鲤鱼肌肉中肌原纤维蛋白的性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲤鱼肌原纤维蛋白(Common Carp Myofibrillar Protein,CCMP)是鲤鱼肌肉中蛋白质的主要成分,鱼制品的加工技术都与其密切相关。目前,国内外对CCMP的性质研究尚少,使得鲤鱼制品的深加工受限。因此本实验以鲤鱼为原料,提取肌原纤维蛋白,研究不同实验条件下CCMP的功能特性,如溶解性、乳化性、起泡性及凝胶特性,确定转谷氨酰胺酶(TG)改善CCMP凝胶性的最佳工艺条件,并采用优化酶解CCMP技术制备具有较强抗氧化活性的酶解物,并对其功能性质进行研究。具体研究内容如下:
     1、试验所采用鲤鱼粗蛋白含量为17.72%,测得肌原纤维蛋白平均含量约为9.86g(每100g肌肉中),占总蛋白含量为55.64%,SDS-PAGE电泳分析表明,肌原纤维蛋白主要由肌球蛋白、肌动蛋白、原肌球蛋白等其他小分子蛋白组成,肌球蛋白是肌原纤维蛋白的主要成分。
     2、研究了CCMP的功能性质,结果表明CCMP在溶液pH偏离蛋白等电点时溶解性较好,且易溶于0.6~1.0mol/L NaCl溶液中;CCMP乳化性和起泡性受溶液pH、NaCl浓度、蛋白浓度、温度条件变化的影响显著,且不同因素条件对CCMP的乳化性和起泡性影响效果不同。
     3、对CCMP的凝胶特性进行了研究,结果表明其适宜的凝胶条件为pH6,NaCl浓度为0.6mol/L,制胶温度升至80℃。向CCMP中添加TG,发现TG可以显著改善CCMP的凝胶强度,通过单因素和响应面实验,得到最佳的工艺条件为:pH为6,反应温度为42.5℃,反应时间为2.25h,TG添加量为0.66%,此条件下实验得到的实际凝胶强度为179.461g,凝胶强度较好。
     4、研究了CCMP的酶解工艺,结果显示木瓜蛋白酶作为水解CCMP的优选蛋白酶,其酶解产物的抗氧化活性较高。经单因素和响应面优化实验,当酶解工艺条件为温度55.6℃,酶的添加量为1118U/g,水解时间为2.1h,在pH为7,底物浓度为4%条件下,此时酶解产物的最大还原力为0.861。对酶解产物的功能性测定结果显示酶解产物在不同pH、NaCl浓度条件下均有很高的溶解性,且pH、NaCl浓度、酶解物浓度、温度条件变化对其乳化性和起泡性影响较大。综合比较CCMP与其酶解产物,发现CCMP的乳化性和泡沫稳定性均高于酶解产物,但起泡能力低于酶解产物。
As an important part of Common Carp meat, Common Carp Myofibrillar Protein (CCMP)is closely related to many processing properties. For now, few papers investigated properties ofCCMP, the futher processing of Common Carp is limited. Therefore, this paper studied on theproperties of the myofibrillar proteins extracted from Common Carp in different experimentalconditions, such as solubility, emulsifying, foaming and gel properties. In order to improve gelproperties, the research on the optimal process of transglutaminase (TG) and CCMP wasdiscussed. Hydrolysates with strong antioxidant activity were prepared by means of enzymatichydrolysis technology on CCMP. The main work in this paper was concluded as follows:
     1. Common Carp protein content is17.72%, and myofibrillar protein content is9.86g (100gmuscle) accounting for55.64%of total protein. The results of myofibrillar protein bySDS-polyacrylamide showed that myosin, actin, tropomyosin and other small molecular proteinconstituted myofibrillar protein. Myosin was the major protein of myofibrillar protein.
     2. Studying on the functional properties of CCMP, the results showed that solubility ofCCMP had higher capability with deviation isoelectric. And CCMP is easy to be dissolved in0.6~1.0mol/L NaCl solution. Emulsifying and foaming properties of CCMP was changedsignificantly by changes of pH, NaCl concentration, protein concentration and temperature.Different factors conditions had different effect on emulsifying and foaming properties ofCCMP.
