Rician快衰落环境下TD-SCDMA系统下行链路关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为第三代移动通信标准之一的TD-SCDMA系统,从2009年工信部正式向中国移动发放牌照以来,得到了广泛的应用。随着TD-SCDMA网络建设工作的不断扩大和深入,需要考虑各种应用场景的需求,如高铁环境。为了使移动台在各种环境下能够稳定、良好地运行,通常需要首先分析环境特点并给出比较精确的仿真模型,然后分析此环境对移动台接收信号产生的影响,最后给出相应的解决方案。基于上述提高系统性能的分析思路,本文在天津市科技创新专项基金的资助下对信道建模、频率偏差估计和信道衰落系数估计三方面的关键技术进行了深入研究,主要工作内容和研究成果归纳如下:
     1、介绍了无线信号传播环境的特征,分析了用于物理层设计和性能分析的小尺度衰落模型的几种基于正弦波叠加法产生频率平坦Rayleigh衰落信道的方法的利弊。针对这些方法的不足,利用不同于现存模型的正余弦函数、入射角等参数,提出了两种改进的能产生不相关Rayleigh衰落波形的方法,同时推导了这两种方法的统计特性,并通过仿真实验验证了其性能。基于上述改进方法,通过叠加视距成分,提出了频率平坦Rician衰落信道模型,然后给出了其统计特性,并对其进行了仿真验证。在此基础上,给出了频率选择性Rician衰落波形的生成方法。所提方法不仅能够满足本论文中广义不相关散射信道模型的需要,而且通过对其修改也可以应用于多输入多输出信道建模。
     2、分析了频率偏差对系统性能的影响,研究了各种环境下系统的频偏补偿方法。为了克服现有方法未考虑载波频偏和多普勒频移共存的情况和在Rician快衰落信道下的不足,分别提出了频率平坦和频率选择性Rician快衰落环境下TD-SCDMA系统下行链路频偏估计的算法。这两种方法首先给出了受加性高斯噪声影响,并包含未知载波频偏、未知Rice因子和未知多普勒频移等参数的接收信号的二阶和四阶统计量,然后对这些统计量通过合理的参数设置和具体的数学运算推导出频偏估计的闭式表达式,最后通过仿真验证了所提算法的性能。对比两种环境下频偏估计方法发现其实现步骤相同,因此本算法降低了硬件实现的复杂度,特别适合于TD-SCDMA系统下行链路频偏估计。
     3、总结了现有信道衰落系数估计方法,针对现有算法在Rician快衰落信道下的不足和未考虑载波频偏的情况,将TD-SCDMA系统的时隙结构进行了轻微的改动,研究了残留频偏存在情况下TD-SCDMA系统修改时隙结构后信道衰落系数的特性,通过分析发现修改时隙后任意分组模块中带有残留频偏成分的信道衰落系数可以近似为时间参数的线性函数,并对其进行了仿真验证。基于上述分析,利用最大似然准则,提出了残留频偏存在下TD-SCDMA系统下行链路频率选择性Rician信道衰落系数估计算法。然后,进一步讨论了接收数据同时受高斯噪声和其他用户的加性干扰影响的情况,利用最小二乘准则估计了残留频偏存在下频率选择性Rician信道快衰落系数。最后,通过仿真验证了所提算法的性能,实验结果表明所提算法具有较小的均方误差。
As one of the third generations of terrestrial-based mobile communicationsystem standards, Time Division-Synchronous Code Division Multiple Access(TD-SCDMA) system has been widely implemented since it granted its first license in2009. With the development of the construction of network for the TD-SCDMAsystem, variously applied scenarios should be considered, such as high speed railway.To make mobile station (MS) run on the safety and the steady, commonly, thecharacteristics of environments should be analysed firstly, and its accurate simulationmodel should also be established. Then, the effects of the circumstances on thereceived signal of the MS will be studied. At last, the scheme for solving thecorresponding problems should be put forward. Based on the above analyses, theproject founded by the Science and Technology Innovation Foundation of Tianjinunder Grant10FDZDGX00400has been set up, and three key technologies onchannel simulator, frequency offset (FO) estimator, and estimation for channel fadingcoefficients (CFCs) have been considerably studied in this dissertation. The mainresearch contents and contributions are as follows:
     First, the characteristics of wireless propagation environments are introduced,and the pros and cons about several methods of frequency-flat Rayleigh simulatorbased on sum-of-sinusoids are analysed. In order to overcome these deficiencies, twoimproved methods are proposed to simulate the uncorrelated Rayleigh fadingprocesses by applying a smart parameter computation method to the arrival angle andemploying some parameters and functions that differ from those in the existingmodels. Meanwhile, the statistical properties of these two models are derived andverified by simulation. Based on the above methods and the zero-mean stochasticsinusoid, a new stochastic frequency-flat Rician fading simulation model is proposed.Its properties are presented and verified. Then, an approach is presented to generatethe frequency-selective Rician fading waveforms. The proposed methods can not onlysatisfy requiments of this dissertation, but also use for the multiple-inputmultiple-output channel simulation by revising them.
