皱纹盘鲍(Haliotis Discus Hannai Ino)矿物元素(K、Mg、Se、Cu)及糖类营养生理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先介绍了二十世纪六十年代以来国内外有关水生动物矿物元素K、Mg、Se、Cu及糖类营养生理学研究的结果及最新进展,并以我国北方主要经济养殖贝类皱纹盘鲍(Haliotis discus hannai Ino)为研究对象,围绕着矿物元素K、Mg、Se、Cu及糖类营养生理这一主题,探讨饲料中的矿物元素和不同的糖源对其生长、利用和免疫反应的影响,并深入研究了其对糖类的代谢反应。主要研究内容包括:(1)皱纹盘鲍幼鲍对饲料中钾的需要量及生理反应的研究;(2)皱纹盘鲍幼鲍对饲料中镁的需要量及生理反应的研究;(3)饲料中镁和蛋白质水平对皱纹盘鲍幼鲍生长及体成分的影响;(4)皱纹盘鲍对饲料中硒的需要量及其免疫反应的研究;(5)皱纹盘鲍对饲料中铜的需要量及其免疫反应的研究;(6)饲料中不同糖源对皱纹盘鲍生长及糖代谢影响的研究;(7)饲料中不同糖源对皱纹盘鲍脂类及脂肪酸代谢反应的影响。研究结果总结如下:
     (1)研究在以酪蛋白和明胶为蛋白源的半精制基础饲料中添加不同梯度的钾对皱纹盘鲍幼鲍Haliotis discus hannai Ino生长、存活和体成分的影响,以确定其对钾的营养需求及其在长期适应饲料中不同水平钾的过程中的生理反应。饲料中钾的添加梯度分别为0、2、4、8、16和32 g钾/kg(对应的饲料中实测钾含量分别为:0.10±0.01、2.12±0.02、4.39±0.53、9.79±1.00、20.08±1.14、27.26±1.72g钾/kg)。实验共分6组,每组设3个重复,每个重复放养40只幼鲍(平均壳长:12.24±0.04 mm;平均体重:0.24±0.00 g);在水温12-23℃,海水钾含量为472.94±3.59 mg/l的条件下进行为期15周的流水养殖实验。结果表明,饲料中不同含量的钾对皱纹盘鲍的增重率(WGR)、贝壳日增长(DISL)及存活率没有显著影响(P>0.05)。体成分分析表明,不同含量的钾对皱纹盘鲍软体部的水分、粗脂肪和贝壳的灰分含量均没有显著影响(P>0.05),但当饲料中钾添加量大于等于4 g钾/kg时,与0 g钾/kg添加组相比,皱纹盘鲍软体部粗蛋白含量显著升高(P<0.05)。软体部钾的含量和贝壳中钾、钠的含量受饲料中钾水平的影响不显著(P>0.05),但软体部钠含量在添加量为16和32 g钾/kg饲料组显著低于其他各组(P<0.05)。当饲料中钾的添加量为16、32 g钾/kg时,鳃Na~+-K~+ ATP酶活力与0 g钾/kg添加组相比显著降低(P<0.05),但与2、4、8 g钾/kg添加组相比差异不显著(P>0.05)。据此提出没有必要在饲料中补充钾,海水中钾和饲料原料中的钾能够维持皱纹盘鲍的正常生长;体钾含量与饲料中钾含量没有相关性;长期摄食高含量钾的饲料能够降低皱纹盘鲍软体部钠含量和鳃Na~+-K~+ ATP酶活力。
     (2)研究了在以酪蛋白和明胶为蛋白源的半精制基础饲料中添加不同梯度的镁对皱纹盘鲍幼鲍Haliotis discus hannai Ino生长、存活及体成分的影响,以确定其对镁的营养需求及其在长期适应饲料中不同水平镁的过程中的生理反应。镁的添加梯度分别为0、0.3、0.6、1.2、2.4和4.8 g镁/kg饲料(对应的饲料中实测镁含量分别为:0.12±0.01、0.81±0.02、1.49±0.04、2.56±0.04、5.06±0.10、9.41±0.10g镁/kg饲料)。实验共分6组,每组设3个重复,每个重复放养40只幼鲍(平均壳长:12.12±0.05 mm;平均体重:0.23±0.00 g);在水温12-23℃,海水镁含量为152.75±1.86 mg/l的条件下进行为期15周的流水养殖实验。结果表明,饲料中不同含量的镁对皱纹盘鲍的增重率(WGR)、贝壳日增长(DISL)及存活率没有显著影响(P>0.05)。体成分分析表明,饲料中不同含量的镁对皱纹盘鲍软体部的水分、粗脂肪和贝壳的灰分含量均没有显著影响(P>0.05),但软体部粗蛋白含量却随着饲料中镁含量的增加呈现先升高后降低的趋势,并在镁添加量为0.6 g/kg饲料组达到最大值。鳃、肝胰脏和肌肉Mg~(2+)-ATP酶活力均呈现先升高后降低的趋势,鳃和肝胰脏的Mg~(2+)-ATP酶活力在镁添加量为0.3 g/kg饲料组达到最大,而肌肉Mg~(2+)-ATP酶活力在镁添加量为0.6 g/kg饲料组达到最大。软体部和贝壳中镁、钙的含量均不受饲料中镁水平的显著影响(P>0.05),而软体部磷含量却随着饲料中镁含量的增加稳步降低。据此提出没有必要在饲料中补充镁,海水中镁和饲料原料中的镁能够维持皱纹盘鲍的正常生长;体镁、钙含量与饲料中镁含量没有相关性;长期摄食低镁和高镁饲料能够降低皱纹盘鲍软体部粗蛋白含量和鳃、肝胰脏及肌肉Mg~(2+)-ATP酶活力;长期摄食高含量镁的饲料能够降低皱纹盘鲍软体部磷含量。
     (3)利用双因素实验设计研究了在饲料中添加镁(0,0.3,1.2,2.4g/kg)和蛋白质(30%,45%)对皱纹盘鲍幼鲍Haliotis discus hannai Ino生长、存活及体成分的影响。实验共分8组,每组设3个重复,每个重复放养40只幼鲍(平均壳长:12.12±0.00 mm;平均体重:0.23±0.00 g);在水温12-23℃,海水镁含量为152.75±1.86 mg/l的条件下进行为期15周的流水养殖实验。结果表明,饲料中镁和蛋白质水平对皱纹盘鲍的增重率(WGR)、贝壳日增长(DISL)及存活率均没有显著影响(P>0.05)。体成分分析表明,饲料中镁和蛋白质对皱纹盘鲍软体部粗蛋白含量有显著的交互作用(P<0.05);软体部粗脂肪和贝壳灰分的含量仅受蛋白质水平的影响;镁和蛋白质水平对软体部水分含量没有显著影响(P>0.05)。软体部镁含量仅受蛋白质水平的影响,并随着蛋白质含量的升高而表现出升高的趋势。镁和蛋白质水平对软体部钙含量有显著的交互作用(P<0.05),45%蛋白质水平组鲍鱼软体部钙含量显著高于30%蛋白质水平组(P<0.05);在45%蛋白质水平,镁添加量为1.2和2.4g/kg饲料组的软体部钙的含量显著高于其他各组(P<0.05)。软体部磷的含量随着饲料中镁的增加而稳步降低,但镁和蛋白质对软体部磷含量的交互作用不显著(P>0.05)。贝壳中的镁含量不受饲料中镁和蛋白质水平的影响(P>0.05)。在30%和45%蛋白质水平下,随着饲料中镁添加量的升高,贝壳中钙的沉积的有增高的趋势。总之,镁和蛋白质水平对皱纹盘鲍幼鲍的生长没有显著影响,但对软体部粗蛋白和钙含量有显著的交互作用并表现为协同效应,即随着饲料中镁和蛋白质水平的升高能够相应地增加软体部粗蛋白和钙的含量,同时软体部磷的含量随着饲料中镁的增加而稳步降低。
     (4)利用单因素实验设计研究了在饲料中添加不同含量的硒(添加量:0,0.3,0.6,1.2,2.4,9.6 mg/kg;实际含量:0.15,0.53,0.88,1.55,2.63,9.16 mg/kg)对皱纹盘鲍幼鲍Haliotis discus hannai Ino生长、存活、体成分及血清中与免疫相关指标的影响。实验共分6组,每组设3个重复,每个重复放养45只幼鲍(平均壳长:17.43±0.04 mm;平均体重:0.68±0.00 g);在水温10-20℃,海水硒含量为1.46μg/l的条件下进行为期24周的流水养殖实验。结果表明,皱纹盘鲍的增重率(WGR)和贝壳日增长(DISL)分别在摄食硒含量为0.88和1.55 mg/kg饲料组里达到了最大值,而摄食9.16 mg/kg饲料鲍鱼的WGR和DISL显著降低(P<0.05);皱纹盘鲍软体部水分、粗蛋白、粗脂肪和粗灰分含量不受饲料中硒含量的影响(P>0.05)。免疫相关指标显示,血清谷胱甘肽过氧化物酶(GPx)活力随着饲料中硒含量的增加而显著升高,并在2.63 mg/kg饲料组达到最大值;血清中超氧化物歧化酶(SOD)、酚氧化酶(PO)和溶菌酶(LSZ)活力分别在0.88和1.55 mg/kg饲料组达到了最大值后其活力都随硒含量的增加而显著降低(P<0.05);而饲料中硒对血清蛋白含量影响不显著(P>0.05)。总之,饲料中添加硒能够显著地影响皱纹盘鲍的生长和免疫状态;分别以增重率(WGR)和贝壳日增长(DISL)为衡量指标,用折线模型进行回归分析,皱纹盘鲍对饲料中硒的最适需要量分别为1.17和1.09 mg Se/kg饲料;本文也报道了饲料中高含量的硒(9.16 mg/kg饲料)对皱纹盘鲍产生毒性作用,主要表现为抑制生长并显著降低血清SOD、PO、LSZ活力。
     (5)利用单因素实验设计研究了在饲料中添加不同含量的铜(添加量:0,3,6,15,30,120 mg/kg;实际含量:1.08,3.76,6.54,14.80,26.84,109.41mg/kg)对皱纹盘鲍幼鲍Haliotis discus hannai Ino生长、存活、体成分及与免疫相关指标的影响,确定其对饲料中铜的需要量,并探讨铜的免疫作用机理。实验共分6组,每组设3个重复,每个重复放养45只幼鲍(平均壳长:17.21±0.04 mm;平均体重:0.65±0.00 g);在为期24周的流水养殖实验期间,水温为10-20℃,没有检测出海水中铜的含量。实验结果表明,皱纹盘鲍的增重率(WGR)、贝壳日增长(DISL)及存活率不受饲料中铜含量的影响(P>0.05)。饲料中不同含量的铜对皱纹盘鲍软体部水分和粗灰分含量没有显著影响(P>0.05)。软体部粗蛋白的含量随着饲料中铜添加量的增加有升高的趋势,并在铜含量109.41mg/kg饲料组达到最大值,且显著高于1.08-14.80 mg/kg饲料组(P<0.05)。而软体部粗脂肪含量随着饲料中铜添加量的增加有降低的趋势,并在铜添加量为26.84和109.41 mg/kg饲料组显著低于其他各组(P<0.05)。免疫指标显示,肝胰脏铜锌超氧化物歧化酶(CuZn SOD)活力、血清CuZn SOD和血清酚氧化酶(PO)活力都随着饲料中铜的添加而升高,分别在铜含量为3.76 mg/kg、6.54mg/kg时达到最大值。血清蛋白含量随着饲料中铜添加量的增加而升高,并在铜含量109.41mg/kg饲料组达到最大值。而饲料中铜对血清溶菌酶(LSZ)活力影响不显著(P>0.05)。总之,微量元素铜对皱纹盘鲍是必需的,以肝胰脏和血清铜锌超氧化物歧化酶(CuZn SOD)活力为判定指标,饲料中铜的适宜含量为3.76 mg/kg;饲料中铜含量为6.54 mg/kg时能够使皱纹盘鲍处于良好的免疫状态;本实验生长结果显示皱纹盘鲍对饲料中的铜有较高的耐受性并且在高铜(109.41 mg/kg)水平下没有发现对生长有负面影响。
     (6)利用单因素实验设计研究了在以酪蛋白和明胶为蛋白源的半精制饲料中添加梯度为33.5%的不同糖源(糊精、糊化小麦淀粉、小麦淀粉、玉米淀粉、木薯淀粉、马铃薯淀粉)对皱纹盘鲍Haliotis discus hannai Ino生长及生理生化指标的影响,以确定其对饲料中不同糖源的利用及代谢情况。实验共分6组,每组设3个重复,每个重复放养30只鲍鱼(平均壳长:29.98±0.09mm;平均体重:3.42±0.02 g);在水温18-20℃的循环系统中进行为期24周的养殖实验。结果表明:饲料中不同糖源对皱纹盘鲍贝壳日增长(DISL)及存活率没有显著影响(P>0.05),但对增重率(WGR)影响显著(P<0.05),马铃薯淀粉组的WGR最低。体成分分析表明,饲料中不同糖源对皱纹盘鲍软体部的水分、粗蛋白、粗灰分和贝壳的粗灰分含量均有显著影响(P<0.05),但对软体部粗脂肪含量影响不显著(P>0.05)。摄食糊精组鲍鱼的血糖含量显著高于其他饲料组(P<0.05)。摄食糊化小麦淀粉组鲍鱼的肌糖原的含量最高,马铃薯淀粉组的含量最低;而肝糖原的含量受饲料中的糖源影响不显著(P>0.05)。鲍鱼的肝胰脏淀粉酶和葡糖苷酶活力在摄食糊精与马铃薯淀粉组里最低;而肝胰脏蛋白酶活力却在木薯淀粉组达到了最大值。肝胰脏己糖激酶活力在摄食糊精组鲍鱼里最低。鲍鱼血清和肝胰脏胰岛素含量在摄食马铃薯淀粉组里同步降低。这些数据表明,皱纹盘鲍能够很好的利用糊精、糊化小麦淀粉、小麦淀粉、玉米淀粉和木薯淀粉,但对这些糖源的利用有着不同的代谢反应。
     (7)利用单因素实验设计研究了在以酪蛋白和明胶为蛋白源的半精制饲料中添加梯度为33.5%的不同糖源(糊精、糊化小麦淀粉、小麦淀粉、玉米淀粉、木薯淀粉、马铃薯淀粉)对皱纹盘鲍Haliotis discus hannai Ino脂类及脂肪酸含量的影响,探讨皱纹盘鲍对饲料中不同糖源的利用及代谢情况。实验共分6组,每组设3个重复,每个重复放养30只鲍鱼(平均壳长:29.98±0.09 mm;平均体重:3.42±0.02 g);在水温18-20℃的循环系统中进行为期24周的养殖实验。结果表明:摄食糊精、糊化小麦淀粉和小麦淀粉组鲍鱼血清甘油三酯和胆固醇含量高于其他各组。脂肪酸分析结果表明,除摄食木薯和马铃薯淀粉组鲍鱼肌肉18:3n-3含量显著低于其他饲料组外(P<0.05),摄食马铃薯淀粉、木薯淀粉、玉米淀粉和小麦淀粉组鲍鱼肌肉和肝胰脏中n-3和n-6系列多不饱和脂肪酸含量要高于糊精和糊化小麦淀粉组;摄食糊精组鲍鱼肌肉和肝胰脏中饱和脂肪酸18:0含量低于其他各组;摄食玉米淀粉组鲍鱼肝胰脏中饱和脂肪酸16:0含量低于其他各组。这些数据表明,皱纹盘鲍能够很好的利用糊精、糊化小麦淀粉和小麦淀粉作为能量来源,而本实验中所用马铃薯淀粉、木薯淀粉、玉米淀粉和小麦淀粉使鲍体多不饱和脂肪酸含量升高,易给机体带来脂质过氧化的压力。
A detailed review of studying status on nutritional physiology of mineral elementK、Mg、Se、Cu and carbohydrate in aquatic animals was undertaken.A series ofexperiments were conducted to discuss the effect of mineral element K、Mg、Se、Cuand carbohydrate on growth performance and carbohydrate metabolism response inabalone Haliotis discus hannai Ino.The current studies include the followings:(1)Dietary potassium requirement and physiological responses of juvenile abalone,Haliotis discus hannai Ino.(2) Dietary magnesium requirement and physiologicalresponses of juvenile abalone,Haliotis discus hannai Ino.(3) The interaction ofdietary magnesium and protein level on growth and carcass composition of juvenileabalone,Haliotis discus hannai Ino.(4) Immune responses to dietary selenium andselenium requirement of abalone,Haliotis discus hannai Ino.(5) Immune responses todietary copper and copper requirement of abalone,Haliotis discus hannai Ino.(6)Effect of dietary carbohydrate sources on growth performance and carbohydratemetabolism in abalone,Haliotis discus hannai Ino.(7) Effect of dietary carbohydratesources on lipid and fatty acid metabolic responses in abalone,Haliotis discus hannaiIno.The results are summarized as follows:
     (1) A one-factorial experiment was conducted to determine the effects ofdietary potassium on growth,survival and carcass composition of juvenile abalone,Haliotis discus hannai Ino,to evaluate the minimum requirement of dietary potassiumand to study the physiological responses of abalone to dietary potassium in long termacclimation using a premium quality diet based on casein-gelatin as the proteinsources.Six semipurified diets containing graded levels of dietary potassium (0,2,4,8,16,32 g/kg providing 0.10±0.01,2.12±0.02,4.39±0.53,9.79±1.00,20.08±1.14,27.26±1.72 g/kg dry diet) were fed to juvenile abalone (average initial shell length:12.24±0.04 mm;average initial weight:0.24±0.00 g) in triplicate groups for 15 weeks in a flow-through system.During the experimental period,the water temperatureranged from 12 to 23℃and potassium concentration was 472.94±3.59 mg/l in the seawater.The results showed that there were no significant differences in the averageweight gain rate (WGR,%),daily increment in shell length (DISL,μm/day) and thesurvival of abalone among six dietary treatments (P>0.05).There were also nosignificant differences in lipid,moisture contents of soft body and the content of shellash among six dietary treatments (P>0.05),but the soft body protein content wassignificantly increased when the supplementation of dietary potassium was more than4 g/kg diet,compared with the treatment of 0 g/kg diet (P<0.05).The content ofpotassium in the soft body and potassium,sodium in the shell was maintainedrelatively constant regardless of dietary treatment (P>0.05);the soft body sodiumcontent,however,was significantly lower in 16 and 32 g K/kg diet than any othertreatments (P<0.05).The activity of gill Na~+-K~+ ATPase was decreased steadily withthe rising of dietary potassium.These data indicated that it seems no necessary to addpotassium to the diet and the potassium in diet and sea water is sufficient for optimumgrowth for abalone;there is no apparent dose-response relationship between dietarypotassium level and whole body potassium concentration;the soft body sodiumcontent and the gill Na~+-K~+ ATPase activity were decreased when juvenile abalonewere in long term acclimation with high potassium level diets.
