模型,并通过实车试验对模型进行了测试,以作为控制方案仿真验证的平台,通过多次调整汽车结构参数使仿真结果向试验结果靠拢,并以此估计了相关的汽车结构参数;讨论了汽车稳定性控制系统的鲁棒设计方法,提出了基于线性变参数(LPV)方法的汽车稳定性鲁棒增益自调度控制方法,建立了关于轮胎侧偏刚度和车速的多胞控制模型,非线性仿真表明,该控制方案对车速、路面附着系数的变化具有较强的鲁棒性。
With the development of senior freeway and the increasing pace of our society, the increasing vehicle speed brings about great threat to our life safety. It is a crucial issue for the vehicle industry and academic research to control vehicle cornering stability in critical situations. It is has been recognized that to increase vehicle handling and stability by AFS (Active Front Steering), 4WS (Four Wheel Steering), ESP (Electronic Stability Program) etc. is the direction of the development of vehicle chassis control. This thesis focuses on the issue of increasing vehicle cornering stability in critical situations. The vehicle cornering dynamics in critical situations where the tyre force approaches saturation has great difference with that of in the general situations. It is a bad need to investigate vehicle cornering performance in critical situations througth nonlinear dynamics theory in order to provide more precise information to vehicle stability control system.
     The motivation of this thesis is to investigate the nonlinear vehicle cornering dynamics in critical situations. This research consists of the bifurcation in steady-state cornering, the dynamic mechanism elaboration of vehicle cornering destabilization based on state manifold theory, the forecast of the vehicle steady-state cornering destabilization and the application in vehicle cornering stability control, the robust control of vehicle cornering stability facing great uncertainty parameters.
     The fundaments of vehicle cornering dynamics have been studied broadly. The concepts and the principles of understeer gradient, handling diagram used to analyze and evaluate vehicle handling and stability performance have been discussed. The vehicle cornering stability is analyzed based on linear tyre model and conventional control theory, during which the yaw stability and damp properties have been compared and analyzed by root-locus theory. Vehicle handling and stability field test has been conducted to understand the vehicle cornering dynamics in advance.
     The static bifurcation of steady-state cornering destabilization has been studied. Considering the need of nonlinear analysis and numerical computation, a 4-D nonlinear vehicle cornering dynamics system is formulated comprises of the roll and planar motions and a quadratic tyre model. Then the high dimensional system is simplified by central manifold theory to 1-D. It has been proved analytically that not Hopf bifurcation but saddle-node bifurcation phenomena may be appear during the steady-state cornering destabilization, which will lead the vehicle out of control ultimately. The bifurcation stabilization through state feedback control based on active front steering is studied. The results demonstrate that saddle-node bifurcation can be delayed to appear which enhances the vehicle steady-state cornering stability.
     Based on the state manifold theory, the dynamic mechanism of vehicle steady-state and non-steady-state cornering has been explored and elaborated. The cornering property versus steering frequency has also been studied through numerical method. The state manifold diagrams which can describe the dynamic mechanism have been provided. A new ideal which divides vehicle destabilization into two stages, that is developing stage and out of control stage has been put forward in order to assist the elaboration of the issue. The results demonstrate that the state moves slowly at the developing stage but much rapidly the the state entres the out of control stage which will lead to infinity in limited time and bring the vehicle out of control. In the non-steady-state cornering operation, even if the steering angle goes beyond the bifurcation value, if the state is still in the developing stage, the vehicle is still in control which can be steered to keep stable by AFS. On the contrary, once the state entres the out of control stage, it is very difficulty to control by AFS.
     The forecast of steady-state cornering destabilization methods and the application of which is studied. Two forecast methods consisting of singular value decomposition and tracking the closest bifurcation point in u-δ_f parametric space is analyzed and compared. A new cornering stability control scheme is put forward, which is based on the forecast of steady-state cornering destabilization. This idea joints the bifurcation analysis and the cornering stability control directly. The influence of critical steering angle set based on the forecast result on the control efficiency of AFS is discussed. The results demonstrate that little difference is found when the critical steering angle is set smaller than the forecast value, however, the control efficiency declines as the increasing set of the critical steering angle when it goes beyond the forecast value.
     The robust control of vehicle cornering stability considering the parametric uncertainties is studied. 9-DOF nonlinear vehicle model which has been validated by vehicle field test is constructed as the test platform of the proposed control scheme. A robust gain-scheduling yaw moment control scheme is proposed in this paper based on LPV (Linear Parameter-Varying) modeling method. Numerical simulation on the 9-DOF nonlinear vehicle model demonstrates that the proposed control scheme has much better adaptability to the variation of the operating conditions.