     Second, the effects of FO on the performance of radio mobile system areanalysed, and the methods about the correction of the FO are studied. Unfortunately, all of the aforementioned works are unavailable for the Rician fading channels.Furthermore, to the best of our knowledge, all the existing methods are unable toprovide satisfactory frequency estimation for frequency-flat or frequency-selectiveRician fast fading channels when the carrier frequency offset (CFO) and Doppler shiftcoexist. To solve the problems for these situations, two FO estimation algorithms areproposed for the downlink of the TD-SCDMA system over frequency-flat andfrequency-selective Rician fast fading channels, respectively. The proposedalgorithms present second-order and fourth-order statistics of the signals whichcontain unknown CFO, unknown Rice factor, unknown Doppler shift, additive whiteGaussian noise (AWGN), etc. Based on flexible parameters setting and concretemathematical operations for these statistics, an expression for FO estimation isderived in closed-form. The simulation results are provided to illustrate the accuracyand reliability of the proposed method. The same realized steps of the proposedapproaches are found by comparing them, so the computational load is low, which cansatisfy the downlink of the TD-SCDMAsystem extremely.
     Finally, the estimated methods for CFCs are summarized. Aiming at thedeficiencies over the Rician fading channels and reckoning without the CFO for theexisting algorithms, the burst structure is slightly modified, and the characteristics ofthe CFCs over the modified burst are studied. Then, the CFCs with a residualfrequency offset (RFO) for each block of the modified burst structure is modeled as alinear function of time, which is analysed and verified by theory and computersimulation, respectively. Based on this approximation, a new scheme is proposed toestimate the frequency selective Rician CFCs for the downlink of the TD-SCDMAsystem in the presence of a RFO. In addtion, taking account of the case where theAWGN and additive interference coming from other users coexist, the algorithm forthe CFCs in this condition is proposed. The simulation results illustrate that theproposed method leads to small mean square error.