     (2) A one-factorial experiment was conducted to determine the effects ofdietary magnesium on growth,survival and carcass composition of juvenile abalone,Haliotis discus hannai Ino,to evaluate the minimum requirement of dietarymagnesium using a premium quality diet based on casein-gelatin as the proteinsources and to study the physiological responses of abalone to dietary magnesium inlong term acclimation.Six semi-purified diets containing graded levels of dietarymagnesium (0,0.3,0.6,1.2,2.4,4.8 g/kg providing 0.12±0.12,0.81±0.02,1.49±0.04,2.56±0.04,5.06±0.10,9.41±0.10 g/kg dry diet) were fed to juvenile abalone (averageinitial shell length:12.12±0.05 mm;average initial weight:0.23±0.00 g) in triplicategroups for 15 weeks in a flow-through system.During the experimental period,thewater temperature ranged from 12 to 23℃and magnesium concentration was152.75±1.86 mg/1 in the sea water.The results showed that there were no significantdifferences in the average weight gain rate (WGR,%),daily increment in shell length(DISL,μm/day) and the survival of abalone among six dietary treatments (P>0.05). There were no significant differences in lipid,moisture contents of soft body and thecontent of shell ash among six dietary treatments (P>0.05),but the soft body proteincontent were significantly raised with the rising of dietary magnesium and with thehighest value in the treatment of 0.6 g Mg/kg dry diet.The activity of gill,hepatopancreas and muscle Mg~(2+)-ATPase was significantly (P<0.05) affected by thedietary magnesium,the highest value of gill,hepatopancreas Mg~(2+)-ATPase appearedin the 0.3 g Mg/kg dry diet treatment while the muscle Mg~(2+)-ATPase in the treatmentof 0.6 g Mg/kg dry diet.The content of magnesium and calcium in the soft body andshell was maintained relatively constant regardless of dietary treatment (P>0.05);thesoft body phosphorus content,however,was declined steadily with the increasing ofdietary magnesium.These data indicated that it seems no necessary to add magnesiumto the diet and the magnesium in diet and sea water is sufficient for optimum growthfor abalone;there is no apparent dose-response relationship between dietarymagnesium level and whole body magnesium and calcium concentration;the proteincontent in soft body and Mg~(2+)-ATPase activity in gill,hepatopancreas and musclewere decreased when juvenile abalone were in long term acclimation with highmagnesium level diets;the phosphorus content in soft body was also decreased whenjuvenile abalone were fed high level of dietary magnesium.
     (3) A two-factorial experiment was conducted to determine the effects ofdietary magnesium and protein on growth,survival and carcass composition ofjuvenile abalone,Haliotis discus hannai Ino.Eight semi-purified diets containinggraded levels of dietary magnesium (0,0.3,1.2,2.4g/kg) with either 30 or 45%protein were fed to juvenile abalone (average initial shell length:12.12±0.00 mm;average initial weight:0.23±0.00 g) in triplicate groups for 15 weeks in aflow-through system.During the experimental period,the water temperature rangedfrom 12 to 23℃and magnesium concentration was 152.75±1.86 mg/l in the seawater.The results showed that there were no significant differences in the averageweight gain rate (WGR,%),daily increment in shell length (DISL,μm/day) and thesurvival of abalone among eight dietary treatments (P>0.05).The interaction betweendietary magnesium and protein on the soft body protein content was significant(P<0.05);the level of dietary protein only significantly influenced the lipid and shellash content of soft body (P<0.05);there was no significant difference in water contentof soft body in all treatments (P>0.05).The soft body magnesium content was only affected by dietary protein level,and has an increased trend with the increasing ofdietary protein level.There was significant interaction between dietary magnesiumand protein on the content of soft body calcium (P<0.05),abalones fed 45% proteindemonstrated the significant higher soft body calcium content as compared with thosefed 30% protein;at the level of 45% protein,an increased level of dietary magnesiumresulted in significantly increased soft body calcium content.The soft bodyphosphorus content was steadily decreased with increasing dietary magnesiumcontent,however,the interaction between dietary magnesium and protein on the softbody phosphorus content was not significant (P>0.05).The content of magnesium inthe shell was maintained relatively constant regardless of dietary treatment (P>0.05);the content of calcium in the shell had an increased trend with the increasing ofdietary magnesium in both dietary protein level.In summary,dietary magnesium andprotein level had no significant effect on the growth performance of abalone,however,the increasing level of dietary magnesium and protein resulted in the increaseddeposition of calcium and protein content in soft body correspondingly,meanwhile,the soft body phosphorus content was steadily decreased with increasing dietarymagnesium content.
     (4) A study was designed to determine the effects of dietary selenium ongrowth,survival,carcass composition and serum immune index in juvenile abalone,Haliotis discus hannai Ino.Six semi-purified diets containing graded levels of dietaryselenium (supplementation of 0,0.3,0.6,1.2,2.4,9.6 mg/kg providing 0.15,0.53,0.88,1.55,2.63,9.16 mg Se/kg diet) were fed to juvenile abalone (average initialshell length:17.43±0.04 mm;average initial weight:0.68±0.00 g) in triplicate groupsfor 24 weeks in a flow-through system.During the experimental period,the watertemperature ranged from 10 to 20℃and selenium concentration was 1.46μg/l in thesea water.The results of the present study indicated that the highest values of averageweight gain rate (WGR,%) and daily increment in shell length (DISL,μm/day) wereappeared in 0.88 and 1.55 mg Se/kg diet treatments respectively,however,the 9.16mg Se/kg diet treatment showed the significantly lowest values in WGR and DISLthan 1.55 mg Se/kg diet treatments (P<0.05).There was no significant difference inmoisture content,crude protein,crude lipid and crude ash of soft body in alltreatments (P>0.05).The immune indexes showed that the activities of serumglutathione peroxidase (GPx) was significantly increased with the rising content of dietary selenium (P<0.05) and reached the highest value in 2.63 mg Se/kg diettreatment,meanwhile,the highest activities of superoxide dismutase (SOD),phenoloxidase (PO) and lysozyme (LSZ) in serum were found in 0.88 and 1.55 mgSe/kg diet treatments respectively,but the serum protein content maintained relativelyconstant regardless of dietary treatments (P>0.05).These results demonstrate thatsupplementary selenium in the diet could significantly affect the growth performanceand immune status of abalone.Broken-line regression analysis of weight gain rate(WGR) and daily increment in shell length (DISL) indicates that the optimal Serequirement for abalone is 1.17 and 1.09 mg Se/kg diet,respectively.It also reportsthe toxicity of selenium to abalone which appeared to be depressed growthperformance and the significantly decreased activities of serum SOD,PO and LSZ.
     (5) A study was designed to determine the effects of dietary copper on growth,survival,carcass composition and immune response in juvenile abalone,Haliotisdiscus hannai Ino.Six semi-purified diets containing graded levels of dietary copper(0,3,6,15,30,120 mg/kg providing 1.08,3.76,6.54,14.80,26.84,109.41 mg Cu/kgdiet) were fed to juvenile abalone (average initial shell length:17.21±0.04 mm;average initial weight:0.65±0.00 g) in triplicate groups for 24 weeks in a flow-through system.During the experimental period,the water temperature ranged from10 to 20℃and copper concentration was not detectable in the sea water.As the result,no significant differences were found in average weight gain rate (WGR,%),dailyincrement in shell length (DISL,μm/day) and survival of abalone among six dietarytreatments (P>0.05).There was no significant difference in water content and crudeash of soft body in all treatments (P>0.05).The crude protein content in soft body hada increased trend with the increasing of dietary copper level,and reached the highestvalue in the 109.41 mg Cu/kg diet group which was significantly higher than1.08-14.80 mg Cu/kg diet groups (P<0.05).The crude lipid content in soft body had adeclined trend with the increasing of dietary copper level,the values in the 26.84 and109.41 mg Cu/kg diet groups were significantly lower than any other groups (P<0.05).The immune indexes showed that the activities of hepatopancreas CuZn superoxidedismutase (CuZn SOD),serum CuZn.SOD and serum phenoloxidase (PO) were allincreased with the increasing supplementation of dietary copper,and the highest valuewere found in 3.76 and 6.54 mg Cu/kg diet groups,respectively.The serum proteincontent were increased with the increasing supplementation of dietary copper,and the highest value were found in 109.41 mg Cu/kg diet groups.The lysozyme activities ofserum maintained relatively constant regardless of dietary treatments (P>0.05).Insummary,trace element copper is necessary for abalone,the adequate dietary copperconcentration in juvenile abalone is about 3.76 mg/kg based on the activity ofhepatopancreas and serum CuZn SOD;with the 6.54 mg Cu in per kilogram diet,abalone could maintain better immune response;It is also reported in this article thatabalone has a higher tolerance for dietary copper and do not show negative responseon growth performance at such high dietary copper level (109.41 mg/kg).