     3. Studying on Gel properties of CCMP, the results showed that the optimal process ofCCMP gel strength was at80℃, pH6,0.6mol/L NaCl concentration. Gel strength of CCMP wasimproved significantly by addition of TG. By single factor experiment and response surfaceexperiment, results showed that the optimal process of CCMP gel strength as follows: pH6,reaction temperature at42.5℃, reaction time for2.25h, and TG content with0.66%. Gel strengthwas better under the optimum condition, up to179.461g.
     4. Studying on enzymatic hydrolysis process of CCMP, the results showed that higherantioxidant activity of hydrolysates obtained by papain. By single factor experiment andresponse surface experiment, the best condition of the enzyme hydrolysis process was:hydrolysis temperature was55.6℃, enzyme addition was1118U/g and hydrolysis time is2.1h. Then, the biggest reduction power is0.861, in the condition of pH7and4%substrate. The studyon functional properties of hydrolysates showed that hydrolysates of CCMP had better solubilityat different conditions of pH and NaCl concentration. And emulsifying and foaming properties ofhydrolysates was changed significantly by changes of pH, NaCl concentration, hydrolysatesconcentration and temperature. Comprehensive comparison with the emulsifying and foaming ofCCMP and hydrolysates, it demonstrated that emulsifying properties and foam stability ofCCMP was higher than hydrolysates. But foaming capacity was inferior to hydrolysates.
引文
[1]柏芸,熊善柏.我国淡水鱼加工业现状、问题与对策[J].湖北农业科学,2010,49(12):3159-3161,3167.
    [2]牛盾.深入贯彻中央精神·加快推进“十二五”现代渔业建设[J].中国渔业经济,2011,1(29):6-11.
    [3]金晶,周坚,李永丽等.发酵法在淡水鱼鱼糜脱腥中的应用研究[J].武汉工业学院学报,2007,26(4):8-12.
    [4]李明清.鲤鱼肌原纤维蛋白功能特性的研究[D].黑龙江:东北农业大学,2010.
    [5]朱健,王建新,龚永生等.我国鲤鱼遗传改良研究状况[J].浙江海洋学院学报,2000,19(3):265-271.
    [6]张爱荣.糖基化反应改善鲢鱼肉肌原纤维蛋白功能特性的研究[D].北京:中国农业大学,2005.
    [7]郭世良.肌原纤维蛋白和猪肉的热诱导凝胶影响因素及特性研究[D].河南:河南农业大学,2008.
    [8]赵春青,彭增起.肌球蛋白功能特性的研究进展[J].肉类研究,2002,1:17-19.
    [9] Pearson A M, Young R B. Muscle and meat biochemistry[M]. San Diego: Academic Press,1989:457.
    [10] Karpati G. Disorders of voluntary muscle [M]. Cambridge, New York: CambridgeUniversity Press,2010.
    [11]胡娜,乔美靓,刘毅等.乳化型猪皮胶原蛋白的溶解性和乳化性研究[J].肉类研究,2010,6:10-14.
    [12] Saeki H. Preparation of neoglycoprotein from carp myofibrillar protein by maillard reactionwith glucose: biochemical properties and emulsifying properties [J]. J Agric Food Chem.,1997,45(3):680-684.
    [13]潘秋琴,沈培英.花生蛋白的磷酸化改性[J].中国油脂,1997,22(1):25-27.
    [14] Dickinson E, Bergenstahl B. Food colloids: Proteins, lipids and polysaccharides [J].Carbohydrate Polymers,1997,34(4):367-381.
    [15] Damodaran, S. Protein stabilization of emulsions and foams [J]. Journal of Food Science,2005,70(3):54–66.
    [16] Govindaraju, K, Srinivas, H. Studies on the effects of enzymatic hydrolysis on functionaland physico-chemical properties of arachin [J]. Food Science and Technology,2006,39(1):54-62.