引文
[1]胡捍英,杨峰义,第三代移动通信系统,北京:人民邮电出版社,2001
    [2]彭林,第三代移动通信技术,北京:电子工业出版社,2003
    [3]易睿得,LTE系统原理及应用,北京:电子工业出版社,2012
    [4]阎磊,MIMO多载波系统的物理层关键技术研究,博士学位论文,天津大学,2009
    [5]李世鹤,TD-SCDMA第三代移动通信系统标准,北京:人民邮电出版社,2006
    [6]李小文,李贵勇,陈贤亮等,第三代移动通信系统、信令及实现,北京:人民邮电出版社,2003
    [7] http://www.datanggroup.cn/templates/T_NewContent/index.aspx?nodeid=21&page=ContentPage&contentid=2517
    [8] http://www.datanggroup.cn/templates/T_NewContent/index.aspx?nodeid=21&page=ContentPage&contentid=3794
    [9]刘小强,朱刚,高速铁路环境中无线信道传输特性的探讨,铁道通信信号,2007,43(4):54~56
    [10]步兵,高速铁路环境下利用无线通信实现铁路信号信息传输的初探,北方交通大学学报,2000,24(5):15~19
    [11]万斌,高峰,李率信等,TD-SCDMA无线网络评估与优化,北京:人民邮电出版社,2009
    [12] Davis L M, Collings I B, Hoeher P, Joint MAP equalization and channelestimation for frequency-selective and frequency-flat fast-fading channels,IEEE Transactions on Communications,2001,49(12):2106~2114
    [13] Smith J I, A computer generated multipath fading simulation for mobile radio,IEEE Transactions on Vehicular Technology,1975,24(3):39~40
    [14] Young D J, Beaulieu N C, The generation of correlated Rayleigh randomvariates by inverse discrete Fourier transforms, IEEE Transactions onCommunications,2000,48(7):1114~1127
    [15] Luo Z, Zhang W, Simulation for correlated Rayleigh fading channels by FIRpulse-shaping filtering, Proceedings of International Conference on WirelessCommunications, Networking and Mobile Computing,2007,1091~1094
    [16] Verschoor A, Kegel A, Arnbak J C, Hardware fading simulator for a numberof narrowband channels with controllable mutual correlation, ElectronicsLetters,1988,24(22):1367~1369
    [17] Goubran R A, Hafez H M, Sheikh A U H, Implementation of a real-timemobile channel simulator using a DSP chip, IEEE Transactions onInstrumentation and Measurement,1991,40(4):709~714
    [18] Lim M S, Park H K, The implementation of the mobile channel simulator inthe baseband and its application to the quadrature type GMSK modem design,Proceedings of IEEE Vehicular Technology Conference,1990,469~500
    [19] Medbo J, Schramm P, Channel models for HIPERLAN/2in different indoorscenarios, March,1998, ETSI/BRAN document no.3ERI085B
    [20] Sykora J, Tapped delay line model of linear randomly time-variant WSSUSchannel, Electronics Letters,2000,36(19):1656~1657
    [21] Yip K W, Ng T S, Efficient simulation of digital transmission over WSSUSchannels, IEEE Transactions on Communications,1995,43(12):2907~2913
    [22] Lecours M, Marceau F, Design and implementation of a channel simulator forwideband mobile radio transmission, Proceedings of IEEE VehicularTechnology Conference,1989,652~655
    [23] Wickert M A, Papenfuss J, Implementation of a real-time frequency-selectiveRF channel simulator using a hybrid DSP-FPGA architecture, IEEETransactions on Microwaves Theory and Techniques,2001,49(8):1390~1397
    [24] Povey G J R, Grant P M, Pringle R D, A decision-directed spread-spectrumRAKE receiver for fast-fading mobile channels, IEEE Transactions onVehicular Technology,1996,45(3):491~502
    [25] Stéphenne A, Champagne B, Effective multi-path vector channel simulator forantenna array systems, IEEE Transactions on Vehicular Technology,2000,49(6):2370~2381
    [26] Alimohammad A, Cockburn B F, Modeling and hardware implementationaspects of fading channel simulators, IEEE Transactions on VehicularTechnology,2008,57(4):2055~2069
    [27] Komninakis C, A fast and accurate Rayleigh fading simulator, Proceedings ofGlobal Telecommunications Conference,2003,3306~3310
    [28] Schafhuber D, Matz G, Hlawatsch F, Simulation of wideband mobile radiochannels using subsampled ARMA models and multistage interpolation,Proceedings of the11th IEEE Signal Processing Workshop on Statistical SignalProcessing,2001,571~574