     (6) A one-factorial experiment was conducted to determine the effects ofdietary carbohydrate sources on growth,physiological & biochemical indexes inabalone,Haliotis discus hannai Ino,to evaluate the ability of abalone to utilize thedietary polysaccharides and carbohydrate metabolism in abalone using a premiumquality diet based on casein-gelatin as the protein sources.Six semi-purified dietscontaining 33.5% level of different carbohydrate sources (dextrin,pre-extrude wheatstarch,wheat starch,corn starch,tapioca starch,potato starch) were fed to abalone(average initial shell length:29.98±0.09 mm;average initial weight:3.42±0.02 g)in triplicate groups for 24 weeks in a recirculation system.During the experimentalperiod,the water temperature ranged from 18 to 20℃.The results showed that therewere no significant differences in the average daily increment in shell length (DISL,μm/day) and survival of abalone among six dietary treatments (P>0.05),butsignificant differences were observed in the average final weight and weight gain rate(WGR,%) (P<0.05),the poorest final weight and WGR were appeared in potatostarch group.There were also significant differences in water content,crude protein,crude ash of soft body and the content of shell crude ash among six dietary treatments(P<0.05),but no variation was found in the soft body lipid content (P>0.05).Theabalone fed the diet containing dextrin had the highest plasma glucose level comparedwith other groups.The abalone fed with pre-extrude wheat starch had the highestmuscle glycogen content,while the lowest content was appeared in potato starchgroups;however,the hepatopancreas glycogen content maintained relatively constantregardless of dietary carbohydrate sources (P>0.05).The activities of hepatopancreasamylase and glucosidase in abalone fed the diets containing dextrin and potato starchshowed the lowest values,however,the hepatopancreas protease activities werereached the highest values in the abalone fed tapioca starch.Hepatopancreas hexokinase activity was lowest in abalone fed with dextrin.The serum andhepatopancreas insulin content declined simultaneously in abalone fed the dietcontaining potato starch.These data indicated that the abalone was able to efficientlyutilize dextrin,pre-extrude wheat starch,wheat starch,corn starch and tapioca starchused in present study,but showed different metabolic responses to thesecarbohydrates.
     (7) A one-factorial experiment was conducted to determine the effects ofdietary carbohydrate sources on lipid and fatty acid content in abalone,Haliotisdiscus hannai Ino,to evaluate the ability of abalone to utilize the dietarypolysaccharides and carbohydrate metabolism in abalone using a premium quality dietbased on casein-gelatin as the protein sources.Six semi-purified diets containing33.5% level of different carbohydrate sources (dextrin,pre-extrude wheat starch,wheat starch,corn starch,tapioca starch,potato starch) were fed to abalone (averageinitial shell length:29.98±0.09 mm;average initial weight:3.42±0.02 g) intriplicate groups for 24 weeks in a recirculation system.During the experimentalperiod,the water temperature ranged from 18 to 20℃.The results showed that theserum triglyceride and cholesterol content in abalone fed dextrin,pre-extruded wheatstarch and wheat starch were higher than any other treatments.The n-3 and n-6 seriespolyunsaturated fatty acids (PUFAs) content in the muscle and hepatopancreas ofabalone fed potato starch,tapioca starch,corn starch and wheat starch were higherthan that fed dextrin and pre-extruded wheat starch except that the muscle 18:3n-3content in abalone fed tapioca and potato starch which were significantly lower thanany other treatments (P<0.05);the abalone fed the diet containing dextrin showed thelowest content of saturated fatty acid 18:0 in the muscle and hepatopancreas,theabalone fed the diet containing corn starch showed the lowest content of saturatedfatty acid 16:0 only in the hepatopancreas.These data indicated that the abalone wasable to efficiently utilize the dextrin,pre-extruded wheat starch and wheat starch asthe energy source;the increasing PUFAs content in abalone resulted from the starchused in this experiment such as potato starch,tapioca starch,corn starch and wheatstarch,leads to the pressure of lipid peroxidation in abalone.
引文
Arthur J R. 1990. Hepatic indothyronine 5'-deiodinase: The role of selenium. Biochem J. 272:537-542.
    Ashley L M. 1972. Nutritional pathology. In Halver J E(ed). Fish Nutrition. New York: Academic press. 439-537.
    Bell J G, Cowey C B. 1989. Digestibility and bioavailability of dietary selenium from fishmeal, selenite, selenomethionine and selenocystine in Atlantic salmon (Salmo salar). Aquaculture.81(1): 61-68.
    Bell J G, Cowey C B, Adron J W, Pirie B J S. 1987. Some effects of selenium deficiency on enzyme activities and indices of tissue peroxidation in Atlantic salmon parr (Salmo solar). Aquaculture. 65: 43-54.
    Bell J G, Cowey C B, Adron J W, Shanks A M. 1985. Some effects of vitamin E and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmo gairdneri). Br. J. Nutr. 53: 149-157.
    Bell J G, Pirie B J S, Adron J W, Cowey C B. 1986. Some effects of selenium deficiency on glutathione peroxidase (EC 1.11.1.9) activity and tissue pathology in rainbow trout (Salmo gairdneri). Br. J. Nutr. 55: 305-311.
    Berntssen M H G, Lundebye A K, Maage A. 1999. Effects of elevated dietary copper concentrations on growth, feed utilisation and nrtritional status of Atlantic salmon (Salmo salar L.) fry. Aquaculture. 174: 167-181.
    Bieri J G. 1977. Potassium requirement of the growing rat. J. Nutr. 116: 2339-2349.
    Black R M. 1993. Acid-base and potassium balance. In Rubenstein E, Federman D D(eds). Scientific American medicine. Scientific American Inc, New York. 23.
    Cho C Y, Bayley H S, Slinger S J. 1976. Influence of level and type of dietary protein, and of level of feeding on feed utilization by rainbow trout. J. Nutr. 106: 1547-1556.
    Cho C Y, Bayley H S, Slinger S J. 1974. Partial replacement of herring meal with soybean meal and other changes in a diet for rainbow trout (Salmo gairdneri). J.Fish. Res. Board Can. 31 :1523-1528.
    Corotto F S, Holliday C W. 1996. Branchial Na-K ATPase and osmoregulation in the purple shore crab Hemigrapsus nudus (Dana). Comp. Biochem. Physiol. 113A: 361-368.
    Cowey C B, Knox D, Adron J W, George S, Pirie B. 1977. The production of renal calcinosis by magnesium deficiency in rainbow trout(Salmo gairdneri). Br. J. Nutr. 38: 127-135.
    Dabrowska H, Meyer-Burgdorff K, G(?)nther K D. 1989. Interaction between dietary protein and magnesium level in tilapia(Oreochromis niloticus). Aquaculture 76: 277-291.
    Deshimaru O, Yone Y. 1978. Requirement of prawn for dietary minerals. Bulletin of the Japanese Society of Scientific Fisheries. 44: 907-910.
    Eddy F B. 1982. Osmotic and ionic regulation in captive fish with particular reference to salmonids. Comp.Biochem. Physiol. 73B: 125-141.
    Esaki N, Nakamura T, Tanaka H, et al. 1981. Enzymatic synthesis of selenocysteine in rat liver. Biochemistry. 20: 4492-4500.
    Esaki N, Nakamura T, Tanaka H, Soda K. 1982. Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine: mammalian distribution and purification and properties of pig liver enzyme. J Biol Chem. 257: 4386-4391.
    Fleming A, Hone P W, Van Bameveld R J. 1996. The development of artificial diets for abalone: a review and future directions. Aquaculture. 140: 5-53.
    Furriel R P M, McNamara J C. Leone F A. 2000. Characterization of (Na~+,K~+)- ATPase in gill microsomes of the freshwater shrimp Macrobrachium olfersii. Comp.Biochem.Physiol. 126B:303-315.
    Ganther H E. 1979. Metabolism of hydrogen selenide and methylated selenides. In Draper H H (ed), Advances in Nutritional Research, vol. 2. Plenum, New York, 107-128.
    Gatlin D M III, Wilson R P. 1986. Dietary copper requirement of fingerling channel catfish. Aquaculture. 54: 277-285.
    Gatlin D M III, Wilson R P. 1984. Dietary selenium requirement of fingerling channel catfish. Journal of Nutrition. 114: 627-633.
    Gatlin D M III, Robinson E H, Poe W E, Wilson R P. 1982. Magnesium requirement of fingerling channel catfish and signs of magnesium deficiency. J. Nutr. 112: 1181-1187.
    He J H, Ohtsuka A, Hayashi K. 2000. Selenium influences growth via thyroid hormone status in broiler chickens. British Journal of Nutrition. 84: 727-732.
    Hilton J W. Hodson P V. 1983. Effect of Increased Dietary Carbohydrate on Selenium Metabolism and Toxicity in Rainbow Trout (Salmo gairdneri). J. Nutr. 113: 1241-1248.
    Hilton J W, Hodson P V, Slinger S J. 1980. The requirement and toxicity of selenium in rainbow trout (Salmo gairdneri). J. Nutr. 110: 2527-2535.
    Jensen A H, Terrill S M, Becker D E. 1961. Response of the young pig to levels of dietary potassium. J. Anim. Sci. 20: 464-467.
    Julshamn K. K, Andersen K J, Ringdal O, Bernna J. 1988. Effect of dietary copper on the hepatic concentration and subcellular distribution of copper and zinc in the rainbow trout (Salmo gairdneri). Aquaculture. 73: 143-155.
    Karam E B. 2001. The protective role of selenium on genetic damage and on cancer. Mutat. Res. 475: 123-129.
    Knox D, Cowey C B, Adron J W. 1982. Effects of dietary copper and copper: zinc ratio on rainbow trout Salmo gairdneri. Aquaculture. 27: 111-119.
    Knox D, Cowey C B, Adron J W. 1981. Studies on the nutrition of salmonid fish. The magnesium requirement of rainbow trout(Salmo gairdneri). Br. J. Nutr. 45: 137-148.
    Lall S P. 2002. The minerals. In: Halver J E and Hardy R W(eds.). Fish Nutrition. Academic Press, New York. 259-308.
    Lall S P, Hines J A. 1987. Iron and copper requirement of Atlantic salmon (Salmo saiar) grown in sea water. Paper presented at the International Symposium on Feeding and Nutrition of Fish,Bergen, Norway, August: 23-27.
    Lanno R P, Slinger S J, Hilton J W. 1985a. Maximum tolerable and toxicity. levels of dietary copper in rainbow trout (salmo gairdneri Richardson). Aquaculture. 49:257-268.
    Lanno R P, Slinger S J, Hilton J W. 1985b. Effect of ascorbic acid on dietary copper toxicity in rainbow trout (salmo gairdneri Richardson). Aquaculture. 49: 269-287.
    Leach R M, Jr, Dam R, Ziegler T R. Norris L C. 1959. The effect of protein and energy on the potassium requirement of the chick. J. Nutr. 68: 89-100.
    Lee M H, Shiau S Y. 2002. Dietary copper requirement of juvenile grass shrimp, Penaeus monodon, and effects on non-specific immune responses. Fish & Shellfish Immunology.13(4): 259-270.
    Levander O A. Ager A L, Morris V C, May R G. 1989. Quinghaosu, dietary vitamin E, selenium and cod-liver oil: effect on the susceptibility of mice to the malarial parasite Plasmodium yoelii. American journal of clinical nutrition. 50(2): 346-352.
    L(?)pez A O, Gil F, Ramirez Z G, Latorre R.Garc(?)a-A A, Abell(?)n E, Blanco A, Vazquez J M, Moreno F. 1995. Early muscle injuries in a standard reared stock of sea bass Dicentrarchus labrax, (L.) Aquaculture. 138: 69-76.
    Lorentzen M, Maage A, Julshamn K. 1998. Supplemented copper to a fish meal based diet fed to Atlantic salmon parr affects liver copper and selenium concentrations. Aquacult. Nutr. 4:67-72.
    Lorentzen M, Maage A, Julshamn K. 1994. Effects of dietary selenite or selenomethionine on tissue selenium levels of atlantic salmon (Salmo salar). Aquaculture. 121: 359-367.
    Luft F C. 1990. Sodium, Chloride and Potassium. In: Myrtle L. B.(ed). Present Knowledge In Nutrition, Sixth Edition, International Life Science Institute Nutrition Foundation,Washington, DC. 233-240.
    Mai K, Mercer J P, Donlon J. 1995a. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino.: Ⅳ. Optimum dietary protein level for growth. Aquaculture. 136: 165-180.
    Mai K, Mercer J P, Donlon J. 1995b. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino.:Ⅲ. Response of abalone to various levels of dietary lipid. Aquaculture. 134: 65- 80.
    Mai K, Tan B. 2000. Iron methiorrine (FeMET) and iron sulfate (FeSO4) as source of dietary iron for Juvenile abalone, Haliotis discus hannai Ino. Journal of shellfish research. 19(2):861-868.
    McKenzie RC, Raferty TS, Becket GJ. 1998. Selenium: an essential element for immune function. Trends Immunol. Today. 19 (8): 342-345.
    Murai T, Andrews J W, Smith R G Jr. 1981. Effects of dietary copper on channel catfish. Aquaculture. 22: 353-357.
    Ogino C, Yang G Y.1980. Requirements of carp and rainbow trout for dietary manganese and copper. Bulletin of the Japanese Society of Scientific Fisheries. 46 (4): 455-458.
    Ogino, C, Takashima F, Chiou J Y. 1978. Requirement of rainbow trout for dietary magnesium. Bull. Jpn. Soc. Sci. Fish. 44: 1105-1108.
    Ogino C, Chiou J Y. 1976. Mineral requirements in fish. 2. Magnesium requirements of carp. Bull. Jpn. Soc. Sci. Fish. 42: 71-75.
    Oh S H. 1982. Protection of phagocytic macrophages from peroxidative damage by selenium and vitamin E. Yonsei Med J. 23: 101-109.
    Pinochet H, Gregori I, Cavieres M F, et al. 2002. Selenium concentration in compartments of aquatic ecosystems in central Chile. Bulletin of Environment Contamination and Toxicology.69(1): 139-146.
    Poppe T T, Hastein T, Froslie A, Koppang N, Norheim G. 1986. Nutritional aspects of haemorrhagic syndrome ("Hitra disease") in farmed Atlantic salmon Salmo salar. Dis. Aquat. Organisms. 1: 155-162.