引文
1 Nagai M.The perspectives of research for enhancing active safety based on advanced control technology.Vehicle System Dynamics,2007,45(5):413-431.
    2 Palkovics,L.Intelligent electronic systems in commercial vehicles.Vehicle System Dynamics,2001,35(4):227-289.
    3 Parker D,Reason J T.Driving errors,driving violations and accident preventions.Ergonomics,1995,38(1):1036-1048.
    4 Glaser H,Electronic stability program ESP,Audi Press Presentation.Lycksele,Sweden,9.-13.December,1996.
    5 郭孔辉.汽车操纵动力学.长春:吉林科学技术出版社,1991.
    6 Federal Motor Vehicle Safety Standards;Electronic Stability Control Systems.US Department of Transportation,National Highway Traffic Safety Administration,Docket No.NHTSA-2006-25801,RIN:2127-AJ77,2006.
    7 Tousi S,Bajaj A K,Soedel W.Finite disturbance directional stability of vehicles with human pilot considering nonlinear cornering behavior.Vehicle System Dynamics,1991,20(1):21-55.
    8 Vincent N.Vehicle handling,stability and bifurcation analysis for nonlinear vehicle models.Master thesis,University of Maryland,2005.
    9 陆启韶.常微分方程的定性方法和分叉.北京:北京航空航天大学出版社,1989.
    10 Shen S W,Wang J,Shi P et al.Nonlinear dynamics and stability analysis of vehicle plane motions.Vehicle System Dynamics,2007,45(1):15-35.
    11 Esmailzadeh E,Goodarzi A and Vossoughi G R.Optimal yaw moment control law for improved vehicle handling.Mechatronics,2003,13(7):659-675.
    12 Park J H.H_∞ direct yaw-moment control with brakes for robust performance and stability of vehicles.International Journal of JSME,2001,44(2):404-413.
    13 Nagai M,Shino M,and Gao F.Study on integrated control of active front steer angle and direct yaw moment.JSAE Review,2002,23(3):309-315.
    14 Bilin A G,Tilman B,Dirk O et al.Robust two degree-of-freedom vehicle steering controller design.IEEE Transactions on Control Systems Technology,2004,12(4):627-636.
    15 郑水波,韩正之,唐后君.汽车稳定性控制.自动化博览,2005,22(4):22-24.
    16 Canale M,Fagiano L,Milanese M,et al.Robust vehicle yaw control using an active differential and IMC techniques.Control Engineering Practice,2007,15(8):923-941.
    17 Ackermann,Bunte T.Yaw disturbance attenuation by robust decoupling of car steering.Control Engineering Practice,1997,5(8):1131-1136.
    18 Ansgar T.Integrated vehicle dynamics control using active brake,steering and suspension systems.International Journal of Vehicle Design,2004,36(1):1-11.
    19 March C and Shim T.Integrated control of suspension and front steering to enhance vehicle handling.Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2007,221(4):377-391.
    20 Gordon T,Howell M and Brandao F.Integrated control methodologies for road vehicles.Vehicle System Dynamics,2003,40(1-3):157-190.
    21 He J J and Crolla D A.Coordination of active steering,driveline,and braking for integrated vehicle dynamics control.Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2006,220(10):1401-1421.
    22 Elbeheiry E M,Zeyada Y F and Elaraby M E.Handling capabilities of vehicles in emergencies using coordinated AFS and ARMC systems.Vehicle System Dynamics,2001,35(3):195-215.
    23 Aleksander H and Mark O B.Improvements in vehicle handling through integrated control of chassis systems.International Journal of Vehicle Design,2002,29(1/2):23-50.
    24 张伯俊.四轮转向汽车横向动力学特性及控制研究.博士学位论文,天津大学,2006.
    25 余志生.汽车理论.北京:机械工业出版社,2003.
    26 Marcus B,Rolf I.Model-based detection of critical driving situations with fuzzy logic decision making.Control Engineering Practice,2006,14(5):527-536.
    27 Pacejka H B.Simplified analysis of steady-state turning behaviour of motor vehicles.Part 2.stability of the steady-state turn.Vehicle System Dynamics,1973,2(4):173-183.
    28 Pacejka H B.Simplified analysis of steady-state turning behaviour of motor vehicles.Part 1.handling diagrams of simple systems.Vehicle System Dynamics,1973,2(3):161-172.
    29 Pacejka H B.Simplified analysis of steady-state turning behaviour of motor vehicles.Part 3.more elaborate systems.Vehicle System Dynamics,1973,2(4):185-204.
    30 Frendo F,Greco G and Guiggiani M.Critical review of handling diagram and understeer gradient for vehicles with locked differential.Vehicle System Dynamics,2006,44(6):431-447.
    31 Frendo F,Greco G,Guiggiani M et al.The handling surface:a new perspective in vehicle dynamics.Vehicle System Dynamics,2007,45(11):1001-1016.
    32 Frendo F,Greco G.Guiggiani M et al.Evaluation of the vehicle handling performances by a new approach.Vehicle System Dynamics,2008,46(supp):857-868.
    33 Mavros G.On the objective assessment and quantification of the transient-handling response of a vehicle.Vehicle System Dynamics,2007,45(2):93-112.
    34 Chu T W and Jones R P.Analysis and simulation of nonlinear handling characteristics of automotive vehicles with focus on lateral load transfer.Vehicle System Dynamics,2008,46(Supp):17-31.
    35 Sachs,H K and Chou C C.On the stability in the sense of Liapunov of a rubber tire vehicle.Journal of Dynamic Systems,Measurement,and Control,1976,v98 Ser G(2):180-185.
    36 Johnson D B and Huston J C.Nonlinear lateral stability analysis of road vehicles using Liapunov's second method.SAE Paper:730525.
    37 施树明,毛振勇,向辉等.车辆转向的稳定性非线性分析方法.机械工程学报,2007,43(10):77-81.
    
