Al-4.5%Cu合金定向凝固组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内外对于定向凝固组织的影响因素的研究一般集中在定性分析,关于定向凝固组织与可控凝固参数关系的定量研究极少。在前人研究的基础上,本文分析了定向凝固中的主要影响因素,研究定向凝固Al-4.5%Cu合金组织的演变规律;着重研究了抽拉速率与枝晶间距的定量关系,建立了界面局域平衡条件下定向凝固枝晶间距与抽拉速率的理论模型;并对不同抽拉速率的定向凝固Al-4.5%Cu合金的力学性能及断裂机理进行了比较研究。
     本文用下拉式定向凝固设备,当抽拉速率为20~220μm/s时,制备了一系列定向凝固Al-4.5%Cu合金试样。首先研究了微观组织演变,特别是一次枝晶间距变化规律。结果表明:定向凝固组织具有明显的方向性,晶粒沿固液界面法线方向生长,偏离轴向生长的晶粒被淘汰。在特定温度梯度下,抽拉速率由小到大变化时,微观组织由粗大低速胞状晶、胞枝晶混合组织、树枝状晶依次变化;抽拉速率增大使组织细化,小于100μm/s时,枝晶间距减小幅度较大,大于100μm/s时,减小幅度较为平缓。
     本文着重研究了抽拉速率对定向凝固组织性能的影响,根据Hunt模型和Bower的理论,建立界面局域平衡条件下预测定向凝固次枝晶间距的理论模型。当抽拉速率为100~220μm/s时,一次枝晶间距的理论模型计算值与实测值相吻合,误差小于6.5%。本模型可为预选定向凝固工艺参数及组织分析提供参考。
     本文通过SEM原位拉伸实验及抗拉强度、延伸率、硬度等力学性能检测,进一步研究了定向凝固Al-4.5%Cu合金的断裂机理和抽拉速率对其基本力学性能的影响。结果表明,抽拉速率为U=200μm/s的试样B与抽拉速率为U=60μm/s的试样A相比,抗拉强度提高16.7%,同时延伸率提高85.9%,硬度提高67.5%;随着抽拉速率的增加,合金的断裂机理由准解理断裂机理转变为延性断裂机理,说明抽拉速率对定向凝固Al-4.5%Cu合金的断裂机理和基本力学性能影响显著。
There is plenty of investigation on the effect factors of unidirectional solidification in home and abroad. However, they are basically qualitative analysis. At present there isn't investigation on quantitative analysis between microstructure and controllable parameters. On the groundwork of former researches, we have investigated the development of microstructures, especially dentritic spacing; put emphasis on the studies of quantitative relationship between primary arm spacing of Al-4.5%Cu Alloy and withdrawal rate during unidirectional solidification, which make a theoretical model founded under the condition of local equilibrium of interface and furtherly researched the fracture mechanism and mechanical properties of experimental alloy.
     A series of Al-4.5%Cu Alloy samples are prepared by the use of drawing crucible unidirectional solidification device, when the withdrawal rate is in the range of 20~220μm/s. The development of microstructures, especially dentntic spacing, is investigated. The results show that the microstructure of unidirectional solidification has obvious directivty; the crystal grows along the normal direction; the grains that depart axial direction fall into disuse.The microstructure changes from cellular crystal to cellular-dentritic crystal and then dentritic crystal. The increase of withdrawal rate leads to microstructure refinement. The primary arm spacing decreases sharply with a withdrawal rate below 100μm/s, and decreases more gently when beyond 100μm/s.
     We have paid great attention on the investigation of relationship between primary arm spacing of Al-4.5%Cu Alloy and withdrawal rate during unidirectional solidification. Based on the theories of Hunt and Bower, a theoretical model is founded to pridict primary dentritic arm spacing, under the condition of local equilibrium of interface. The experimental data are well inosculating to calculation result by the withdrawal rate of 100~220μm/s, and the error is less than 6.5%. It is hoped that the function can be useful for microstructure analysis and to be helpful to obtain a good match of parameters during unidirectional solidification.
     We have also furtherly studied the fracture mechanism and mechanical properties of experimental alloy, through SEM in-situ study and tests of tensile strength, extensibility and hardness. The results show that compared with Specimen A (withdrawal rate is 60μm/s), tensile strength of Specimen B (withdrawal rate is 200μm/s) increase 16.7% and simultaneously extensibility improve 85.9% and hardness 67.5%. With the increase of withdrawal rate, fracture mechanism of Al-4.5%Cu changes from quasi-cleavage fracture to ductile fracture, which indicates that there is great effect of withdrawal rate on the fracture mechanism and mechanical properties of unidirectional solidification Al-4.5%Cu.
