大粒径沥青混合料基层路面结构力学性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的高速公路,绝大多数面临着重载车多,超载严重的实际情况。同时为了充分利用地材以降低造价原因,基本上都采用半刚性材料为基层沥青路面结构,所以在通车后不久路面就会出现明显的车辙和大量的反射裂缝。一些研究资料表明,采用含大粒径沥青混合料基层的沥青路面结构有望很好地解决这个问题。但这方面的研究还不充分,这种路面结构在实际工程中应用也很少。因此对其进行广泛深入的研究是非常必要的。
     基于上述理由,结合武汉至鄂州高速公路的工程建设,修筑了含大粒径沥青碎石混合料ATB-30基层的试验路。试验路全长600 m,分A、B、C三段。A段路面结构为:46 cm水泥碎石+10 cm ATB-30+8 cm AC-25+6 cm AC-20+4 cm AC-13;B段路面结构是在A段的水泥碎石下基层顶面加铺一层玻纤格栅,其他与A段路面结构相同;C段路面结构为:44 cm水泥碎石+20 cm ATB-30+ 6 cm AC-20+4 cm AC-13。
     在各段试验路的土基顶面和水泥碎石下基层顶面埋设了土压力盒,在沥青碎石基层(ATB-30)的底面和顶面埋设了光纤光栅应变传感器。通过承载板进行了现场静载荷试验,以不同载重的大货车以不同的速度通过试验路段完成了动载试验。通过埋设的应力和应变测量元件,测量了试验段各路面结构层的应力和应变响应。在此基础上,建立了上述路面结构的力学计算模型,用ANSYS软件进行了数值分析,计算结果得到了试验数据的验证。根据该数值计算模型,对大粒径沥青碎石基层路面力学性能,特别是在重载交通荷载下的应力、应变分布规律进行了深入分析,证明该路面结构具有良好的抗剪切流变抗压缩变形能力,因此具有良好的抗车辙性能。
A lot of vehicles running on expressway in China are heavy axle-load trucks, most of which are severely over-loaded. Nearly all of the expressways are covered with asphalt pavement including a semi-rigid base for economic reason. Therefore damage of rutting and reflection cracks is usually observed in their early service period. It has been proved by some researches that an asphalt pavement including large-stone asphalt mixes (LSAM) base is expected to overcome the problem. But it has not been accepted widely in practice in China because the research until nowadays is not efficiently. For this reason, the mechanical response of asphalt pavement including LSAM base is studied by field experiment.
     The experimental LSAM pavement which is 600 m long was constructed in Wuhan-Ezhou Expressway. It includes three sections named respectively as A, B and C. The structure layers of section A is:46 cm cement gravel+10 cm ATB-30+8 cm AC-25+6 cm AC-20+4 cm AC-13. Beside having the same layers of section A, section B has a glass fiber grid at the interface of cement gravel and ATB-30. Section C consists of 44 cm cement gravel+20 cm ATB-30+6 cm AC-20+4 cm AC-13.
     Pressure cells were placed both at the top of soil subgrade and at the top of the cement gravel. At the bottom of ATB-30 and the bottom of AC-25 (for section A and section B) or AC-20 (for section C) fiber grating based (FBG) sensors were embedded for strain measurement.
     Static load tests were carried out by loading plate. A series of traffic load tests were demonstrated by moving trucks under different tire loads. During the static and traffic load tests, the internal pressures and strains of the pavement structure were both measured. Based the analysis of the test data, the mechanical properties of asphalt pavement including LSAM base is discussed. A FEM model which gives a result coinciding with the field experiment, is then proposed by ANSYS Program to conduct a detail analysis on the response of this kind of pavement under traffic loading. The experimental and numerical analysis results prove that asphalt pavement including LSAM base has a good performance against rutting and reflection cracking.
引文
[1]罗国凯,徐茂升.大粒径沥青混合料(LSM)路用性能分析[J].交通标准化,2007,Z1:188-190,191.