    [29] Merchan F, Turcu F, Grivel E, Rayleigh fading simulator based on inner-outerfactorization, Signal Processing,2010,90(1):24~33
    [30] Baddour K E, Beaulieu N C, Autoregressive modeling for fading channelsimulation, IEEE Transactions on Wireless Communications,2005,4(4):1650~1662
    [31] Wu P H Y, Duel-Hallen A, Multiuser detectors with disjoint Kalman channelestimators for synchronous CDMA mobile radio channels, IEEE Transactionson Communications,2000,48(5):752~756
    [32] Verdin D, Tozer T C, Generating a fading process for the simulation ofland-mobile radio communications, Electronics Letters,1993,29(23):2011~2012
    [33] P tzold M, Garcia R, Laue F, Design of high-speed simulation models formobile fading channels by using table look-up techniques, IEEE Transactionson Vehicular Technology,2000,49(4):1178~1190
    [34] Zhang Q, Kassam S A, Finite-state Markov model for Rayleigh fadingchannels, IEEE Transactions on Communications,1999,47(11):1688~1692
    [35] Park J M, Hwang G, Mathematical modeling of Rayleigh fading channelsbased on finite state Markov chains, IEEE Communications Letters,2009,13(10):764~766
    [36] Tan C C, Beaulieu N C, On first-order Markov modeling for the Rayleighfading channel, IEEE Transactions on Communications,2000,48(12):2032~2040
    [37] Jakes W C, Microwave Mobile Communications, Hoboken: Wiley-IEEE Press,1994
    [38] Hoeher P, A statistical discrete-time model for the WSSUS multipath channel,IEEE Transactions on Vehicular Technology,1992,41(4):461~468
    [39] Dent P, Bottomley G E, Croft T, Jakes fading model revisited, ElectronicsLetters,1993,29(13):1162~1163
    [40] P tzold M, Laue F, Statistical properties of Jakes’ fading channel simulator,Proceedings of IEEE Vehicular Technology Conference,1998,712~718
    [41] P tzold M, Killat U, Laue F, et al., On the statistical properties of deterministicsimulation models for mobile fading channels, IEEE Transactions on VehicularTechnology,1998,47(1):254~269
    [42] Pop M F, Beaulieu N C, Limitations of sum-of-sinusoids fading channelsimulators, IEEE Transactions on Communications,2001,49(4):699~708
    [43] Li Y, Huang X, The simulation of independent Rayleigh faders, IEEETransactions on Communications,2002,50(9):1503~1514
    [44] Zheng Y R, Xiao C, Improved models for the generation of multipleuncorrelated Rayleigh fading waveforms, IEEE Communications Letters,2002,6(6):256~258
    [45] Xiao C, Zheng Y R, Beaulieu N, Statistical simulation models for Rayleighand Rician fading, Proceedings of International Conference onCommunications,2003,3524~3529
    [46] Zheng Y R, Xiao C, Simulation models with correct statistical properties forRayleigh fading channels, IEEE Transactions on Communications,2003,51(6):920~928
    [47] Wang C X, P tzold M, Methods of generating multiple uncorrelated Rayleighfading processes, Proceedings of the57th IEEE Semiannual VehicularTechnology Conference,2003,510~514
    [48] Wang C X, Yuan D, Chen H H, et al., An improved deterministic SoS channelsimulator for multiple uncorrelated Rayleigh fading channels, IEEETransactions on Wireless Communications,2008,7(9):3307~3311
    [49] Zaji A, Stüber G L, Efficient simulation of Rayleigh fading with enhancedde-correlation properties, IEEE Transactions on Wireless Communications,2006,5(7):1866~1875
    [50] Xiao C, Zheng Y R, Beaulieu N C, Novel sum-of-sinusoids simulation modelsfor Rayleigh and Rician fading channels, IEEE Transactions on WirelessCommunications,2006,5(12):3667~3679