引文
[1].杨森,黄卫东,林鑫,周尧和.定向凝固技术的研究进展.兵器材料科学与工程,2000,23(2),p44-50.
    [2].常国威,王建中.金属凝固过程中的晶体生长与控制.北京:冶金工业出版社,2002.p153,p102.
    [3].Li SM,Lu HY,Zhang,R,et al.Directionally solidified microstructures and peritecfic phase growth of Cu-75%Sn peritectic alloy[J].Transactions of Nonferrous Metals Society of China,2005,15(2):379-383
    [4].Su YQ,Luo LS,Guo JJ,et al.Investigation on the microstructures and hydrogen embrittlement mechanism of hydrogenated Ti6Al4V[J].Rare Metal Materials and Engineering,2005,34(4):526-530
    [5].Li SM,Ma BL,Lu HY,et al.Microstructure and its scales of Cu-70%Sn peritectic alloy under high-temperature gradient directional solidification[J].Acta Metallurgica Sinica,2005,41(4):411-416
    [6].Giamei A F,Tschinkel J G.Liquid Metal Cooling:A New Solidification Technique[J].Metall.Trans.,1976,(7A):1427-1434
    [7].傅恒志,毛协民,李建国.液固相变中的界面形态选择[J].材料研究学报,1994,8(3):209-217
    [8].Chen ZW,Li JS,Jie WO,et al.Solidification behaviour of Al-7%Si-Mg casting alloys[J].Transactions of Nonferrous Metals Society of China.2005,15(1):40-44.
    [9].刘勇,李金山,胡锐等.熔体过热对Ag-Cu合金生长取向的影响[J].特种铸造及有色合金,2004,(1):22-23
    [10].Fu HZ,Liu L Progress of directional solidification in processing of advanced materials[J].Materials Science Forum,2005 Part 1-5,475-479:607-612
    [11].杨森,黄卫东等.定向凝固技术的研究进展.兵器材料科学与工程,2000,3:44-49
    [12].杨森,黄卫东,刘文今等.激光超高温度梯度快速定向凝固研究.中国激光,2002,29(5):476-479
    [13].李建明,李胜利等.脉冲放电对Pb-Sn合金凝固组织影响的研究.特种铸造及有色合金,1994,(6):1-4
    [14].常国威,袁军平等.电流对定向凝固组织中柱状晶间距的影响[J].金属学报,2000,36(1):30-32
    [15].常国威,王建中等.电流作用下凝固界面形态稳定性与对组织形态的影响.辽宁工学院学报,1998(18)
    [16].徐雁允,顾跟大,安阁英等.电场对Al-Cu共晶片间距的影响[J].铸造,1991(3):5-8
    [17].张瑞杰,介万奇等.Zn-2.5%Cu合金定向凝固组织及对流的影响[J].铸造技术,2001(2):52-55
    [18].吕衣礼,黄旭,周尧和.凝固界面前沿自然对流的试验研究.力学进展,1993,25(6):716-720.
    [19].彭德林,安阁英.Al-Li合金定向凝固的热溶质对流.金属学报,2000,36(10):1021-1024.
    [20].潘冶,孙国雄.变速生长的MnSb/Sb共晶相间距选择[J].稀有金属材料与工程,1999,28(2):85-88
    [21].刘俊明,周尧和,商宝禄.Al-Si合金相间距对生长速度突变的响应[J].材料科学与程,1992,6(2):115-119
    [22].徐达鸣,曹福祥,李庆春.变速定向生长条件下Sn-Pb共晶组织的突化[J].金属学报,1995,31(11):494-499
    [23].徐达鸣,曹福祥,李庆春等.变速生长条件下Al-Cu合金的定向凝固枝晶组织[J].金属学报,1995,31(11):501-507
    [24].陈光,俞建成,孙彦臣等.熔体热历史对Al-Cu合金定向凝固界面稳定性的影响.材料研究学报,1999,13(5):497-500.
    [25].陈光,俞建成,谢发勤等.熔体过热历史对Ni基高温合金定向凝固界面形态的影响.金属学报,2001,37(5):478-492.