    [2]刘中林.大粒径沥青混合料(LSM)粗集料级配马歇尔试验分析[J].内蒙古公路与运输,2001,增刊:58-60.
    [3]沈金安,李福普,陈景.高速公路沥青路面早期损坏分析与防治对策[M].北京:人民交通出版社,2004.
    [4]彭波,李文瑛,危拥军.沥青混合料材料组成与特性[M].北京:人民交通出版社,2007.
    [5]王富玉.大粒径沥青混合料(LSM)的路用性能研究[D].陕西西安:长安大学,2001.
    [6]张志祥,白琦峰.LSM沥青混合料疲劳极限的试验研究[J].中国公路学会2005年学术年会论文集(上),2005:199-203.
    [7]付其林,邓韵发,乔伟.大粒径沥青混合料(LSM)在反射裂缝防治中的应用[J].平顶山工学院学报,2007,16(1):63-66.
    [8]刘春.大粒径沥青混合料LSAM的应用探讨[J].科技资讯,2006,20:85.
    [9]李鸿宾,李娟仿,陈国锋.大粒径沥青混合料LSAM组成结构与强度机理[J].北京交通管理干部学院学报,2006,16(1):23-27.
    [10]王国军.大粒径沥青混合料LSM-30型性能的研究[J].公路,2007,4:149-153.
    [11]王富玉,刘元烈,任立锋.大粒径沥青混合料的路用性能研究[J].公路,2003,2:117-120.
    [12]陆长兵,周清,程庆松,张起森.大粒径沥青混合料的疲劳性能研究[J].公路交通科技,2005,22(9):31-34.
    [13]袁承栋,顾江鸣,薛华,陆长兵.大粒径沥青混合料高温稳定性能研究[J].石油沥青,2004,18(3):14-17.
    [14]资建民,王海军,李福宝,周伟.大粒径沥青混合料基层缓解反射裂缝应力分析[J].华中科技大学学报(城市科学版),2006,23(1):8-12.
    [15]魏建国,查旭东,郑建龙,王秉纲.大粒径沥青混合料基层结构抗裂机理分析[J].公路,2008,4:1-6.
    [16]解晓光,冯德成.大粒径沥青混合料结构层的研究[J].第四届国际道路和机场路面技术大会论文集,2002:189-193.
    [17]张亮.大粒径沥青混合料抗裂性能试验研究[D].湖南长沙:长沙理工大学,2006:53-59.
    [18]冯俊领,张起森,高和生,陈一飞.大粒径沥青混合料力学性能试验研究[J].公路,2006,2:157-160.
    [19]李庆国.大粒径沥青混合料路用性能和施工特性[J].中国市政工程,2005,4:1-3·
    [20]冯俊领.大粒径沥青混合料路用性能研究[D].湖南长沙:长沙理工大学,2004:49-60.
    [21]张起森,查旭东,冯俊领.大粒径沥青混合料路用性能研究[J].长沙理工大学学报(自然科学版),2004,1(1):8-13.
    [22]张宗明,张先锋,陈凤梅.大粒径沥青混合料柔性基层施工与质量控制[J].交通科技与经济,2008,2:16,17.
    [23]孟建党,李德超,李玉磊.大粒径沥青混合应用研究[J].中外公路,2004,24(5):113-116.
    [24]王海军.LSM沥青混合料疲劳极限的试验研究[D].湖北武汉:华中科技大学,2006:55-68.
    [25]刘中林,王富玉,郝培文,陈忠达,戴经梁.大粒径沥青混合料组成结构的研究[J].土木工程学报,2004,37(7):59-63.
    [26]马庆雷,杨斌,陈拴发.大粒径沥青混合料加铺层结构反射裂缝调查及应力分析[J].西安建筑科技大学学报(自然科学版),2005,37(1):901-211.
    [27]罗耀芦.大粒径碎石配合比试验研究[J].公路与汽运,2007,3:321,421.