    Poston H A, Combs G F, Leibovitz L. 1976. Vitamin E and selenium interrelations in the diet of Atlantic salmon (Salmo salar): gross, histological and biochemical deficiency signs. Journal of Nutrition. 106:892-904.
    Rayman M P. 2000. The importance of selenium to human health. The Lancet. 356:233-241.
    Richarddson H B, Hilton J W, Ferguson H W. 1984. Influence of Dietary selenium on the occurrence of nephrocalcinosis in the rainbow trout (Salmo gairdneri). J. Fish Dis. 7(5):379-384.
    Rotruck J T, Pope A L, Ganther H E, Swanson A B, Hafeman D G, Hoekstra W G. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science. 179: 588-590.
    Sakamoto S, Yone Y. 1978. Requirement of red sea bream for dietary Na and K. J. Fac. Agric. Kyushu Univ. 23: 79-84.
    Sakamoto S, Yone Y. 1979. Requirement of red sea bream for dietary Mg. Bull. Jpn. Soc. Sci. Fish. 45: 57-60.
    Satoh S, Yamamoto Y, Takeuchi T, Watanabe T. 1983. Effect of dietary growth and mineral omposition of carp of deletion of trace elements or magnesium from fish meal diet. Bull. Jpn. Soc. Sci. Fish. 49: 431-435.
    Schrauzer G N. 2000. Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J. Nutr. 130: 1653-1656.
    Seko Y, Saito Y, Kitahara J. 1988. Active oxygen generation by the reaction of selenium with reduced glutathione in vitro. The fourth international symposium of selenium in biology and medicine.
    Setle N F. Jones D G. 1989. Recent developments in trace element metabolism and function: trace elements, disease resistance and immune responsiveness in ruminants. J. Nutr. 119:1055-1061.
    Shearer K D. 1989. Whole body magnesium concentration as an indicator of magnesium status in rainbow trout(Salmo gairdneri). Aquaculture. 77: 201-210.
    Shearer K D. 1988. Dietary potassium requirements of juvenile chinook salmon. Aquaculture. 73: 119-130.
    Shearer K D, Asgard T. 1992. The effect of water-bome magnesium on the dietary magnesium requirement of the rainbow trout(Oncorhynchus mykiss). Fish Physiol. Biochem. 9: 387-392.
    Sheffy B E. 1979. Influence of vitamin E and selenium on the immune response mechanism. Fed Proe. 28: 2139-2143.
    Shils M E. 1994. Magnesium. In: Shils M E, Olson J A, Shike M(eds). Modern nutrition in health and disease, 8th ed. Lea and Febiger, Philadelphia. 164-184.
    Spinelli J, Mahnken C, Steinberg M. 1979. Alternate sources of proteins for fish meal in salmonid diets. In: Haver J E and Tiews K(Editors), Finifish nutrition and Fishfeed Technology.Heenemann, Berlin. 2: 131-142.
    Strain J J. 1994. Putative role of dietary trace elements in coronary heart decease and cancer. British Journal of Biochemical Science. 51: 241-251.
    Surai P F. 2002. Selenium in poultry nutrition 1. antioxidant properties, deficiency and toxicity.World Poultry Science Journal. 58(11): 333-347.
    Suttle N F, Jones D G. 1989. Recent developments in trace element metabolism and function: trace elements, disease resistance and immune responsiveness in ruminants. J. Nutr. 119: 1055-1061.
    Tan Beiping, Mai Kangsen and Liufu Zhiguo. 2001. Response of juvenile abalone, Haliotis discus hannai, to dietary calcium, phosphorus and calcium/phosphorus ratio. Aquaculture. 198:141-158.
    Tan Beiping, Mai Kangsen. 2001. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture. 192: 67-84.
    Toba Y, Masuyama R, Kato K, Takada Y, Aoe S, Suzuki K. 1999. Effects of dietary magnesium level on calcium absorption in growing male rats. Nutrition Research. 19(5): 783-793
    Turner J C, Shanks V, Osborn P J, Gower S M. 1987. Copper absorption in sheep. Comp.Biochem. Physiol. 86C: 147-150.
    Uki N, Watanabe T. 1992. Review of the nutritional requirements of abalone (Haliotis spp) and development of more efficient artificial diets. In: Shepherd S A, Teggner M J and Guzman del Proo S A(eds.). Abalone of the World: Biology and Culture, Fishing News Books,Cambridge. 504-517.
    Vormann J. 2003. Magnesium: nutrition and metabolism. Mol Aspects Med. 24: 27-37.
    Wang C, Lovell RT, Klesius PH. 1997. Response to Edwardsiella ictaluri challenge by channel catfish fed organic and inorganic sources of selenium. J. Aquat. Anim. Health. 9: 172-179.
    Wang C, Lovell R T, 1997.Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus).Aquaculture.152: 223-234.
    Wilson R P, Naggar G E.1992.Potassium requirement of fingerling channel catfish, Ictalurus puntatus.Aquaculture.108: 169-175.
    Wise D J, Tomasso J R,Gatlin D M, et al.1994.Effects of dietary selenium and vitamin E on red blood cell peroxidase, glutathione peroxidase activity and macrophage super oxide anion production in channel catfish.J.Aquatic Ani Health.5: 177-183.
    Yamamoto K, Hayama K, Ikeda S.1981.Effect of dietary ascorbic acid on copper poisoning in rainbow trout.Nippon Suisan Gakkaishi.47: 1085-1089.
    Yamamoto K, Ishii T, Sato M, Ikeda S.1977.Effect of dietary ascorbic acid on the accumulation of copper in carp.Nippon Suisan Gakkaishi.43: 989-995.
    Ziegler E E, Filer L J JR (eds.).1996.Present knowledge in nutrition.ILSI Press, Washington, DC 307-321.
    Zimmermann P, Weiss U, Classen H G, Wendt B, Epple A, Zollner H, Temmel W, Weger M,Porta S.2000.The impact of diets with different magnesium contents on magnesium and calcium in serum and tissues of the rat .Life Sciences Including Pharmacology Letters.67(8):949-958.
    艾庆辉,王道尊.1998.镁对异育银鲫生长的影响.上海水产大学学报(增刊):147-153.
    冯海清.1992.磷酸二氢钾在对虾饲料中的作用.饲料工业.13 (4):33-34.
    高建忠,黄克和.2004.动物硒蛋白研究进展.畜牧与兽医.36(7):39-42.
    华雪铭,周洪琪,邱小琮等.2001.饲料中添加芽孢杆菌和硒酵母对异育银鲫的生长及抗病力的影响.水产学报.25 (5):448-453.
    黄承凤,陈彩云.1997.日粮中添加碳酸钾和柠檬酸对仔猪生长影响的试验.中国饲料.21:25-26.
    黄耀桐,刘永坚.1989.草鱼种无机盐需要量之研究.水生生物学报.13(2):134-150.
    惠天朝,施明华,朱荫湄.2000.硒对罗非鱼慢性镉中毒肝抗氧化酶及转氨酶的影响.中国兽医学报.20(3):264-266.
    李爱杰主编.1996.水产动物营养与饲料学.北京:中国农业出版社.26-58.
    李永和,孙宝泉.1997.钾在动物体内代谢特点及其对电解质平衡的影响.18(9):35-36.
    刘发义,李荷芳.1995.中国对虾矿物质营养的研究.海洋科学.4: 32-37.
    刘发义,梁德海.1990.饵料中的铜对中国对虾的影响.海洋与湖沼.21(5) : 404-410.
    陆正和,王关.2001.硒强化饲料对暗纹东方鲀鱼苗的影响.内陆水产.8: 11-12.
    钱剑,王哲,刘国文2003.铜在动物体内代谢的研究进展.动物医学进展.24(2): 55-57.
    谭北平,麦康森,周歧存1999.贝类营养研究进展.水产学报.23(2): 193-198
    万敏,麦康森,马洪明,徐玮,刘付志国.2004.硒和维生素E对皱纹盘鲍血清抗氧化酶活力的影响.水生生物学报.28 (5):496-503.
    万敏2003.皱纹盘鲍营养免疫学的初步研究.中国海洋大学.中国优秀博硕士学位论文全文数据库.
    王安利,王维娜,刘存歧,王所安,王荣瑞,马志强.1994.饲料中硒含量对中国对虾省长及其体内含量的影响.水产学报.18(3): 245-248.
    魏万权,李爱杰,李德尚.2001.牙鲆幼鱼饲料中铜适宜添加量的研究.海洋湖沼通报.2:54-59.
    杨顺江编著.1989.动物微量元素营养学.武汉:湖北科学技术出版社.139-151.
    张文华,Hooge D M.1996.钾在动物体内的代谢功能.国外畜牧学:猪与禽.1: 4-8.(张文华译自Feedstuffs.1995年8月28日.14-18)
    赵吉伟,张颖,卢彤岩,刘红柏,徐连伟,范兆廷.2005.不同硒源对虹鳟生长性能及抗氧化能力的影响.水产学杂志.18(2): 28-34.
    郑宗林,黄朝芳,汪道好.2002.不同硒源对叉尾鮰生长性能的影响.粮食与饲料工业.3:30-32.
    周剑涛.1989.自由基生物化学概念.生物学通报.11: 15-16.
    周明.1991.畜禽微量元素营养状况的标识.国外畜牧学:饲料.3: 17-20.
    Amesen P, Krogdahl A. 1993. Crude and pre-extruded products of wheat as nutrient sources in extruded diets for Atlantic salmon (Salmo salar, L.)grown in seawater. Aquae. 118: 105-117.
    Ba(?)os N, Bar(?) J, Castej(?)n C, Navarro I, Guti(?)rrez J. 1998. Influence of high-carbohydrate enriched diets on plasma insulin levels and insulin and IGF-J receptors in trout. Regul Pept. 77: 55- 62.
    Benntt R J, Thanassi N, Nakada H I. 1971. Hepatopancreas glycosidases of abalone (Haliotis rufescens). Comp. Biochem. Physiol. 40B: 807-811.
    Bergot F. 1979. Carbohydrate in rainbow trout diets: effects of the level and source of carbohydrate and the number of meals on growth and body composition. Aquaculture. 18:157-167.
    Bergot F. 1991. Digestibility of native starches of various botanical origins by rainbow trout (Oncorhynchus mykiss). In: Fish Nutrition in Practice. IV International Symposium on Fish Nutrition and Feeding, INRA, Paris, 857- 865.
    Bern H A, McCormick S D, Kelley K M, Gray E S, Nishioka R S, Madsen S S, et al. 1991. Insulin-like growth factors "under water": role in growth and function in fish and other poikilothermic vertebrates. In: Spencer E M, editor. Modern concepts of insulin-like growth factors. Amsterdam: Elsevier. 85-96.
    Blasco J, Fern(?)ndez-Borr(?)s J, Marimon I, Requena A. 1996. Plasma glucose kinetics and tissue uptake in brown trout in vivo: effect of an intravascular glucose load. J Comp Physiol B. 165:534-41.
    Boulware SD, Tamborlane WV, Matthews LS, Sherwin RS. 1992. Diverse effects of insulin-like growth factor 1 on glucose, lipid and amino acid metabolism. Am J Physiol. 262: 130-133.
    Brauge C, Medale F, Corraze G. 1994. Effect of dietary carbohydrate levels on growth, body composition and glycemia in rainbow trout ,Oncorhynchnus mykiss , reared in seawater. Aquae. 123: 109-120.
    Buhler D R, Halver J E. 1961. Nutrition of salmonid fishes: IX. Carbohydrate requirements of chinook salmon. J. Nutr. 74: 307-318.
    Bureau D P, Kirkland J B, Cho C Y. 1995. The effects of dietary chromium supplementation on performance , carcass yield and blood glucose of rainbow trout ( Oncorhynchus mykiss) fed two practical diets. J .Anim. Sci. 73 (sup 1): 194.
    Capilla E, M(?)dale F, Navarro I, Panserat S, Vachot C, Kaushik S, Gutierrez J. 2003. Musclebinding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. Regul. Peptides. 110: 123-132.
    Cameiro N M, Navarro I, Gutierrez J, Plisetskaya E M. 1993. Hepatic extraction of circulating insulin and glucagon in brown trout (Salmotrutta fario) after glucose and arginine injection. J Exp Zool. 267:416-422.
    Caseras A, Meton I, Fernandez F, Baanante I V. 2000. Glucokinase gene expression is nutritionally regulated in liver of gilthead seabream. Biochim. Biophys. Acta. 1493:135-141.
    Chiou J Y, Ogino C. 1975. Digestibility of starch in carp. Bull Jpn Soc Sci Fish. 41:465-466.
    Cowey C B, Knox D, Walton M J, Adron J W. 1977. The regulation of gluconeogenesis by diet and insulin in rainbow trout. Br. J. Nutr. 38: 463-470.
    Davis D A, Arnold C R. 1993. Evaluation of five carbohydrate sources for Penaens vannamei. Aquaculture. 114: 285-292.
    Degger B, Upton Z, Soole K, Collet C, Richardson N. 2000. Comparison of recombinant barramundi and human insulin-like growth factor (IGF)-IⅠ in juvenile barramundi (Lates calcarifer): in vivo metabolic effects, association with circulating IGF-binding proteins, and tissue localisation. Gen Comp Endocrinol. 117: 395-403.
    Dixon D G, Hilton J W. 1985. Effects of available dietary carbohydrate and water temperature on the chronic toxicity of waterborne copper to rainbow trout. Can. J. Fish. Aquat. Sci. 42: 1007-1013.
    Du S, Mai K. 2000. Ontogenetic changes in the activity of main didestive enzyme during the larval and juvenile stages of abalone, Haliotis discus hannai Ino. Journal of Shellfish Research. 19(1): 510.
    Furuichi M, Nakamura Y, Yone Y. 1981. A radioimmunoassay method for determination offish plasma insulin. Bull. Jpn. Soc. Sci. Fish. 46: 1177-1181.
    Furuichi M, Yone Y. 1981. Changes of blood sugar and plasma insulin levels of fishes in glucose tolerance tests. Bull. Jpn. Soc. Sci. Fish. 47: 761-764.