    [51] Alimohammad A, Fard S F, Cockburn B F, et al., An improved SOS-basedfading channel emulator, Proceedings of IEEE Vehicular TechnologyConference,2007,931~935
    [52] Alimohammad A, Fard S F, Cockburn B F, et al., An accurate and compactRayleigh and Rician fading channel simulator, Proceedings of IEEE SpringVehicular Technology Conference,2008,409~413
    [53] Alimohammad A, Fard S F, Cockburn B F, A compact Rayleigh and Ricianfading simulator based on random walk processes, IET Communications,2009,3(8):1333~1342
    [54] P tzold M, Wang C X, Hogstad B O, Two new sum-of-sinusoids basedmethods for the efficient generation of multiple uncorrelated Rayleigh fadingwaveforms, IEEE Transactions on Wireless Communications,2009,8(6):3122~3131
    [55] Rife D C, Boorstyn R R, Single tone parameter estimation from discrete-timeobservations, IEEE Transactions on Information Theory,1974,20(5):591~598
    [56] Tretter S, Estimating the frequency of a noisy sinusoid by linear regression,IEEE Transactions on Information Theory,1985,31(6):832~835
    [57] Kay S, A fast and accurate single frequency estimator, IEEE Transactions onAcoustics, Speech and Signal Processing,1989,37(12):1987~1990
    [58] Fitz M P, Planar filtered techniques for burst mode carrier synchronization,Proceedings of IEEE Global Telecommunications Conference,1991,365~369
    [59] Fitz M P, Further results in the fast estimation of a single frequency, IEEETransactions on Communications,1994,42(234):862~864
    [60] Fitz M P, Lindsey W C, Decision-directed burst mode digital carriersynchronization techniques, IEEE Transactions on Communications,1992,40(10):1644~1653
    [61] Luise M, Reggiannini R, Carrier frequency recovery in all-digital modems forburst-mode transmissions, IEEE Transactions on Communications,1995,43(3):1169~1178
    [62] Mengali U, Morelli M, Data-aided frequency estimation for burst digitaltransmission, IEEE Transactions on Communications,1997,45(1):23~25
    [63] Leung S H, Xiong Y, Lau W H, Modified Kay’s method with improvedfrequency estimation, Electronics Letters,2000,36(10):918~920
    [64] Xiao Y, Wei P, Tai H, Autocorrelation-based algorithm for single-frequencyestimation, Signal Processing,2007,87(6):1224~1233
    [65] Wei G, Yang C, Chen F, Closed-form frequency estimation based onnarrow-band approximation under noisy environment, Signal Processing,2011,91(4):841~851
    [66] Kuo W, Fitz M P, Frequency offset compensation of pilot symbol assistedmodulation in frequency flat fading, IEEE Transactions on Communications,1997,45(11):1412~1416
    [67] Morelli M, Mengali U, Vitetta G M, Further results in carrier frequencyestimation for transmissions over flat fading channels, IEEE CommunicationsLetters,1998,2(12):327~330
    [68] Besson O, Stoica P, On frequency offset estimation for flat-fading channels,IEEE Communications Letters,2001,5(10):402~404
    [69] Hebley M G, Taylor D P, The effect of diversity on a burst-modecarrier-frequency estimator in the frequency-selective multipath channel, IEEETransactions on Communications,1998,46(4):553~560
    [70] Morelli M, Mengali U, Carrier-frequency estimation for transmissions overselective channels, IEEE Transactions on Communications,2000,48(9):1580~1589
    [71] Jeong E R, Jo S K, Lee Y H, Least squares frequency estimation infrequency-selective channels and its application to transmissions with antennadiversity, IEEE Journal on Selected Areas in Communications,2001,19(12):2369~2380
    [72] Jeong E R, Choi G, Lee Y H, Data-aided frequency estimation for PSKsignaling in frequency-selective fading, IEEE Journal on Selected Areas inCommunications,2001,19(7):1408~1419