    [28]臧永超,郭忠印,肖志军.大粒径透水性沥青混合料配合比设计研究[J].石油沥青,2007,21(6):63-67.
    [29]李秋忠,王兵,辛星.大碎石柔性基层沥青性能研究[J].公路,2007,5:141,241.
    [30]吕伟民,王锡通,郑录化.国外沥青稳定柔性基层的材料与结构[J].中外公路,2004,24(6):58,68.
    [31]谢晓刚.沥青稳定碎石基层ATB-30的性能分析与研究[D].湖南长沙:长沙理工大学,2007:66-68.
    [32]李勇,杨永平.柔性基层路面的研究与分析[J].黑龙江交通科技,2007,1:50.
    [33]陈云章.柔性基层路面的研究与分析[J].黑龙江交通科技,2008,6:33.
    [34]接洪林,张国梁.柔性基层与半刚性基层的对比分析[J].黑龙江交通科技,2007,8:43,53.
    [35]苏举.沥青稳定碎石基层(ATB-30)压实性影响因素分析及施工技术研究[D].湖南长沙:长沙理工大学,2007:25-39.
    [36]Wu Zhong, Zhang Zhongjie, King Bill, et al. Instrumentation and accelerated testing on Louisiana flexible pavements. In:Proceedings of the 2006 Airfield and Highway Pavement Specialty Conference,2006,119-130.
    [37]Al-Qadi Imad L., Loulizi Amara, Lahoure Samer, et al. Quantitative field evaluation and effectiveness of fine mix under hot-mix asphalt base in flexible pavements. Transportation Research Record,2003:133-140.
    [38]David Richard L.. Large Stone Mixes:A Historical insight. NAPA Report IS 103/88,1988
    [39]Prithvi S.Kandhal. Large Stone Asphalt Mixes:Design and Construction. NCAT Report No.90-4,1990.
    [40]Kentucky's Experience With Large Size Aggregate in Bituminous Hot-Mix. AAPT,1991.
    [41]A Guide to the Use of Large Stone Mixes. AAPA. Advisory Note 8.
    [42]Large Aggregate Mixes. AAPA. Advisory Note 16.
    [43]Peter L. Vail. The Trail of Three Large Stone Mix Pavements. AAPT,1989.
    [44]Williams Ellis G. Design and Construction of Large Stone HMA Bases in Kentucky. Hot Mix Asphalt Technology,1998.
    [45]Design and Evaluation of Large-Stone Asphalt Mixes. NCHRP Report 386,1997.
    [46]Ali Khodaii, Shahab Fallah, Shahab Fallah, Fereidoon Moghadas Nejad. Effects of geosynthetics on reduction of reflection cracking in asphalt overlays. Geotextiles and Geomembranes,1-8,2009.
    [47]E.A. Subaida, S. Chandrakaran, N. Sankar. Laboratory performance of unpaved roads reinforced with woven coir geotextiles. Geotextiles an Geomembranes,204-210,2009.
    [48]陈拴发,陈华鑫,郑木莲.沥青混合料设计与施工[M].北京:化学工业出版社,2006.319-338,500-506.
    [49]邰连河,张家平.新型道路建筑材料[M].北京:化学工业出版社,2003.211-215.
    [50]黄晓明,朱湘.公路土工合成材料应用原理[M].北京:人民交通出版社,2001.155-163.
    [51]JTJ 052-2000,公路工程沥青混合料试验规程[S].
    [52]JTG F40-2004,公路沥青路面施工技术规范[S].
    [53]JTG E42-2005,公路工程集料试验规程[S].
    [54]王富玉,任立锋,史建,卢丽娜.大粒径沥青混合料(LSAM)强度的形成[J].东北林业大学学报,2004,32(5):92,93,99.
    [55]冯俊领,查旭东,张起森.大粒径沥青混合料(LSM)车辙试验研究[J].长沙交通学院学报,2005,21(1):43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700