    Furuichi M, Yone Y. 1982a. Availability of carbohydrate in nutrition of carp and red sea bream. Bull. Jpn. Soc. Sci. Fish. 48: 945-948.
    Furuichi M, Yone Y. 1982b. Changes of activities of hepatic enzymes related to carbohydrate metabolism of fish in glucose and insulin-glucose tolerance tests. Bull. Jpn. Soc. Sc . Fish. 48: 463-466.
    Gatta P P, Piva A, Paolini M, et al. 2001. Effects of dietary organic chromium on gilthead seabream ( Sparus aurata L. ) performances and liver microsomal metabolism. Aquae. Res.32(sup 1): 60-69.
    Gutierrez J, Asgard T, Fabbri E, Plisetskaya E M. 1991. Insulin-receptor binding in skeletal muscle of trout. Fish Physiol. Biochem. 9: 351-360.
    Hemre G I, Torrissen O, Krogdahl A, et al. 1995. Glucose tolerance in Atlantic salmon, Salmo salar L., dependence on adaptation to dietary starch and water temperature. Aquacult. Nutr. 1:69-75.
    Hofer R, Sturmbauer C. 1985. Inhibition of trout and carp α-amylase by wheat Aquaculture 48: 277-283.
    Hung S S O, Fynn-Aikins K F, Lutes P B, Xu R P. 1989. Ability of juvenile white sturgeon (Acipenser transmontanus) to utilize different carbohydrate sources. J. Nutr. 119: 727-733.
    Kaushik S J, M(?)dale F. 1994. Energy requirements, utilization ana dietary supply to salmonids.Aquaculture. 124: 81-97.
    Knauer J, Britz P J, Hetch T. 1996. Comparative growth performance and digestive enzyme activity of juvenile South African abalone, Haliotis midae.fed on diatoms and a practical diet. Aquaculture. 140: 75-85.
    Lee S M, Kim K D, Lall S P. 2003. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus). Aquaculture. 221: 427-438.
    Lin Jui-Hsing, Cui Yibo, Hung Silas S O, Shiau Shi-Yen. 1997. Effect of feeding strategy and carbohydrate source on carbohydrate utilization by white sturgeon( Acipenser transmontanus) and hybrid tilapia (Oreochromis niloticus ×O. awed). Aquaculture. 148: 201-211.
    Magnuson M A. 1992. Tissue-specific regulation of glucokinase gene expression. J Cell Biochem. 48: 115-121.
    Mohapatra M, Sahu N P, Chaudhari A. 2002. Utilization of gelatinized carbohydrate in diets in Labeo rohita fry. Aquaculture Nutrition. 8: 1 -8.
    Mommsen T P, Plisetskaya E M. 1991. Insulin in fishes and agnathans: history, structure and metabolic regulation. Rev Aquat Sci. 4: 225-259.
    Nagayama F, Ohshima H. 1974. Studies on the enzyme system of carbohydrate metabolism in fish: I.Properties of liver hexokinase. Bull. Jpn. Soc. Sci. Fish. 40: 285-290.
    Nakagawa T, Nagayama F. 1998. Distribution of glycosidase activities in marine invertebrates. J.Tokyo Univ. Fish. 75:239-245.
    Palmer T N, Ryman B E. 1972. Studies on oral glucose intolerance in fish. J. Fish Biol. 4: 311-319.
    Panserat S, Blin C, Medale F, Plagnes-Juan E, Breque J, Krishnamoorthy R, et al. 2000a. Molecular cloning, tissue distribution and sequence analysis of complete glucokinase cDNAs from gilthead seabream (Sparus aurata), rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Biochem Biophys Acta. 1474: 61-69.
    Panserat S, Medale F, Blin C, Breque J, Vachot C, Plagnes-Juan E, et al. 2000b. Hepatic glucokinase is induced by dietary carbohydrates inrainbow trout, gilthead seabream and common carp. Am J Physiol Regul Integr Comp Physiol. 278: 1164-1170.
    P(?)rrizas M, Ba(?)os N, Bar(?) J, Planas J, Guti(?)rrez J. 1994. Up-regulation of insulin binding in fish skeletal muscle by high insulin levels. Regul Pept. 53: 211- 222.
    P(?)rrizas M, Plisetskaya EM, Planas J, Gutierrez J. 1995. Abundant insulinlike growth factor-1 (IGF-1) receptor binding in fish skeletal muscle.Gen Comp Endocrinol. 98: 16 -25.
    Peres H, Oliva-Teles A. 2002. Utilization of raw and gelatinized starch by European sea bass (Dicentrarchus labrax) juvenile. Aquaculture. 205: 287-299.
    Plisetskaya E M, Duguay S J, Duan C. 1994. Insulin and insulin-like growth factor I in salmonids, comparison of structure, function, and expression. In: Davey K G, editor. Perspectives in comparative endocrinology. Ottawa: National Research Council of Canada. 226-233.
    Printz R L, Magnuson M A, Granner D K.1993.Mammalian glucokinase.Ann Rev Nutr.13:463-496.
    Shiau S Y, Shy S M.1998.Dietary chromic oxide inclusion level required to maximize glucose utilization in hybrid tilapia,Oreochromis niloticus×O.aureus.Aquaculture.161:357-364.
    Shiau S Y.1997.Utilization of carbohydrates in warmwater fish-with particular reference to tilapia,Orechromis niloticus ×O.aureus.Aquaculture.151:79-96.
    Silano V, Furiaa M, Gianfreda L, Macri A, Palescandolo R, Rab A, Scardi V, Stella E, Valfre F.1975.Inhibition of amylases from different origins by albumins from the wheat kernel.Biochem Biophys Acta.391:170-178.
    Tranulis M A, Christophersen B, Borrebaek B.1997.Glucokinase in Atlantic halibut(Hippoglossus hippoglossus) Brockmann bodies.Comp Biochem Physiol.116B: 367-370.
    Tranulis M A, Dregni O, Christophersen B, Krogdahl A, Borrebaek B.1996.A glucokinase-like enzyme in the liver of Atlantic salmon (Salmo salar).Comp Biochem Physiol.114B: 35-39.
    Wilson R P, Poe W E.1987.Apparent inability of channel catfish to utilize dietary mono-and disaccharides as energy sources.J.Nutr.117: 280-285.
    Zorzano A, James D E, Ruderman N B, Pilch P F.1988.Insulin-like growth factor 1 binding and receptor kinase in red and white muscles.FEBS Lett.234: 257-262.
    蔡春芳,陈立侨.2006.鱼类对糖的利用评述.水生生物学报.30(5):608-613.
    蔡春芳.2004.青鱼和鲫鱼对饲料糖的利用及其代谢机制的研究.华东师范大学.中国优秀博硕士学位论文全文数据库.
    付世建,谢小军,袁伦强.2005.饲料淀粉水平对南方鲇幼鱼摄食后肝指数的影响.西南师范大学学报(自然科学版).30 (3) : 548-551.
    潘庆,毕英佐,颜惜玲.2002b.有机铬对奥尼罗非鱼生长和糖利用的影响.水生生物学报.26(4):393-399.
    潘庆,刘胜,郑诚.2002a.烟酸铬对奥尼罗非鱼生长及组织营养成分的影响.水生生物学报.26(2):197-200.
    田丽霞,刘永坚,冯健,刘栋辉,梁桂英,杜震宇.2002.不同种类淀粉对草鱼生长、肠系膜脂肪沉积和鱼体组成的影响.水产学报.26: 247-251.
    田丽霞,刘永坚,刘栋辉,梁桂英,廖翔华.2000.萄糖和玉米淀粉对草鱼生长和肠系膜脂肪沉积的影响.水产学报.24(5):438-441.
    赵全,岳晓霞,毛迪锐,张根生.2005.四种常用淀粉物理性质的比较研究.食品与机械.21(1) :22-24.
    Association of Official Analytical Chemists (AOAC). 1995. Official Methods of Analysis of Official Analytical Chemists International, 16th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
    Bentley P J. 1990. Unidirectional fluxes of Na~+,Cl~+ and water in fingerling channel catfish, Ictaluruspuntatus. Comp. Biochem. Physiol. 97A: 195-199.
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254.
    Burns C H, Cravens W W, Phillips P H. 1953. Sodium and potassium requirements of the chick and their interrelationship. J.Nutr. 50: 317-330.
    Corotto F S, Holliday C W. 1996. Branchial Na-K ATPase and osmoregulation in the purple shore crab Hemigrapsus nudus (Dana). Comp. Biochem. Physiol. 113A: 361-368.
    Deshimaru O, Yone Y. 1978. Requirement of prawn for dietary minerals. Bulletin of the Japanese Society of Scientific Fisheries .44:907-910.
    Eddy F B. 1982. Osmotic and ionic regulation in captive fish with particular reference to salmonids. Comp. Biochem. Physiol. 73B: 125-141.
    Fisk C H. SubbaRow Y. 1925. The colorimetric determination of phosphorus. J. Biol. Chem. 66: 375-400.
    Furriel R P M, McNamara J C, Leone F A. 2000. Characterization of (Na~+,K~+)- ATPase in gill microsomes of the freshwater shrimp Macrobrachium olfersii. Comp.Biochem.Physiol. 126B:303-315.
    Kanazawa A, Teshima S, Sasaki M. 1984. Memoirs of the Faculty of Fisheries. Kagoshima University. 33:63-71.
    Mai K, He G, Xu W. 1998b. Studies on postprandial changes of digestive status and free amino acids in the viscera of Haliotis discus hannai Ino. J. Shellfish Res. 17: 717-722.
    Mai K, Mercer J P, Donlon J. 1994a. Comparative studies on the nutrition of abalone, Haliotis tuberculata L. and Haliotis discu hannai Ino. II. Amino acid composition of abalone and six species of macroalgae with an assessment of their nutritional value. Aquaculture. 128 :115-130.
    Mai K, Mercer J P, Donlon J. 1994b. Comparative studies on the nutrition of abalone, Haliotis tuberculata L. and Haliotis discu hannai Ino. VI. Further evaluation of the nutritional value of polyunsaturated fatty acids for abalone using purified diets. Proceedings of the international Symposium on Aquaculture, Qingdao Ocean Univ. Press. 15-26.
    Mai K, Mercer J P and Donlon J. 1998a. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and H. discus hannai Ino: VII. Effects of dietary vitamin C on survival, growth and tissue concentration of ascorbic acid. Aquaculture. 161: 383-392.
    Mai K, Mercer J P, Donlon J. 1995a. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino: IV. Optimum dietary protein level for growth. Aquaculture. 136: 165-180.
    Mai K, Mercer J P, Donlon J. 1995b. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino: Ⅲ. Response of abalone to various levels of dietary lipid. Aquaculture .134: 65-80.
    Mai K, Mercer J P, Donlon J. 1996. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. Ⅴ. The role of polyunsaturated fatty acids of macroaigae in abalone nutrition. Aquaculture. 139: 77-89.
    Mai K, Wu G, Zhu W. 2001. Abalone, Haliotis discu hannai Ino, can synthesize myo-inositol de novo to meet physiological needs. J. Nutr. 131: 2898-2903.
    Mai Kangsen, Tan Beiping, 2000. Iron methionine (FeMET) and iron sulfate (FeSO_4) as source of dietary iron for Juvenile abalone, Haliotis discus hannai Ino. Journal of shellfish research.19(2): 861-868.
    Mantel L H, Farmer L L. 1983. Osmotic and ionic regulation. In: The Biology of Crustacean. (Bliss D E. ed.). Internal Anatomy and Physiological Regulation, Vol. 5 (Mantel L H. ed.),Academic Press, New York, USA. 53-161.
    NRC. 1993. Nutrient requirements of fishes. National Academic Press, Washington, DC, 114.
    Robinson J D, Pratap P R. 1991. Na~+,K~+-ATPase: modes of inhibition by Mg~(2+). Biochem. Biophys. Acta. 1061:267-278.
    Sakamoto S, Yone Y. 1978. Requirement of red sea bream for dietary Na and K. J. Fac. Agric. Kyushu Univ. 23: 79-84.
    Shearer K D. 1988. Dietary potassium requirements of juvenile chinook salmon. Aquaculture. 73:119-130.
    Shearer K D. 1984. Changes in elemental compositions of rainbow trout of associated with growth and reproduction. Can. J. Fish. Aquat. Sci. 41: 1592-1600.
    Shils M E. 1984. Magnesium. In: Olson R E, Broquist H P, Chichester C O, Darby W J, Kolbye A C Jr, Stalvey R M(Editors), Present Knowledge in Nutrition, 5th edition. The Nutrition Foundation. Inc. Washington,DC. Chap.30: 422-438.
    Tan Beiping, Mai Kangsen. 2001a. Effects of dietary vitamin K on survival, growth, and tissue concentrations of phylloquinone (PK) and menaquinone-4 (MK-4) for juvenile abalone, Haliotis discus hannai Ino. Journal of Experimental Marine Biology and Ecology. 256(2):229-239.
    Tan Beiping, Mai Kangsen, Liufu Zhiguo. 2001. Response of juvenile abalone, Haliotis discus hannai Ino to dietary calcium, phosphorus and calcium/phosphorus ratio. Aquaculture. 198:141-158.
    Tan Beiping, Mai Kangsen. 2001 b. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture. 192: 67-84.
    Uki N, Watanabe T. 1992. Review of the nutritional requirements of abalone(Haliotis spp.) and development of more efficient artificial diets. In: Shepherd S A, Tegner M J, S A Guzman Del Pr(?)o(Editors).Abalone of the World: Biology,risheries and culture.Proceedings of the 1~(st) International symposium on Abalone.Fishing News Books.Blackwell Scientific Publications.London.504-517.
    Uki N, Kemuyama A, Watanabe T.1985.Development of semipurified test diets for abalone.Bull Jpn.Soc.Sci.Fish.51:1825-1833(in Japanese, with English abstract).
    Whealty M G, Hentry R P.1987.Branchial and antennal Na~+/K~+-dependent ATPase and carbonie anhydrase activity during salinity acclimation of the eruyhaline crayfish Pacifastacus leniuscndus.J.Exp.Boil.133: 73-86.