    [73] Morelli M, Mengali U, Frequency estimation for the downlink of theUMTS-TDD component, IEEE Transactions on Wireless Communications,2002,1(4):1580~1589
    [74] Viswanathan H, Krishnamoorthy R, A frequency offset estimation techniquefor frequency-selective fading channels, IEEE Communications Letters,2001,5(4):166~168
    [75] Nissila M, Pasupathy S, Joint estimation of carrier frequency offset andstatistical parameters of the multipath fading channel, IEEE Transactions onCommunications,2006,54(6):1038~1048
    [76] Abdi A, Zhang H, Tepedelenlioglu C, A unified approach to performanceanalysis of speed estimation techniques in mobile communication, IEEETransactions on Communications,2008,56(1):126~135
    [77] Lee W C Y, Mobil Communications Engineering, McGraw Hill,1982
    [78] Holtzman J, Sampath A, Adaptive averaging methodology for handoffs incellular systems, IEEE Transactions on Vehicular Technology,1995,44(1):59~66
    [79] Lin J, Proakis J G, A parametric method for Doppler spectrum estimation inmobile radio channels, Proceedings of International Conference on Sciencesand Systems,1993,875~880
    [80] Krasny L, Arslan H, Koilpillai D, et al., Doppler spread estimation in mobileradio systems, IEEE Communications Letters,2001,5(5):197~199
    [81] Park G, Heo D, Hong D, et al., A new maximum Doppler frequency estimationalgorithm in frequency domain, Proceedings of the8th InternationalConference on Communication Systems,2002,548~552
    [82]袁圆,郑建宏,王茜竹,基于训练序列的TD-SCDMA系统频偏补偿方法,重庆邮电学院学报(自然科学版),2006,18(3):1~3
    [83]沈静,陈发堂,邱远,TD-SCDMA系统中的载波频率估计方法,重庆邮电学院学报(自然科学版),2006,18(3):313~316
    [84]陈发堂,基于TD-SCDMA系统的快速频率估计算法,通信技术,2008,41(7):41~43
    [85]任修坤,白晓络,沈战峰等,TD-SCDMA系统频偏估计算法,光通信研究,2008,13(1):65~70
    [86]彭仁明,基于相位差的TD-SCDMA终端频偏估计,重庆邮电大学学报(自然科学版),2011,23(5):510~515
    [87] Chen X, Wu W, A new frequency offset estimation algorithm for transmissionsover frequency selective channels, Proceedings of International Conference onWireless and Mobile Communications,2006,1~6
    [88] Huang L, Cao H, Zheng K, et al., Practical frequency synchronization schemein an open software radio TD-SCDMA system, Proceedings of InternationalConference on Wireless and Optical Communications Networks,2007,1~5
    [89] Steiner B, Baier P W, Low cost channel estimation in the uplink receiver ofCDMA mobile radio system, Frequenz,1993,47(11-12):292~298
    [90] Zhang Y, Gu J, Yang D C, Channel estimation in TDD mode, The Journal ofChina Universities of Posts and Telecommunications,2006,13(3):34~37
    [91] Hou J, Tang L, An improved channel estimation method of TD-SCDMAsystem and its performance analysis, Proceedings of IEEE InternationalConference on Network Infrastructure and Digital Content,2010,673~677
    [92] Shi Y, Zhang X, Shen L, An improved channel estimation method ofTD-SCDMA system, Proceedings of International Conference on IntelligentComputation Technology and Automation,2011,439~442
    [93] Hou J, Tang L, An improved channel estimation algorithm of TD-SCDMAsystem, Proceedings of the5th International Conference on CriticalInfrastructure,2010,1~5
    [94]张煜,侯建军,李赵红等,一种TD-SCDMA下行链路信道估计的快速算法,北京交通大学学报:自然科学版,2005,29(2):58~61
    [95] Xue P, Kang D K, Kim D K, Improved multi-cell joint channel estimation forthe TD-SCDMA downlink, IEICE Transactions on Communications,2009,E92-B(4):1244~1251
    [96] Cho D S, Lyu D S, Improved joint channel estimation method withinterpolation, Proceedings of International Conference on Global SignalProcessing Exposition,2003,1326~1330
    [97]刘虎,欧冬秀,宋文涛,循环迭代信道补偿算法,上海交通大学学报,2006,40(5):752~757