    [26].耿兴国,傅恒志,陈光.熔体过热对定向凝固界面形态稳定性的影响[J].金属学报,2002,38(3):225-229
    [27].Utter J W,Chalmers B.A prismatic substructure formed during solidification of metals[J].Can.J.Phys.1953,31:15-39
    [28].Iller W A,Jackson K A,Rutter J W,and Chalmers B.The redistribution of solute atoms during the solidification of metals[J].Acta.Metall..1953,1:428-473
    [29].Mullins W W,Sekerka R F.Morphological stability of a particle growing by diffusion of heat flow[J].Appl.Phys..1996,35:444-451
    [30].Mullins W W,Sekerka R F.Stability of a planar interface during solidification of a dilute binary alloy[J].Appl.Phys..1963,35:444-451
    [31].Sekerka R F.A stability function for explicit evaluation of the Mullins-Sekerka interface criterion [J].Appl.Phys..1965,36:264-268
    [32].Sekerka R F.Application of the time-dependent theory of interface stability to an isothermal phase transformation[J].Phys.Chem.Solids.1967,28:983-994
    [33].Sekerka R F.Morphological stability[J].Crystal Growth.1968,3/4:71-78
    [34].麦克莱恩著 M,定向凝固高温材料.陈石卿译.北京:航空工业出版社,1998
    [35].杜炜,魏鹏义,李建国等.中速生长条件下单晶高温合金组织及偏析研究[J].报,1998,34(4):356
    [36].肖华星,陈光,崔鹏.定向凝固多孔金属制造人工骨的前景展望[J].特种铸造金,2001,(2):88.
    [37].陈绍楷,周廉,王克光等.定向凝固法制备YBCO超导体的若干材料学问题[J].稀有金属材料与工程,2002,31(2):129.
    [38].Liu,C;Su,YQ;Bi,WS,et al.Phase and its morphologies of Ti-45%A1 alloy directionally solidified at different growth rates.Transactions of Nonferrous Metals Society of China,2005,15(2):286-290
    [39].唐卫,傅恒志,邹光荣.烧结NdDyFeB磁体致密化过程的研究[J].西北工业大学学报,1995,13(1):17-20
    [40].杨森;梁文心;贾均.磁场对偏晶合金定向凝固组织的影响[J].铸造技术.1999,(5):44-46
    [41].陆树荪,顾开道,郑来苏.有色铸造合金及熔炼.国防工业出版社.1983:39-42
    [42].周尧和,胡状麟,介万奇.凝固技术.北京机械工业出版社,1998
    [43].陈光,俞建威等.熔体热历史对Al-Cu合金定向凝固界面稳定性的影响.材料研究学报,1999,13(5):497
    [44].林鑫,黄卫东,潘清跃,等.Al-4.5Cu单晶定向凝固一次枝晶间距研究[J].金属学报,1997,33(11):1140-1146.
    [45].刘海霞,吴强,司乃潮.不同拉伸速度对A1-5%Cu定向凝固组织的影响[J].铸造,2005,54(01):40-43.
    [46].许振明,李金山,李建国,等.连铸铜单晶工艺参数的匹配及其对铸棒表面质量和组织的影响[J].中国有色金属学报,1999,9(s1):221-228.
    [47].郭学锋,刘永长,杨根仓,等.深过冷Cu_(50)NL_(50)熔体凝固的定向枝晶组织[J].中国有色金属学报,2000,10(05):630-634.
    [48].司乃潮,孙克庆,刘海霞.熔体过热处理对定向凝固界面形态及稳定性的影响[J].铸造,2005,54(05):429-432.
    [49].苏云鹏,王猛,林鑫,等.Zn-2%Cu包晶合金快速定向凝固层片状组织[J].中国有色金属学报,2003,13(05):1092-1097.
    [50].金涛,李金国,赵乃仁,等.抽拉速率对一种镍基单晶高温合金凝固参数和凝固组织的影响[J].材料工程,2002,(03):36-39+48.
    [51].蔡英文,俞露,许振明,等.定向凝固界面速率对机械牵引速率的响应[J].人工晶体学报,1998,27(2):141-145.
    [52].常国威,王自东,胡汉起,等.连续定向凝固中临界牵引速度及其相关因素[J].北京科技大学 学报,1998,20(06):550-555.