    Wilson R P, Naggar GE.1992.Potassium requirement of fingerling channel catfish, Ictalurus puntatus.Aquaculture.108: 169-175.
    Wu G, Mai K, Tan B.2002.Dietary biotin requirement of juvenile abalone, Haliotis discu hannai Ino.J.Shellfish Res.21:211-217.
    Yueming Dersjant-Li, Sheng Wu, Martin W A, Verstegen, Johan W.Schrama,Johan A.J.Verreth 2001.The impact of changing dietary Na/K ratios on growth and nutrient utilisation in juvenile African catfish, Clarias gariepinus.Aquaculture.198: 293-305.
    Zhu W, Mai K, Wu G.2002.Thiamin requirement of juvenile abalone, Haliotis discus hannai Ino.Aquaculture.207: 331-343.
    刘发义,李荷芳.1995.中国对虾矿物质营养的研究.海洋科学.4: 32-37.
    沈同,王镜岩主编.1991.生物化学(第二版).高等教育出版社.下册:401-416.
    周歧存,麦康森,谭北平,徐玮.2001.维生素E对皱纹盘鲍幼鲍生长、存活及体成分的影响.海洋与湖沼.32(2):125-131.
    周歧存,麦康森,谭北平.2000.维生素A对皱纹盘鲍幼鲍生长、存活及体成分的影响.中国水产科学.7(1):118-120.
    Association of Official Analytical Chemists (AOAC). 1995. Official Methods of Analysis of Official Analytical Chemists International, 16th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254.
    Bunce G E, Chiemchaisri Y, Phillips P H. 1962. The mineral requirements of the dog: IV. Effect of certain dietary and physiologic factors upon the magnesium deficiency syndrome. J. Nutr.76:23-29.
    Bunce G E, Reeves P G, Oba T S, Sauberlich H E. 1963. Influence of dietary protein level on the magnesium requirement. J. Nutr. 79: 220-226.
    Cheng K M, Hu C Q, Liu Y N, Zheng S X, Qi X J. 2005. Dietary magnesium requirement and physiological responses of marine shrimp Litopenaeus vannamei reared in low salinity water.Aquaculture Nutrition. 11: 385-393.
    Cowey C B, Knox D, Adron J W, George S, Pirie B. 1977. The production of renal calcinosis by magnesium deficiency in rainbow trout (Salmo gairdneri). Br. J. Nutr. 38:127-135.
    Dabrowska H, Meyer-Burgdorff K, G(?)nther K D. 1989. Interaction between dietary protein and magnesium level in tilapia(Oreochromis niloticus). Aquaculture 76: 277-291.
    Dehn P F, Haya K, Aiken D E. 1985. Adenylate energy charge, arginine phosphate and ATPase activity in juvenile Homarus americanus during the molt cycle. Comp. Biochem. Physiol. B,81:629-633.
    El-Mowafi A F A, Maage A. 1998. Magnesium requirement of Atlantic salmon (Salmo salar L.) parr in seawater-treated fresh water. Aquaculture Nutrition. 4: 31-38.
    Gatlin D M III, Robinson E H, Poe W E, Wilson R P. 1982. Magnesium requirement of fingerling channel catfish and signs of magnesium deficiency. J. Nutr. 112: 1181-1187.
    Knox D, Cowey C B, Adron J W. 1981. Studies on the nutrition of salmonid fish. The magnesium requirement of rainbow trout(Salmo gairdneri). Br. J. Nutr. 45: 137-148.
    Lall S P, Bishop F J. 1977. Studies on mineral and protein utilization by Atlantic salmon (Salmo salar) grow in sea water. Fish. Mar. Serv. Rep. 688: 1-16.
    Mai K, He G, Xu W. 1998. Studies on postprandial changes of digestive status and free amino acids in the viscera of Haliotis discus hannai Ino. J. Shellfish Res. 17: 717-722.
    Mai K, Mercer J P, Donlon J. 1995a. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino: Ⅳ. Optimum dietary protein level for growth. Aquaculture. 136: 165-180.
    Mai K, Mercer J P, Donlon J. 1995b. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino: Ⅲ. Response of abalone to various levels of dietary lipid. Aquaculture .134: 65-80.
    Mai Kangsen, Tan Beiping, 2000. Iron methionine (FeMET) and iron sulfate (FeSO_4) as source of dietary iron for Juvenile abalone, Haliotis discus hannai Ino. Journal of shellfish research. 19(2): 861-868.
    NRC. 1993. National Research Council. Nutrient Requirements of Fish. National Academy Press, Washington, DC. 75.
    Ogino C, Chiou J Y. 1976. Mineral requirements in fish. 2. Magnesium requirements of carp. Bull. Jpn. Soc. Sci. Fish. 42: 71-75.
    Ogino C, Takashima F, Chiou J Y. 1978. Requirement of rainbow trout for dietary magnesium. Bull. Jpn. Soc. Sci. Fish. 44: 1105-1108.
    Robinson J D, Pratap P R. 1991. Na~+,K~+ -ATPase: modes of inhibition by Mg~(2+). Biochem. Biophys. Acta. 1061:267-278.
    Rosas C, Cuzon G, Gaxiola G, Le Priol Y, Pascual C, Rossignyol J, Contreras F, Sanchez A, Van Wormhoudt A. 2001. Metabolism and growth of juveniles of Litopenaeus vannamei: effect of salinity and dietary carbohydrate levels. J. Exp. Mar. Biol. Ecol. 259: 1-22.
    Sakamoto S, Yone Y. 1979. Requirement of red sea bream for dietary Mg. Bull. Jpn. Soc. Sci. Fish. 45: 57-60.
    Shearer K D. 1984. Changes in elemental compositions of rainbow trout of associated with growth and reproduction. Can. J. Fish. Aquat. Sci. 41: 1592-1600.
    Shearer K D. 1989. Whole body magnesium concentration as an indicator of magnesium status in rainbow trout(Salmo gairdneri). Aquaculture. 77: 201-210.
    Shearer K D, Asgard T. 1992. The effect of water-borne magnesium on the dietary magnesium requirement of the rainbow irout{Oncorhynchus mykiss). Fish Physiol. Biochem. 9: 387-392.
    Shils M E. 1994. Magnesium. In: Shils M E, Olson J A, Shike M (eds), Modern nutrition in health and disease, 8th ed. Lea and Febiger, Philadelphia. 164-184.
    Shim K F, Ng S H. 1988. Magnesium requirement of the guppy (Poecilia reticulata Peters). Aquaculture. 73: 131-141.
    Tan Beiping, Mai Kangsen, Liufu Zhiguo. 2001. Response of juvenile abalone, Haliotis discus hannai Ino to dietary calcium, phosphorus and calcium/phosphorus ratio. Aquaculture. 198:141-158.
    Tan Beiping, Mai Kangsen. 2001b. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture. 192: 67-84.
    Toba Y, Masuyama R, Kato K, Takada Y, Aoe S, Suzuki K. 1999. Effects of dietary magnesium level on calcium absorption in growing male rats. Nutrition Research 19(5): 783-793
    Uki, N. and Watanabe, T, 1992. Review of the nutritional requirements of abalone (Haliotis spp) and development of more efficient artificial diets. In: Shepherd, S.A. Teggner, M.J. and Guzman del Proo, S.A. (Eds.). Abalone of the World: Biology and Culture, Fishing News Books, Cambridge, pp. 504-517.
    Whealty M G, Hentry R P. 1987. Branchial and antennal Na~+/K~+ -dependent ATPase and carbonie anhydrase activity during salinity acclimation of the eruyhaline crayfish Pacifastacus leniuscndus..i.Exp.Boil.133: 73-86.
    Zimmermann P, Weiss U, Classen H G, Wendt B, Epple A, Zollner H, Temmel W, Weger M,Porta S.2000.The impact of diets with different magnesium contents on magnesium and calcium in serum and tissues of the rat .Life Sciences Including Pharmacology Letters.67(8):949-958.
    艾庆辉,王道尊.1998.镁对异育银鲫生长的影响.上海水产大学学报(增刊):147-153.
    黄耀桐,刘永坚.1989.草鱼种无机盐需要量之研究.水生生物学报.13(2):134-150.
    刘发义,李荷芳.1995.中国对虾矿物质营养的研究.海洋科学.4: 32-37.
    Association of Official Analytical Chemists (AOAC). 1995. Official Methods of Analysis of Official Analytical Chemists International, 16th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
    Bunce G E, Reeves P G, Oba T S, Sauberlich H E. 1963. Influence of dietary protein level on the magnesium requirement. J. Nutr. 79: 220-226.
    Colby R W, Frye C M. 1951. Effect of feeding high levels of protein and calcium in rat rations on magnesium deficiency syndrome. Amer. J. Physiol. 166:408-412.
    Cowey C B, Pope JA, Adron J W, Blair A. 1972. Studies on the nutrition of marine flatfish. The protein requirement of plaice (Pleuronecfes platessa). Br. J. Nutr. 28: 447-456.
    Currey J D. 1999. The design of mineralized hard tissues for their mechanical functions. J. Exp. Biol. 202: 3285-3294.
    Dabrowska H, Meyer-Burgdorff K, G(?)nther K D. 1989. Interaction between dietary protein and magnesium level in tilapia.(Oreochromis niloticus). Aquaculture. 76: 277-291.
    El-Mowafi A F A, Maage A. 1998. Magnesium requirement of Atlantic salmon (Salmo salar L.) parr in seawater-treated fresh water. Aquaculture Nutrition. 4: 31-38.
    Heinicke H R, Harper A E, Elvehjem C A. 1956. Protein and amino acid requirements of the guinea pig. II. Effect of age, potassium and magnesium and type of protein. J. Nutr. 58: 269-280.
    Khan M S, Ang K J, Ambak M A, Saad CR. 1993. Optimum dietary protein requirement of a Malaysian freshwater catfish, Mystus nemurus. Aquaculture. 112: 227-235.
    Lowenstam H A. 1981. Minerals founded by organisms. Science. 211:1126-1131.
    Mai K, He G, Xu W. 1998. Studies on postprandial changes of digestive status and free amino acids in the viscera of Haliotis discus hannai Ino. J. Shellfish Res. 17: 717-722.
    Mai K, Mercer J P, Donlon J. 1995a. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino: IV. Optimum dietary protein level for growth. Aquaculture. 136: 165-180.
    Mai K, Mercer J P, Donlon J. 1995b. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino: III. Response of abalone to various levels of dietary lipid. Aquaculture .134: 65-80.
    Menaker W. 1954. Influence of protein intake on magnesium requirement during protein synthesis. Proc. Soc. Exp. Biol. Med., 85: 149-151.
    Menaker W, Kleiner I S. 1952. Effect of deficiency of magnesium and other minerals on protein synthesis. Proc. Soc. Exp. Biol. Med., 81:377-378.
    Ogino C, Chiou J Y. 1976. Mineral requirements in fish. 2. Magnesium requirements of carp. Bull. Jpn. Soc. Sci. Fish. 42: 71-75.
    Page J W, Andrews J W. 1973. Interactions of dietary levels of protein and energy on channel catfish. J. Nutr. 103: 1339-1346.
    Santiago C B, Reyes O S. 1991. Optimum dietary protein level for growth of bighead carp (Aristichfhy nobilis) fly in a static water system. Aquaculture. 93:155-165.
    Schwartz R, Wang F L, Woodcock A A. 1969. Effect of Varying Dietary Protein-Magnesium Ratios on Nitrogen Utilization and Magnesium Retention in Growing Rats. J. Nutr. 97: 185-193.
    Shearer K D. 1984. Changes in elemental compositions of rainbow trout of associated with growth and reproduction. Can. J. Fish. Aquat. Sci. 41: 1592-1600.
    Shearer K D. 1989. Whole body magnesium concentration as an indicator of magnesium status in rainbow trout(Salmo gairdneri). Aquaculture. 77: 201-210.
    Shier N W, Myers M A. 1984. The relationship of dietary protein, protein type and magnesium to urinary magnesium excretion in the human. Nutr. Rep. Int. 29: 1301-1306.
    Shils M E. 1994. Magnesium. In: Shils M E, Olson J A, Shike M (eds), Modern nutrition in health and disease, 8th ed. Lea and Febiger, Philadelphia. 164-184.
    Tan Beiping, Mai Kangsen. 2001. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture. 192: 67-84.
    Wee K L, Tacon A G J. 1982. A preliminary study on the dietary protein requirement of juvenile snakehead. Bull. Jpn. Sot. Sci. Fish. 48: 1463-1468.
    Anderson R S, Brubacher L L, Calvo L R, Unger M A, Burreson E M. 1998. Effects of tributyltin and hypoxia on the progression of Perkinsus marinas infections and host defence mechanisms in oyster, Crassostrea virginica (Gmelin). Journal of Fish Disease. 21: 371-380.
    Association of Official Analytical Chemists (AOAC). 1995. Official Methods of Analysis of Official Analytical Chemists International, 16th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
    Ashida M, S(?)derh(?)ll K. 1984. The prophenoloxidase activating system in crayfish. Comp. Biochem. Physiol. 77B: 21-26.
    Asokan R, Arumugam M, Mullainadhan P. 1997. Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel, Perna viridis Linnaeus. Developmental and Comparative Immunology. 1: 1-12.
    Avanzo J L, Mendonca Jr, Pugine C X, et al. 2001. Effect of vitamin E and selenium on resistance to oxidative stress in chicken superficial pectoralis muscle. Comp. Biochem. Physiol., Part C. 129: 163-173.
    Bach(?)re E, Mialhe E, Noel D, Boulo V, Morvan A, Rodriguez J. 1995. Knowledge and research prospects in marine mollusk and crustacean immunology. Aquaculture. 132: 17-32.
    Barracco M A, Medeiros I D, Moreira F M. 1999. Some haemato-immunological parameters in the mussel Perna perna. Fish&Shellfish Immunology. 9: 387-404.