    38 Liu Z H, Payre G and Bourassa P. Nonlinear oscillations and chaotic motions in a road vehicle system with driver steering control. Nonlinear Dynamics, 1996,9(3): 281-304.
    
    39 Liu Z H, Payre G and Bourassa P. Stability and oscillations in a time-delayed vehicle system with driver control. Nonlinear Dynamics, 2004,35(2): 159-173.
    
    40 Liu Z H, Payre G Global bifurcation analysis of a nonlinear road vehicle system. ASME Journal of Computational and Nonlinear Dynamics, 2007, 2(4): 308-315.
    
    41 Troger H and Zeman K. A nonlinear analysis of the generic types of loss of stability of the steady state motion of tractor-semitrailer. Vehicle System Dynamics, 1984,13(4): 161-172.
    
    42 Ono E, Hosoe S, Tuan H D. et al. Bifurcation in vehicle dynamics and robust front wheel steering control. IEEE Transactions on Control System Technology, 1998,6(3). 412-420.
    
    43 Liaw D C, Chiang H H and Lee T T. Elucidating vehicle lateral dynamics using a bifurcation analysis. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(2): 195-207.
    
    44 Liaw D C and Chung W C. Control design for vehicle's lateral dynamics. IEEE International Conference on Systems, Man and Cybernetics, 2006.
    