    [98] Yang X, He D, Li L, et al., A novel channel estimation method forTD-SCDMA system, Proceedings of International Conference on WirelessCommunications, Networking and Mobile Computing,2006,1~4
    [99] Steiner B, Jung P, Optimum and suboptimum channel estimation for the uplinkof CDMA mobile radio systems with joint detection, European TransactionsOn Telecommunication Related Technologies,1994,5(1):39~50
    [100] Stüber G L, Principles of Mobile Communications, Second Edition, Boston:Kluwer Academic,2001
    [101] Proakis J G, Salehi M, Communication Systems Engineering, Second Edition,London: Prentice Hall,2001
    [102]曹达仲,侯春萍,由磊等,移动通信原理、系统及技术,第二版,北京:清华大学出版社,2011
    [103] Correia L, Mobile Broadband Multimedia Networks: Techniques, Models andTools for4G, Amsterdam: Elsevier,2006
    [104] Tse D, Viswanath P, Fundamentals of Wireless Communication, Cambridge:Cambridge University Press,2005
    [105]吕西午,下一代无线通信系统中天线选择和协作定位技术研究,博士学位论文,天津大学,2011
    [106] Goldsmith A, Wireless Communications, Cambridge: Cambridge UniversityPress,2005
    [107]王华奎,李艳萍,张立毅等,移动通信原理与技术,北京:清华大学出版社,2009
    [108] Rice S O, Mathematical analysis of random noise, Bell System TechnicalJournal,1944,23(3):282~332
    [109] Rice S O, Mathematical analysis of random noise, Bell System TechnicalJournal,1945,24(1):46~156
    [110] Okumura T, Ohmori E, Fukuda K, Field strength and its variability in VHF andUHF land mobile service, Review Electrical Communication Laboratory,1968,16(9-10):825~873
    [111] Hata M, Empirical formula for propagation loss in land mobile radio services,IEEE Transactions on Vehicular Technology,1980,29(3):317~325
    [112] Damosso E, Correia L, Digital Mobile Radio Towards Future GenerationSystems, Luxemburg: European Union,1994
    [113] Patel C S, Stüber G L, Pratt T G, Comparative analysis of statistical models forthe simulation of Rayleigh faded cellular channels, IEEE Transactions onCommunications,2005,53(6):1017~1026
    [114] P tzold M, Killat U, Li Y, et al., Modeling, analysis, and simulation ofnonfrequency-selective mobile radio channels with asymmetrical Dopplerpower spectral density shapes, IEEE Transactions on Vehicular Technology,1997,46(2):494~507
    [115] P tzold M, Mobile Fading Channels, Hoboken: Wiley,2002
    [116] Clarke R H, A statistical theory of mobile-radio reception, Bell SystemTechnical Journal,1968,47(6):957~1000
    [117] Bello P, Characterization of randomly time-variant linear channels, IEEETransactions on Communications,1963,11(4):360~393
    [118] Wang J, Cui Y, Teng J, et al., An improved model for the accurate and efficientsimulation of Rayleigh fading, IEICE Transactions on Communications,2012,E95-B(9):2987~2990
    [119] Wang J, Ma X, Teng J, et al., Efficient and accurate simulator for Rayleigh andRician fading, Transactions of Tianjin University,2012,18(4):243~247
    [120] Karasawa Y, Statistical multipath propagation modeling for broadband wirelesssystems, IEICE Transactions on Communications,2007,90-B(1):468~484
    [121] Tepedelenlioglu C, Giannakis G B, On velocity estimation and correlationproperties of narrowband mobile communication channels, IEEE Transactionson Vehicular Technology,2001,50(4):1039~1052
    [122] Mauritz O, A hybrid method for Doppler spread estimation, Proceedings ofIEEE Spring Vehicular Technology Conference,2004,962~965
    [123] Zhang J, Zhang Q, Li B, et al., Energy-efficient routing in mobile ad hocnetworks: mobility-assisted case, IEEE Transactions on Vehicular Technology,2006,55(1):369~379
    [124] Akyildiz I F, Wang W, The predictive user mobility profile framework forwireless multimedia networks, IEEE Transactions on Networking,2004,12(6):1021~1035