    Bell J G, Cowey C B, Adron J W, Pine B J S. 1987. Some effects of selenium deficiency on enzyme activities and indices of tissue peroxidation in Atlantic salmon parr (Salmo solar). Aquaculture. 65: 43-54
    Bell J G, Cowey C B, Adron J W, Shanks AM. 1985. Some effects of vitamin E and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmo gabdneri). Br. J. Nutr. 53: 149-157.
    Bell J G, Pirie B J S, Adron J W, Cowey C B. 1986. Some effects of selenium deficiency on glutathione peroxidase (EC 1.11.1.9) activity and tissue pathology in rainbow trout (Salmo gairdneri). Br. J. Nutr. 55: 305-311.
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254.
    C(?)rdenas W, Dankert JR. 1997. Phenoloxidase specific activity in the red swamp crayfish, Procambarus clarkii. Fish & Shellfish Immunol. 7: 283-295.
    Chen H, Mai K, Zhang W, Liufu Z, Xu W, Tan B. 2005. Effects of dietary pyridoxine on immune responses in abalone, Haliotis discus hannai Ino . Fish & Shellfish Immunology. 19:241-252.
    Cheng W, Juang F M, Chen J C. 2004. The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus at different salinity levels. Fish&Shellfish Immunology. 16: 295-306.
    Cheng T C. 1992. Selective induction of release of hydrolases from Crassostrea virginica hemocytes by certain bacteria. Journal of Invertebrate Pathology. 59: 197-200.
    Coles J A, Pipe R K. 1994. Phenoloxidase activity in the haemolymph and haemocytes of the marine mussel Mytilus edulis. Fish & Shellfish Immunology. 4: 337-352.
    Fang Y, Yang S, Wu G. 2002. Free Radicals, antioxidants, and nutrition. Nutrition. 18: 872-879.
    Felton S P, Landolt M, Grace R. 1996. Effects of selenium dietary enhancement on hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), when compared with wild coho: hepatic enzymes and seawater adaptation evaluated. Aquacult. Res. 27: 135-142.
    Gatlin D M, Ⅲ, Wilson R P. 1984. Dietary selenium requirement of fingerling channel catfish. Journal of Nutrition. 114:627-633
    Hilton J W, Hodson P V, Slinger S J. 1980. The requirement and toxicity of selenium in rainbow trout (Salmo Gairdnere). Journal of Nutrition. 110:2527-2535.
    Hilton J W, Hodson P V, Slinger S J. 1982. Absorption, distribution, half-life and possible routes of elimination of dietary selenium in juvenile rainbow trout (Salmo gairdneri). Comp.Biochem. Physiol. 71C: 49-55.
    Lin Y H, Shiau S Y. 2005. Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture . 250: 356-363.
    Lygren B, Hamre K, Waagbo R. 1999. Effects of dietary pro- and antioxidants on some protective mechanisms and health parameters in Atlantic Salmon. Journal of Aquatic Animal Health. 11: 211-221.
    Mai K, He G, Xu W. 1998. Studies on postprandial changes of digestive status and free amino acids in the viscera of Haliotis discus hannai Ino. J. Shellfish Res. 17: 717-722.
    Mai K, Mercer J P, Donlon J. 1995a. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L and Haliotis discus hannai Ino: IV. Optimum dietary protein level for growth. Aquaculture. 136: 165-180.
    Mai K, Mercer J P, Donlon J. 1995b. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L and Haliotis discus hannai Ino: III. Response of abalone to various levels of dietary lipid. Aquaculture. 134: 65-80.
    McKenzie RC, Rafferty TS, Beckett GJ. 1998. Selenium: an essential element for immune function. Trends Immunol. Today. 19 (8): 342-345.
    NRC. 1993. National Research Council. Nutrient Requirements of Fish. National Academy Press, Washington, DC.
    Ord(?)s M C, Ordas A, Beloso C, Figueras A. 2000. Immune parameters in carpet shell clams naturally infected with Perkinsus atlanticus. Fish & Shellfish Immunology. 10: 597-609.
    Perazzolo L M, Barracco M A. 1997. The prophenoloxidase activating system of the shrimp Penaeus Paulensis and associated factors. Developmental and Comparative Immunology. 5: 385-395.
    Poston H A, Combs G F, Leibovitz L. 1976. Vitamin E and selenium interrelations in the diet of Atlantic salmon (Salmo salar): gross, histological and biochemical deficiency signs. Journal of Nutrition.106: 892-904.
    Rotruck J T, Pope A L, Ganther H E, Swanson A B, Hafeman DG.,Hoekstra WG.1973.Selenium Biochemical role as a component of glutathione peroxidase.Science.179: 588-590.
    Sarada S K S, Sairam M, Anju P D B, Kain A K, Sharma S K, Bagawat S, Ilavazhagan G, Kumar D.2002.Role of selenium in reducing hypoxia-induced oxidative stress: an in vivo study Biomed Phamacother.56: 173-178.
    Seko Y, Saito Y, Kitahara J.1988.Active oxygen generation by the reaction of selenium with reduced glutathione in vitro.The fourth international symposium of selenium in biology and medicine.
    Tan Beiping, Mai Kangsen.2001.Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino.Aquaculture.192: 67-84.
    Yang J, Hill K E, Burk R F.1989.Dietary selenium intake controls rat plasma selenoprotein P concentration.J.Nutr.119: 1010-1012.
    Ziegler E E, Filer L J JR.(Eds.).1996.Present knowledge in nutrition.ILSI Press, Washington,DC.
    万敏,麦康森,马洪明,徐玮,刘付志国.2004.硒和维生素E对皱纹盘鲍血清抗氧化酶活力的影响.水生生物学报.28(5):496-503.
    Anderson D P, Dixon O W. 1989. Suppression of antibody-producing cells in rainbow trout spleen sections exposed to copper in vitro. Journal of Aquatic Animal Health. 1: 57-61.
    Ashida M, S(?)derh(?)ll K. 1984. The prophenoloxidase activating system in crayfish. Comp. Biochem. Physiol. 77B: 21-26.
    Asokan R, Arumugam M, Mullainadhan P. 1997. Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel, Perna viridis Linnaeus. Developmental and Comparative Immunology. 1: 1-12.
    Association of Official Analytical Chemists (AOAC). 1995. Official Methods of Analysis of Official Analytical Chemists International, 16th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
    Baker R J, Knittel M D, Fryer J L. 1983. Susceptibility of chinook salmon, Oncorhynchus tshawytscha (Walbaum), and rainbow trout, Salmo gairdneri Richardson, to infection with Vibrio anguillarum following sublethal copper exposure. Journal of Fish Diseases. 6: 267-275.
    Barracco M A, Medeiros I D, Moreira F M. 1999. Some haemato-immunological parameters in the mussel Perna perna. Fish&Shellfish Immunology. 9: 387-404.
    Bradford M M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    C(?)rdenas W, Dankert JR. 1997. Phenoloxidase specific activity in the red swamp crayfish,Procambarus clarkii. Fish & Shellfish Immunol. 7: 283-295.
    Chen H, Mai K, Zhang W, Liufu Z, Xu W, Tan B. 2005. Effects of dietary pyridoxine on immune responses in abalone, Haliotis discus hannai Ino . Fish & Shellfish Immunology. 19:241-252.
    Cheng W, Juang F M, Chen J C. 2004. The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus at different salinity levels. Fish&Shellfish Immunology. 16: 295-306.
    Coles J A, Pipe R K. 1994. Phenoloxidase activity in the haemolymph and haemocytes of the marine mussel Mytilus edulis. Fish & Shellfish Immunology. 4: 337-352.
    Davis G K, Mertz W. 1987. Copper. In: Mertz W(ed). Trace elements in human and animal nutrition, 5~(th) edition. Academic press, New York, pp.301-350.
    Doong G, Keen C L, Rogers Q, Morris J, Rucker R B. 1983. Selected features of copper metabolism in the cat. J. Nutr. 113: 1963-1971.
    Fang Y, Yang S and Wu G. 2002. Free Radicals, Antioxidants, and Nutrition. Nutrition. 18:872-879.
    Gatlin D M, Ⅲ, Wilson R. P. 1986. Dietary copper requirement of fingerling channel catfish.Aquaculture. 54: 277-285.
    Hill C H. 1980. Influence of time of exposure to high levels of minerals on the susceptibility of chicks to Salmonella gallinarum. The Journal of Nutrition. 110: 433-436.
    Knox D, Cowey C B, Adron J W. 1982. Effects of dietary copper and copper: zinc ratio on rainbow trout Salmo gairdneri. Aquaculture. 27: 111-119.
    Knox D, Cowey C B, Adron J W. 1984. Effects of dietary zinc intake upon copper metabolism in rainbow trout (Salmo gairdneri). Aquaculture. 40: 199-207.
    L'Abbe' M R, Fischer P W F. 1984. The effects of high dietary zinc and copper deficiency on the activity of copper-requiring metalloenzymes in the growing rat. J. Nutr. 114: 813-822.
    Lall S P, Hines J A. 1987. Iron and copper requirement of Atlantic salmon (Salmo salar) grown in sea water. Paper presented at the International Symposium on Feeding and Nutrition of Fish, Bergen, Norway. August: 23-27.
    Lall S P. 2002. The minerals. In: Halver, J.E. and Hardy, R.W. (Eds.), Fish Nutrition. Academic Press, New York, pp, 259-308.
    Lanno R P, Slinger S J, Hilton J W. 1985. Maximum tolerable and toxicity. levels of dietary copper in rainbow trout (salmo gairdneri Richardson). Aquaculture. 49: 257-268.
    Lee Min-Hsien, Shiau Shi-Yen. 2002. Dietary copper requirement of juvenile grass shrimp, Penaeus monodon, and effects on non-specific immune responses. Fish & Shellfish Immunology. 13(4): 259-270.
    Lorentzen M, Maage A, Julshamn K. 1998. Supplemented copper to a fish meal based diet fed to Atlantic salmon parr affects liver copper and selenium concentrations. Aquacult. Nutr. 4: 67-72.
    Mai K, He G, Xu W. 1998. Studies on postprandial changes of digestive status and free amino acids in the viscera of Haliotis discus hannai Ino. J. Shellfish Res. 17: 717-722.
    Mai K, Mercer J P, Donlon J. 1995a. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L and Haliotis discus hannai Ino: Ⅳ. Optimum dietary protein level for growth. Aquaculture. 136: 165-180.
    Mai K, Mercer J P, Donlon J. 1995b. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L and Haliotis discus hannai Ino: Ⅲ. Response of abalone to various levels of dietary lipid. Aquaculture .134: 65-80.
    Murai T, Andrews J W, Smith R G Jr. 1981. Effects of dietary copper on channel catfish. Aquaculture. 22: 353-357.
    Ogino C, Yang G Y. 1980. Requirements of carp and rainbow trout for dietary manganese and copper. Bulletin of the Japanese Society of Scientific Fisheries. 46 (4): 455-458.
    Omole T A, Onawunmi O A. 1979. Effect of copper on growth and serum constituents of immunized and non-immunized rabbits infected with Trypanosoma brucei. Annales de Parasitologie Humaine et Comparee. 54 : 495-506.
    Paynter D I, Moir R J, Underwood E J. 1979. Changes of activity of the Cu-Zn superoxide dismutase enzyme in tissues of the rat with changes in dietary copper. J. Nutr. 109:1570-1576.
    Perazzolo L M, Barracco M A. 1997. The prophenoloxidase activating system of the shrimp Penaeus Paulensis and associated tactors.Developmental and Comparative lmmunology.5:385-395.
    Rougier F, Troutaud D, Ndoye A, Deschaux P.1994.Non-specific immune response of Zebrafish,Brachydanio rerio (Hamilton-Buchanan) follow copper and zinc exposure.Fish and Shellfish Immunology.4: 115-127.
    Shearer K D.1984.Changes in elemental compositions of rainbow trout of associated with growth and reproduction.Can.J.Fish.Aquat.Sci.41:1592-1600.
    Strain J J.1994.Putative role of dietary trace elements in coronary heart decease and cancer.British Journal of Biochemical Science.51:241-251.
    Tan Beiping, Mai Kangsen.2001.Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino.Aquaculture.192: 67-84.
    Zhou W, Kornegay E T, Lindemann M D, Swinkels J W G M, Welten M K, Wong E A.1994.Stimulation of Growth by Intravenous Injection of Copper in Weanling Pigs.J.Anim.Sci.72:2395-2403.
    刘国文,周昌芳,王哲,张乃生,龚伟,张苏江,张光圣,冯海华,付世新.2003.日粮铜对猪生长性能及血清GH、 INS、 IGF-Ⅰ、 IGFBP_3水平的影响中国兽医学报.23(1): 84-87.
    魏万权,李爱杰,李德尚.2001.牙鲆幼鱼饲料中铜适宜添加量的研究.海洋湖沼通报.2:54-59.
    郑鑫,刘国文,杨连玉,李家奎,夏清娟,郝德威,王哲.2006.铜对生长猪肝中IGF-Ⅰ基因mRNA表达的影响.中国兽医科学.36(6): 497-501.
    Association of Official Analytical Chemists (AOAC). 1995. Official Methods of Analysis of Official Analytical Chemists International, 16th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
    Baldwin J,Elias J P, Wells R M G, Donovan D A. 2007. Energy metabolism in the tropical abalone, Haliotis asinina Linn(?): Comparisons with temperate abalone species. Journal of Experimental Marine Biology and Ecology. 342:213-225.
    Ba(?)os N, Bar(?) J, Castejon C, Navarro I, Gutierrez J. 1998. Influence of high-carbohydrate enriched diets on plasma insulin levels and insulin and IGF-I receptors in trout. Regul Pept.77: 55-62.
    Benntt R J, Thanassi N, Nakada H I. 1971. Hepatopancreas glycosidases of abalone (Haliotis rufescens). Comp. Biochem. Physiol. 40B:807-811.
    Bergot F. 1979. Carbohydrate in rainbow trout diets: effects of the level and source of carbohydrate and the number of meals on growth and body composition. Aquaculture. 18:157-167.