    45 Liaw D C, Chiang H H and Lee T T. A bifurcation study of vehicle's steering dynamics. Proceedings of IEEE Intelligent Vehicles Symposium, 2005.
    
    46 Hac A. Influence of chassis characteristics on sustained roll, heave and yaw oscillations in dynamic rollover testing. SAE Paper: 2005-01-0398.
    
    47 Sampson D J M. Active roll control of articulated heavy vehicles. PhD thesis, University of Cambridge, 2000.
    
    48 Feng K T. Vehicle lateral control for driver assistance and automated driving. PhD thesis, University of California at Berkeley, 2000.
    
    49 Takano S, Nagai M, Taniguchi T, et al. Study on a vehicle dynamics model for improving roll stability. JSAE Review, 2003,24(2): 149-156.
    
    50 Furukawa Y and Abe M. Advanced chassis control systems for vehicle handling and active safety. Vehicle System Dynamics, 1997, 28(2): 59-86.
    
    51 Willy K, Gerd R and Wolfgang R. Concept and functionality of the active front steering system. SAE Paper: 2004-01-0073.
    
    52 Furukawa Y, Yuhara N, Sano S, et al. A review of four-wheel steering studies from the viewpoint of vehicle dynamics control. Vehicle System Dynamics, 1989,18(1-3): 151-186.
    
    53 van Zanten A T. Bosch ESP systems: 5 years of experience. SAE Paper: 2000-01 -1633.
    
    54 Daniel E W and Wassim M H. Nonlinear control of roll moment distribution to influence vehicle yaw characteristics. IEEE Transactions on Control Systems Technology, 1995, 3(2): 110-116.
    