    [125] Abdrabou A, Zhuang W, A position-based QoS routing scheme for UWBmobile ad hoc networks, IEEE Journal on Selected Areas in Communications,2006,24(4):850~856
    [126] Mohanty S, VEPSD: A novel velocity estimation algorithm for next-generationwireless systems, IEEE Transactions on Wireless Communications,2005,4(6):2655~2660
    [127] Souden M, Affes S, Benesty J, et al., Robust Doppler spread estimation in thepresence of a residual carrier frequency offset, IEEE Transactions on SignalProcessing,2009,57(10):4148~4153
    [128] Talukdar K K, Lawing W, Estimation of the parameters of the Ricedistribution, Journal of the Acoustical Society of America,1991,89(3):1193~1197
    [129] Greenstein L J, Michelson D G, Erceg V, Moment-method estimation of theRicean K-factor, IEEE Communications Letters,1999,3(6):175~176
    [130] Abdi A, Tepedelenlioglu C, Kaveh M, et al., On the estimation of the Kparameter for the Rice fading distribution, IEEE Communications Letters,2001,5(3):92~94
    [131] Chen Y, Beaulieu N C, Maximum likelihood estimation of the K factor inRicean fading channels, IEEE Communications Letters,2005,9(12):1040~1042
    [132] Hassan S A, Ingram M A, SNR estimation for M-ARY non-coherent frequencyshift keying systems, IEEE Transactions on Communications,2011,59(10):2786~2795
    [133] Chen J H, Lee Y, Joint synchronization, channel length estimation, andchannel estimation for the maximum likelihood sequence estimator for highspeed wireless communications, Proceedings of IEEE Vehicular TechnologyFall Conference,2002,1535~1539
    [134] Wang X, Wu H C, Chang S Y, et al., Efficient non-pilot-aided channel lengthestimation for digital broadcasting receivers, IEEE Transactions onBroadcasting,2009,55(3):633~641
    [135] Tugnait J K, Tong L, Ding Z, Single-user channel estimation and equalization,IEEE Signal Processing Magazine,2000,17(3):16~28
    [136] Giannakis G, Highlights of statistical signal and array processing: channelestimation and equalization, IEEE Signal Processing Magazine,1998,15(5):37~40
    [137] Farhang-Boroujeny B, Pilot-based channel identification: proposal forsemi-blind identification of communication channels, Electronics Letters,1995,31(13):1044~1046
    [138]侯永宏,数字电视地面传输中的关键技术研究,博士学位论文,天津大学,2009
    [139] Ng M H, Cheung S W, Bandwidth-efficient pilot-symbol-aided technique formultipath-fading channels, IEEE Transactions on Vehicular Technology,2001,50(4):1132~1139
    [140] Cavers J K, An analysis of pilot symbol assisted modulation for Rayleighfading channels, IEEE Transactions on Vehicular Technology,1991,40(4):686~693
    [141] Tavares G N, Tavares L M, Sequence design for data-aided estimation ofsynchronization parameters, IEEE Transactions on Communications,2007,55(4):670~677
    [142] Stoica P, Besson O, Training sequence design for frequency offset andfrequency-selective channel estimation, IEEE Transactions onCommunications,2003,51(11):1910~1917
    [143] Wang J, Cui Y, Teng J, et al., Frequency estimation for the downlink of theTD-SCDMA system over frequency flat Rician fast fading channels, SignalProcessing,2012,92(12):3080~3084
    [144]罗鹏飞,统计信号处理,北京:电子工业出版社,2009
    [145] Kay S M, Saha S, Mean likelihood frequency estimation, IEEE Transactionson Signal Processing,2000,48(7):1937~1946
    [146] Haykin S, Adaptive Filter Theory, Englewood Cliffs: Prentice-Hall,1991
    [147] Kay S M, Fundamentals of Statistical Signal Processing: Estimation Theory,Englewood Cliffs: Prentice-Hall,1993
    [148] Ortega J M, Matrix Theory, New York: Plenum,1991
    [149]王宏禹,随机数字信号处理,北京:科学出版社,1988
    [150]叶中付,统计信号处理,合肥:中国科学技术大学出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700