    [53].丁浩,傅恒志,刘忠元,等.抽拉速率对铝合金定向凝固热裂形成的影响[J].材料科学与工艺,1996,4(02):76-80.
    [54].Melo,M.L.N.M.,Rizzo,E.M.S.,Santos,R.G.Predicting dendrite arm spacing and their effect on microporosity formation in directionally solidified AI-Cu alloy[J].Journal of Materials Science,2005,40(7):599-609
    [55].林鑫,黄卫东,丁国陆,等.一次枝晶间距的数值统计模型[J].金属学报,1997,33(05):449-454.
    [56].Ares,Alicia E.,Caram,Rubens,Schvezov,Carlos E.The effect of solidification parameters on dendrite spacing in unidirectional solidification[A].TMS Annual Meeting[C].USA:Minerals,Metals and Materials Society,2004.751-765.
    [57].马颖,郝远,阎峰云,等.热型连铸锌铝合金定向凝固线材的组织分析[J].中国有色金属学报2001,11(02):221-226.
    [58].冯科,陈登福,徐楚韶,等.连铸坯枝晶凝固的重要微观结构特征参数的研究进展[J].特殊钢2004,25(03):1-5.
    [59].翟慎秋,魏亚杰,吴德海.金属树枝晶的生长行为[J].山东工业大学学报,1997,27(02):181-187.
    [60].丁国陆,林鑫,黄卫东,等.定向凝固一次枝晶间距的历史相关性[J].金属学报,1995,31(10):469-474.
    [61].倪锋,龙锐,沈百令,等.Bridgman法铸铁定向凝固一维传热特性的测试分析[J].洛阳工学院学报,1997,18(04):5-9.
    [62].王家忻,黄积荣,林建生.金属的凝固及其控制.北京:机械工业出版社,1983.
    [63].倪锋龙锐陈跃贺润桐.Bridgman法铸铁定向凝固一维传热分析.洛阳工学院学报,1997,18(3),p6-11.
    [64].张济山,崔华等.雾化喷射沉积成型凝固过程模拟.金属学报,1998,34(1),p14-18.
    [65].牛晓武,赵志龙,刘林.A1_4%Cu合金铸件凝固过程温度场的数值模拟[J].铸造,2006,55(1):47-50
    [66].J.D.Hunt.Solidification and casting of metals[J].The metal society,London,1979,p.3
    [67].朱昌盛,肖荣振,王智平,等.定向凝固微观组织的相场法模拟研究进展[J].铸造,2006,55(1):43-46
    [68].李梁,韩礼红,孙军.强度错配双界面约束条件下纯铝层TEM原位拉伸观察[J].稀有金属材料与工程,2005,34(8):1196-1199.
    [69].吴强,司乃潮,郭毅,等.定向凝固A1-4.5%Cu合金枝晶组织与抽拉速率的关系[J].中国有色金属学报,2007,17(7):1101-1106.
    [70].姚海军,陈剑虹,曹睿,等.全层TiAl基合金断裂机理的原位拉伸研究[J].兰州理工大学学报,2005,31(1):4-8.
    [71].Yoang K P,Kirkwood D H.The Dendrite Arm Spacings of Aluminum-Copper Alloys Solidified Under Stady-State Comditions.Metall Trans,1975,6:197
    [72].Trivedi R.J.Theory of Dendritic Growth During the Directional Solidification of Binary Alloys.Cryst Growth,1980,49(2):219.
    [73].孙勇,赵维民,胡爱文,等.铸件定向凝固微观组织模拟[J].铸造技术,2005,26(10):949-953
    [74].章熙民等.传热学.北京:中国建筑工业出版社,1993,第三版.p288-299.
    [75].Liu L,Zhang J,Hang TW,et al.Interface morphologies and microstructure of a single crystal superalloy under high thermal gradient directional solidification[J].Materials Science Forum,.2005 Part 1-5,475-479:665-668
    [76].Guo XR,Guan P,Ding X,et al.Unidirectional solidification of a Nb-ss/Nb5Si3 in-situ composite.Materials Science Forum,2005 Part 1-5,475-479:745-748
    [77].何国,李建国,毛协民等.晶体取向对单晶高温合金一次枝晶间距的影响[J].金属学报,1995,31(7):A309-A314
    [78].李棠,王清远,岳珠峰.铝合金2A12韧性断裂机制的实验研究[J].实验力学,2006,21(6):765-768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700