    55 Wang J, Wilson D A, Xu W L, et al. Active suspension control to improve vehicle ride and steady-state handling.IEEE Conference on Decision and Control and the European Control Conference 2005,Seville,Spain,Dec 12-15,2005.
    56 Yang X J,Wang Z C and Lu Y F.Gain-scheduling control of vehicle roll stiffness distribution.IEEE International Conference on Mechatronics and Automation,Harbin,China,Aug 5-8,2007.
    57 Yu N.Yaw-control enhancement for buses by active front-wheel steering.PhD Thesis,The Pennsylvania State University,2007.
    58 Selby M,Manning W J,Brown M D,et al.A coordination approach for DYC and active front steering.SAE Paper:2001-01-1275.
    59 Koehn P.Active steering:the BMW approach towards modern steering technology.SAE Paper:2004-01-1105.
    60 Kiler W and Reinelt W.Active front steering(part 1):mathematical modeling and parameter estimation.SAE Paper:2004-01-1102.
    61 Reinelt W,Kiler W,Reimann G,et al.Active front steering(part 2):safety and functionality.SAE Paper:2004-01-1101.
    62 中国汽车工程学会.世界汽车技术发展跟踪研究.北京:北京理工大学出版社,2006.
    63 van Zanten A T,Erhardt R,Pfaff G.VDC,The vehicle dynamics control system of Bosch.SAE Paper:950759.
    64 Lee S and Kwak B.A study on optimal yaw moment distribution control based on tire model.SAE Paper:2007-01-3563.
    65 Cooper N and Manning W.Integration of active suspension and active driveline to ensure stability while improving vehicle dynamics.SAE Paper:2005-01-0414.
    66 喻凡,李道飞.车辆动力学集成控制综述.农业机械学报,39(6):1-7.
    67 B.A.G(u|¨)veng,T.Acarman,L.G(u|¨)veng.Coordination of Steering and Individual Wheel Braking Actuated Vehicle Yaw Stability Control.IEEE Intelligent Vehicles Symposium,Ohio,USA,2003:288-293.
    68 Nagai M,Hirano M,Yamanaka S.Integrated control of active rear wheel steering and direct yaw moment control.Vehicle System Dynamics,1997,27(5-6):357-370.
    69 Assadian F and Aneke E.Two distinct methods for integration of active differential and active roll control systems.International Journal of Vehicle Design 2006,42(3/4):348-369.
    70 陈无艮,孙启启,胡延平 等.基于干扰抑制的汽车转向与悬架系统的集成控制.机械工程学报,2007,43(11):98-104.
    71 陈无艮,孙启启,初长宝.汽车电动助力转向与主动悬架系统的H infinity集成控制.振动工程学报,2007,20(1):45-51.
    72 陈龙,袁传义,江浩斌 等.汽车主动悬架与电动助力转向系统自适应模糊集成控制.汽车工程,2007,29(1):8-26.
    73 沈晓鸣.基于广义执行器-受控对象的车辆底盘集成控制的研究.博士学位论文,上海交 通大学,2007.
    74 李道飞.基于轮胎力最优分配的车辆动力学集成控制研究.博士学位论文,上海交通大学,2008.
    75 Zhou K,Doyle J C and Glover K.Robust and optimal control.Prentice-Hall,1996.
    76 Yuhara N and Horiuchi S.A robust adaptive rear wheel steering control system for handling improvement of four-wheel steering vehicles.Vehicle System Dynamics,20(Supp),1992:666-680.
    77 Mokhiamar O and Abe M.Active wheel steering and yaw moment control combination to maximize stability as well as vehicle responsiveness during quick lane change for active vehicle safety.Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2002,216(2).
    78 Wang J M and Longoria R G.Coordinated vehicle dynamics control with control distribution.Proceedings of American Control Conference,2006.
    79 Burgio G,Zegelaar P.Integrated vehicle control using steering and brakes.International Journal of Control,2006,79(5):534-541.
    80 Liaw D C and Chung W C.A feedback linearization design for the control of vehicle's lateral dynamics.Nonlinear Dynamics,2008,52(4):313-329.
    81 Mammar S and Koenig D.Vehicle handling improvement by active steering.Vehicle System Dynamics,2002,38(3):211-242.
    82 Gillespie T D.Fundamentals of vehicle dynamics.SAE,1992.
    83 Christopher B W.Simplified analysis of steady-state turning of complex vehicles.Vehicle System Dynamics,1998,29(3):141-180.
    84 Wong J Y.Theory of ground vehicles.3rd edition,John Wiley & Sons,New York,2001.
    85 Milliken W F and Milliken D L.Race car vehicle dynamics.Society of Automotive Engineers,1995,Warren,Pa.