    Bergot F. 1991. Digestibility of native starches of various botanical origins by rainbow trout (Oncorhynchns mykiss). In: Fish Nutrition in Practice. Ⅳ International Symposium on Fish Nutrition and Feeding, INRA, Paris, 857- 865.
    Blasco J, Ferna'ndez-Borra's J, Marimon I, Requena A. 1996. Plasma glucose kinetics and tissue uptake in brown trout in vivo: effect of an intravascular glucose load. J Comp Physiol B. 165: 534-41.
    Buhler D R, Halver J E. 1961. Nutrition of salmonid fishes: IX. Carbohydrate requirements of chinook salmon. J. Nutr. 74: 307-318.
    Capilla E, M(?)dale F, Navarro I, Panserat S, Vachot C, Kaushik S, Guti(?)rrez J. 2003. Muscle binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. Regul. Peptides. 110: 123-132.
    Carneiro NM, Navarro 1, Gutierrez J, Plisetskaya EM. 1993. Hepatic extraction of circulating insulin and glucagon in brown trout (Salmotrutta fario) after glucose and arginine injection. J ExpZool.267:416-22.
    Caseras A, Meton I, Fernandez F, Baanante I V. 2000. Glucokinase gene expression is nutritionally regulated in liver of gilthead seabream. Biochim. Biophys. Acta. 1493: 135-141.
    Chiou J Y, Ogino C. 1975. Digestibility of starch in carp. Bull Jpn Soc Sci Fish. 41: 465-466.
    Cowey C B, Knox D, Walton M J, Adron J W. 1977. The regulation of gluconeogenesis by diet and insulin in rainbow trout. Br. J. Nutr. 38: 463-470.
    Davis D A, Arnold C R. 1993. Evaluation of five carbohydrate sources for Penaeus vannamei. Aquaculture. 114: 285-292.
    Degani G, Viola S, Levanon D. 1986. Effect of dietary carbohydrate source on growth and body composition of the European eel (Anguilla anguilla L.) [J]. Aquae. 52: 97-104.
    Deng D F, Gro-Ingunn Hemreb, Trond Storebakkenc, Shi-Yen Shiaud, Silas S O. 2005. Hung Utilization of diets with hydrolyzed potato starch, or glucose by juvenile white sturgeon (Acipenser transmontanus), as affected by Maillard reaction during feed processing. Aquaculture. 248: 103- 109.
    Du S, Mai K. 2000. Ontogenetic changes in the activity of main didestive enzyme during the larval and juvenile stages of abalone, Haliotis discus hannai Ino. Journal of Shellfish Research. 19(1): 510.
    Fleming A E, Barneveld R J V, Hone P E. 1996 The development of artificial diets for abalone: A review and future directions. Aquaculture. 140: 5-53.
    Furuichi M, Yone Y. 1981. Changes of blood sugar and plasma insulin levels of fishes in glucose tolerance tests. Bull. Jpn. Soc. Sci. Fish. 47: 761-764.
    Furuichi M, Yone Y. 1982a. Availability of carbohydrate in nutrition of carp and red sea bream. Bull. Jpn. Soc. Sci. Fish. 48: 945-948.
    Furuichi M, Yone Y. 1982b. Changes of activities of hepatic enzymes related to carbohydrate metabolism of fish in glucose and insulin-glucose tolerance tests. Bull. Jpn. Soc. Sci. Fish. 48:463-466.
    Guraya H S, Toledo R T. 1993. Determining gelatinized starch in a dry starchy product. Journal of Food Science. 58: 888.
    Gutierrez J, Asgard T, Fabbri E, Plisetskaya E M. 1991. Insulin-receptor binding in skeletal muscle of trout. Fish Physiol. Biochem. 9: 351-360.
    Guyot E, Diaz J P, Romestand B, Connes R. 1998. Insulin during the early postembryonic development of the gilt-head sea bream, Sparus aurata: ultrastructural, immunohistochemical,and biochemical studies. General and comparative endocrinology. 110: 147-156.
    Hemre G.-I, Mommsen T P, Krogdahl A. 2002. Carbohydrate in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquae. Nutr. 8: 175-194.
    Hofer R, Sturmbauer C. 1985. Inhibition of trout and carp a-amylase by wheat Aquaculture. 48: 277-283.
    Hung S S O, Fynn-Aikins K F, Lutes P B, Xu R P. 1989. Ability of juvenile white sturgeon (Acipenser transmontanus) to utilize different carbohydrate sources. J. Nutr. 119: 727-733.
    Knauer J, Britz P J, Hetch T. 1996. Comparative growth performance and digestive enzyme activity of juvenile South African abalone, Haliotis midae, fed on diatoms and a practical diet.Aquaculture. 140:75-85.
    Kumar S, Sahu N R Pal A K, Choudhury D, Mukherjee S C. 2006. Studies on digestibility and digestive enzyme activities in Labeo rohita (Hamilton) juveniles: effect of microbial a-amylase supplementation in non-gelatinized or gelatinized corn-based diet at two protein levels. Fish Physiology and Biochemistry 32(3):209-220.
    Lee S M, Kim K D, Lall S P. 2003. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus). Aquaculture. 221: 427-438.
    Lee S M, Yun S J, Iviin K S, Yoo S K. 1998. Evaluation of dietary carbohydrate sources for juvenile abalone (Haliotis discus hannai). JAquacult. 11: 133-140. (韩语) Magnuson M A. 1992. Tissue-specific regulation of glucokinase gene expression. J Cell Biochem. 48:115-121.
    Mai K, He G, Xu W. 1998. Studies on postprandial changes of digestive status and free amino acids in the viscera of Haliotis discus hannai Ino. J. Shellfish Res. 17: 717-722.
    Mai K, Mercer JP, Donlon J. 1995a. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. Ⅲ. Response of abalone to various levels of dietary lipids. Aquaculture. 134: 65-80.
    Mai K, Mercer JP, Donlon J. 1995b. Comparative studies on the nutrition of two species of abalone Haliotis tuberculata L. and Haliotis discus hannai Ino. Ⅳ. Optimum dietary protein level for growth. Aquaculture. 136: 165-180.
    Mai Kangsen, Tan Beiping. 2000. Iron methionine (FeMET) and iron sulfate (FeSO4) as source of dietary iron for Juvenile abalone, Haliotis discus hannai Ino. Journal of shellfish research. 19(2): 861-868.
    Metais P, Bieth J. 1968. Determination de l'a-amylase par une microtechnique. Ann. Biol. Clin. 26 : 133-142.(Annales de Bioloqie Clinique)
    Mohapatra M, Sahu NP, Chaudhari A. 2002. Utilization of gelatinized carbohydrate in diets in Labeo rohita fry. Aquaculture Nutrition. 8: 1-8.
    Nagayama F, Ohshima H. 1974. Studies on the enzyme system of carbohydrate metabolism in fish: I.Properties of liver hexokinase. Bull. Jpn. Soc. Sci. Fish. 40: 285-290.
    Nakagawa T, Nagayama F. 1988. Distribution of glycosidase activities in marine invertebrates. J.Tokyo Univ. Fish. 75: 239-245.
    NRC (National Research Council). 1993. Nutrient Requirements of Fish. National Academy Press, Washington, DC, USA.
    Palmer T N, Ryman B E. 1972. Studies on oral glucose intolerance in fish. J. Fish Biol. 4: 311-319.
    Panserat S, Blin C, Medale F, Plagnes-Juan E, Br(?)que J, Krishnamoorthy R, et al. 2000a. Molecular cloning, tissue distribution and sequence analysis of complete glucokinase cDNAs from gilthead seabream (Sparus aurata), rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Biochem Biophys Acta. 1474: 61- 9.
    P(?)rrizas M, Ba(?)os N, Bar(?)J, Planas J, Gutierrez J. 1994. Up-regulation of insulin binding in fish skeletal muscle by high insulin levels. Regul Pept. 53: 211- 22.
    Printz R L, Magnuson M A, Granner D K. 1993. Mammalian glucokinase. Ann Rev Nutr. 13: 463-496.
    Rosas C, Cuzon G, Gaxiola G, Arena L, Lemaire P, Soyez C, Wormhoudt A Van. 2000. Influence of dietary carbohydrate on the metabolism of juvenile Litopenaeus stylirostris. Journal of Experimental Marine Biology and Ecology. 249: 181-198.
    Shiau S Y.1997.Utilization of carbohydrates in warmwater fish-with particular reference to tilapia, Oreochromis niloticus×O.aureus.Aquaculture.151: 79-96.
    Silano V, Furiaa M, Gianfreda, L, Macri A, Palescandolo R, Rab A, Scardi V, Stella E, Valfre F 1975.Inhibition of amylases from different origins by albumins from the wheat kernel.Biochem Biophys Acta.391:170-178.
    Tan Beiping, Mai Kangsen.2001.Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino.Aquaculture.192: 67-84.
    Tranulis MA, Christophersen B, Borrebaek B.1997.Glucokinase in Atlantic halibut(Hippoglossus hippoglossus) Brockmann bodies.Comp Biochem Physiol.116B: 367-70.
    Tranulis MA, Dregni O, Christophersen B, Krogdahl A, Borrebaek B.1996.A glucokinase-like enzyme in the liver of Atlantic salmon (Salmosalar).Comp Biochem Physiol.114B: 35-9.
    Wilson R P, Poe W E.1987.Apparent inability of channel catfish to utilize dietary mono-and disaccharides as energy sources.J.Nutr.117: 280-285.
    Wilson R P.1994.Utilization of dietary carbohydrate by fish.Aquaculture.124: 67-80.
    陈宏.2004.族维生素影响皱纹盘鲍主要营养物质代谢机理的研究.中国优秀博硕士学位论文全文数据库.
    田丽霞,刘永坚,冯健,刘栋辉,梁桂英,杜震宇.2002.不同种类淀粉对草鱼生长、肠系膜脂肪沉积和鱼体组成的影响.水产学报.26: 247-251.
    赵全,岳晓霞,毛迪锐,张根生.2005.四种常用淀粉物理性质的比较研究.食品与机械.21(1):22-24.
    Bell J G, Cowey C B, Adron J W, Shanks A M. 1985. Some effects of vitamin E and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout(Salmo gairdneri). Br. J. Nutr., 53 (1): 149-157.
    Benntt R J, Thanassi N, Nakada H I. 1971. Hepatopancreas glycosidases of abalone (Haliotis rufescens). Comp. Biochem. Physiol, 40B: 807-811.
    Degani G, Viola S, Levanon D. Effect of dietary carbohydrate source on growth and body composition of the European eel (Anguilla anguilla L .). Aquae , 1986 , 52: 97-104.
    Du S, Mai K. 2000. Ontogenetic changes in the activity of main didestive enzyme during the larval and juvenile stages of abalone, Haliotis discus hannai Ino. Journal of Shellfish Research, 19(1): 510.
    Fleming A E, Barneveld R J V, Hone P E. 1996. The development of artificial diets for abalone: A review and future directions. Aquaculture. 140:5-53.
    Guraya H S, Toledo R T. 1993. Determining gelatinized starch in a dry starchy product. Journal of Food Science. 58: 888.
    Hofer R, Sturmbauer C. 1985. Inhibition of trout and carp a-amylase by wheat. Aquaculture. 48: 277-283.
    Hutchins C G, Rawles S D, Gatlin Ⅲ D M. 1998. Effects of dietary carbohydrate kind and level on growth, body composition and glycemic response of juvenile sunshine bass (Morone chrysops ♀×M saxatilis ♂). Aquaculture 161, 187-199.
    Kasim-karakas S E, Vriend H, Almario R, Chow L, Goodman M N. 1996. Effects of dietary carbohydrates on glucose and lipid metabolism in golden Syrian hamsters. J Lab Clin Med. 128:208-213.
    Knauer J, Britz P J, Hetch T. 1996. Comparative growth performance and digestive enzyme activity of juvenile South African abalone, Haliotis midae, fed on diatoms and a practical diet.Aquaculture, 140:75-85.
    Kumar S, Sahu N P, Pal A K. Choudhury D, Mukherjee S C. 2006. Studies on digestibility and digestive enzyme activities in Labeo rohita (Hamilton) juveniles: effect of microbial α-amylase supplementation in non-gelatinized or gelatinized corn-based diet at two protein levels.Fish Physiology and Biochemistry.32(3): 209-220.
    Lee S M, Kim K D, Lail S P.2003.Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus).Aquaculture.221:427-438.
    Mai K, Mercer JP, Donlon J.1995a.Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L.and Haliotis discus hannai Ino.Ⅲ.Response of abalone to various levels of dietary lipids.Aquaculture.134: 65-80.
    Mai K, Mercer JP, Donlon J.1995b.Comparative studies on the nutrition of two species of abalone Haliotis tuberculata L.and Haliotis discus hannai Ino.Ⅳ.Optimum dietary protein level for growth.Aquaculture.136: 165-180.
    Metcalfe L D, Schmitz A A, Pelka J R.1966.Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis.Analytical Chemistry.38: 514-515.
    Nakagawa,T and Nagayama F.1988.Distribution of glycosidase activities in marine invertebrates.J.Tokyo Univ.Fish.75: 239-245.
    Silano V,Furiaa M, Gianfreda, L, Macri A, Palescandolo R, Rab A, Scardi V, Stella E, Valfre F.1975.Inhibition of amylases from different origins by albumins from the wheat kernel.Biochem Biophys Acta.391:170-178.
    Tan Beiping, Mai Kangsen.2001.Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino.Aquaculture.192: 67-84.
    李爱杰主编.水产动物营养与饲料学.北京:中国农业出版社.1996年10月.26-58.
    田丽霞,刘永坚,冯健,刘栋辉,梁桂英,杜震宇.2002.不同种类淀粉对草鱼生长、肠系膜脂肪沉积和鱼体组成的影响.水产学报.26: 247-251
    徐玮,麦康森,王正丽.2004.鲍鱼必需脂肪酸营养生理研究.中国海洋大学学报(自然科学版).34(6):983-987.
    赵全,岳晓霞,毛迪锐,张根生.2005.四种常用淀粉物理性质的比较研究.食品与机械.21(1):22-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700