    86 Bundorf R T.The cornering compliance concept for description of directional control properties.SAE Paper,760713.
    87 ISO 4138.Road vehicles-steady state circular test procedure.International Organization for Standardization,Geneva,1982.
    88 Abe M.A theoretical analysis on vehicle cornering behaviors in acceleration and in braking.Proceedings of 9th IAVSD Symposium,Linkoeping,Sweden,24-28 June,1985,1-14.
    89 Mastinu G and Battistini E.The influence of limited-slip differentials on the stability of rear-wheel-drive automobiles running on even road with dry surface.International Journal of Vehicle Design,1993,14(2/3):166-183.
    90 Motoyama S,Uki H,Isoda K et al.Effect of traction force distribution control on vehicle dynamics.Vehicle System Dynamics,1993,22(5/6):455-464.
    91 王划一,杨西侠,林家恒 等.自动控制原理.北京:国防工业出版社,2002.
    92 汽车工程手册(试验篇).北京:人民交通出版社,2000.
    93 Boada B L Boada M J L and Dfaz V.Fuzzy-logic applied to yaw moment control for vehicle stability.Vehicle System Dynamics,2005,43(10):753-770.
    94 张芷芬.向量场的分岔理论基础.北京:高等教育出版社,1997.
    95 闻邦椿,李以农,韩清凯.非线性振动理论中的解析方法及工程应用.沈阳:东北大学出版社,2001.
    96 张琪昌,王洪礼,竺致文 等.分岔与混沌理论及应用.天津:天津大学出版社,2005.
    97 陆启韶.分岔与奇异性.上海:上海科技出版社,1995.
    98 SAE.Vehicle dynamics terminology SAE J670e,SAE,Warrendale,PA,1976.
    99 Jun W.Integrated vehicle ride and steady-state handling control via active suspensions.International Journal of Vehicle Design,2006,42(3/4):306-327.
    100 Abe M.Vehicle dynamics and control for improving handling and active safety:from four-wheel steering to direct yaw moment.Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Automobile Engineering,1999,213(2):87-101.
    101 刘豹.现代控制理论.北京:机械工业出版社.2000
    102 Kuznetsov,Y.Elements of applied bifurcation theory(Second Edition).Springer Verlag,New York,1998.
    103 Guckenheimer J and Holmes P J.Nonlinear oscillations,Dynamical Systems,and Bifurcations of Vector Fields.Springer-Verlag,New York,1983.
    104 Sotomayor J,Generic bifurcations of dynamical systems.In Dynamical System,M.M.Peixoto (ed),Academic Press,New York.1973,549-560.
    105 Dobson I and Chiang H D.Towards a theory of voltage collapse in electric power systems.Systems and Control Letters,1991,13(3):253-262.
    106 Rajamani R.Vehicle dynamics and control.Springer,NewYork,2006.
    107 Raksincharoensak P,Mizushima T and Nagai M.Direct yaw moment control system based on driver behaviour recognition.Vehicle System Dynamics,2008,46(supp):911-921.
    108 Bruno C,Stefania S and Mario di B.MCS adaptive control of vehicle dynamics:an application of bifurcation techniques to control system design.Proceedings of the 42th IEEE Conference on Decision and Control,2003.
    109 赵学智,陈统坚,叶邦彦.基于奇异值分解的铣削力信号处理与铣床状态信息分离.机械工程学报,2006,43(6):169-174.
    110 贾鹏,张洪钺.基于奇异值分解的冗余惯导系统故障诊断.宇航学报,2006,27(5):1076-1080.
    111 李兴源,王秀英.基于静态等值和奇异值分解的快速电压稳定性分析方法.中国电机工程学报,2003,23(4):1-4.
    112 程云鹏.矩阵论(第3版).西安:西北工业大学出版社,2006.
    113 周双喜.电力系统电压稳定性及其控制.北京:中国电力出版社,2003.
    114 周晓渊.电力系统电压稳定分析和控制研究.博士学位论文,浙江大学,2006.
    115 徐英凯.矩阵理论及其应用.北京:中国电力出版社,2003.
    116 Smed T.Interaction between high voltage AC and DC system.PhD Thesis,Royal Institute of Technology,Stockholm,1990.
    117 Lof P A,Smed T,Andersson G et al.Fast calculation of a voltage stability index.IEEE Transactions on Power Systems,1992,7(1):54-64.
    118 冯治鸿 刘取 倪以信 等.多机电力系统电压静态稳定性分析--奇异值分解法.中国电机工程学报,1992,12(3):10-19.
    119 陈晓霞等.Maple指令参考手册.北京:国防工业出版社,2002.
    120 Dobson I and Lu L M.New method for computing a closest saddle node bifurcation and worst case load power margin for voltage collapse.IEEE Transactions on Power Systems,1993,8(3):905-913.
    121 Dobson Ⅰ.Computing closest bifurcation instability in multidimensional parameter space.Journal of Nonlinear Science,1993,3(3):307-327.
    122 Mazzoleni A P and Dobson Ⅰ.Closest bifurcation analysis and robust stability design of flexible satellites.Journal of Guidance,Control and Dynamics,1995,18(2):333-339.
    123 Dobson Ⅰ.Observations on the geometry of saddle node bifurcation and voltage collapse in electrical power systems.IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,1992,39(3):240-243.
    124 Yi K,Chung T,Kim J and Yi S.An investigation into differential braking strategies for vehicle stability control.Proceedings of the Institution of Mechanical Engineers,Part D:J Automobile Engineering,2003,217(12):1081-1093.
    125 Van Zanten A T.Evolution of electronic control systems for improving the vehicle dynamic behavior.Proceedings AVEC'02,Hiroshima,Japan,2002.
    126 Tseng H E,Ashrafi B,Brown T A et al.The development of vehicle stability control at ford.IEEE/ASME Transactions on Mechatronics,1999,4(3):223-234.
    127 Pacejka H B and Besselink I J M.Magic formula tyre model with transient properties.Vehicle System Dynamics,1997,27(Supp):234-249.
    128 Dugoff H,Fancher P S and Segel L.An analysis of tyre traction properties and their influence on vehicle dynamic performance.SAE Paper,70037.
    129 王德平,郭孔辉,宗长富.车辆动力学稳定性控制的仿真研究.汽车技术,1999,30(2):8-10.
    130 Ken K,Masaki Y,Yoshiki F,et al.Vehicle stability control in limit cornering by active brake.SAE Paper:960487.
    131 Bilin A G,Tilman B,Dirk O et al.Robust two degree-of-freedom vehicle steering controller design.IEEE Transactions on Control Systems Technology,2004,12(4):627-636.
    132 瞿宏敏,程军.汽车动力学模拟中的轮胎模型述评.汽车技术,1997,27(7):1-8.
    133 王和毅,谷正气.汽车轮胎模型研究现状及其发展分析.橡胶工业,2005,52(1):58-63.
    134 Li L,Wang F Y and Zhou Q Z.Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control.IEEE Transactions on Intelligent Transportation Systems,2006,7(1):1-19.
    135 Bakker E,Nyborg L and Pacejka H B.Tyre modelling for use in vehicle dynamics studies.SAE Paper:870421.
    136 You S S and Chai Y H.Multi-objective control synthesis:an application to 4WS passenger vehicles.Mechatronics,1999,9(4):363-390.
    137 Hecker S.Robust H_∞ -based vehicle steering control design.IEEE International Conference on Control Applications,Munich,Germany,October 4-6,2006.
    138 程学庆,房晓溪,韩薪莘,等.LabVIEW图形化编程与实例应用.北京:中国铁道出版社,2005.
    139 Yang X J,Wang Z C and Peng W L.Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory.Vehicle System Dynamics,2009,47(1):57-79.
    140 俞立.鲁棒控制--线性矩阵不等式处理方法.北京:清华大学出版社,2002.
    141 Apkarian P and Gahinet P.A convex characterization of gain-scheduled controllers.IEEE Transactions on Automatic Control,1995,40(5):853-864.
    142 李中健.大包线飞行控制系统鲁棒设计研究.博士学位论文,西北工业大学,2000.
    143 Balas G,Doyle J,Glover K,et al.μ-analysis and synthesis toolbox:user's guide,the MathWorks,1995.
    144 史忠科,吴方向,王蓓 等.鲁棒控制理论.北京:国防工业出版社,2003.
    145 Apkarian P,Gahinet P.Becker G.Self-scheduled H_∞ control of linear parameter varying systems:a design example.Automatica,1995,31:1251-1261.
    146 Kajiwara H,Apkarian P and Gahinet P.LPV techniques for control of an inverted pendulum.IEEE Control Systems Magazine,1999,19(1):44-54.
    147 李中健.全包线飞行控制系统设计方法研究.西北工业大学学报,2001,19(1):5-9.
    148 Apkarian P and Adams R J.Advanced gain-scheduling techniques for uncertain systems.IEEE Transactions on Control Systems,1998,6(1):21-32.
    149 Biannic J M and Apkarian P.Missile autopilot design via a modified LPV synthesis technique.Aerospace Science and Technology,1999,3(3):153-160.
    150 Wang C and Weiss G.Self-scheduled LPV control of a wind driven doubly-fed induction generator.45~(th) IEEE Conference on Decision & Control,San Diego,CA,USA,December 13-15,2006.
    151 Paul Y.Steer-by-wire:implications for vehicle handling and safety.PhD Thesis,Stanford University,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700