    [17] Tsumura, K. Improvement of physicochemical properties of soybean proteins by enzymatichydrolysis [J]. Food Science and Technology Research,2009,15(4):381-388.
    [18] Wu, W U, Hettiarachcchy, N S, Qi, M. Hydrophobicity, solubility, and emulsifyingproperties of soy protein peptides prepared by papain modification and ultrafiltration [J]. Journalof the American Oil Chemists’ Society,1998,75(7):845-849.
    [19] Mannheim, A, Cheryan, M. Enzyme-modified proteins from corn gluten meal: Preparationand functional properties [J]. Journal of the American Oil Chemist’s Society,1992,69(12):1163-1169.
    [20] Agyare, K K, Xiong, Y L, Addo, K. Influence of salt and pH on the solubility and structuralcharacteristics of transglutaminase-treated wheat gluten hydrolysate [J]. Food Chemistry,2008,107(3):1131-1137.
    [21] Giroux, H J, Britten, M. Heat treatment of whey proteins in the presence of anionicsurfactants [J]. Food Hydrocolloids,2004,18(4):685-692.
    [22] Herceg, Z, Lelas, V, Brn i, M, et al. Fine milling and micronization of organic andinorganic materials under dynamic conditions [J]. Powder Technology,2004,139(2):111-117.
    [23] Schmitt, C, Janchez, C, Desobry Banon, J, et al. Structure and technofunctional propertiesof protein–polysaccharide complexes: a review [J]. Critical Reviews in Food Science andNutrition,1998,38(8):689-753.
    [24] Westphalen A D, Briggs J L, Lonergan S M. Influence of muscle type on rheologicalproperties of porcine myofibrillar protein during heat-induced gelation [J]. Meat science,2006,72(4):697-703.
    [25]李艳青.鲢鱼组织蛋白酶活性及提高鱼糜凝胶特性方法的研究[D].黑龙江:东北农业大学,2004.
    [26]杨速攀,彭增起.肌原纤维蛋白凝胶研究进展[J].河北农业大学学报,2003,26:160-162.
    [27] Boyer C, Joandel S, Roussilhes V, et al. Heat-induced gelation of myofibrilla proteins andmyosin from fast and slow-twitch rabbit muscles [J]. Journal of Food Science,1996,61(6):1138-1142.
    [28] Ferry J D. Protein gels [J]. Advances in Protein Chemistry.1948,4:1.
    [29] Sharp A, Offer G. The mechanism of formation of gels from myosin molecules [J]. Journalof the Science of Food and Agriculture,1992,58(1):63-73.
    [30] Liu G, Xiong Y L. Gelation of chicken muscle myofibrillar proteins treated with proteaseinhibiters and phosphates [J]. J. Agric. Food Chem.,1997,45(9):3437-3443.
    [31] Lesio′W T, Xiong, Y L. Mechanism of rheological changes in poultry myofibrillar proteinsduring gelation: a review [J]. Poultry and Avian Biology Reviews,2001,12(4):137–149.
    [32] Luo Y K, Shen H X, Pan D D, et al. Gel properties of surimi from silver carp(Hypophthalmichthys molitrix) as affected by heat treatment and soy protein isolate [J]. FoodHydrocolloids.2008,22(8):1513-1519.
    [33] Xiong Y L, Brekke C J. Changes in proein solution solubility and gelations of chickenmyofibrils during storages [J]. Journal of Food Science,1989,54(4):1141-1146.
    [34]陈立德.肌原纤维蛋白凝胶作用力影响因素的研究[D].重庆:西南大学,2010.
    [35] Nayak R, Kennye P B, Slider, S, et al. Proetin Myofibrillar Protein Solubility of Model Beefbatters as affected by low levels of calcium, magnesium and zinc chloride [J]. Journal of FoodScience,1998,63(6):951-954.
    [36] Yasui T, Ishioroshi M, Nakano H, et al. Heat-induced gelation of myosin in the presence ofactin [J]. Journal of Food Biochemistry,1980,4(2):61-78.
    [37]徐幸莲,周光宏,黄鸿兵等.蛋白质浓度、pH值、离子强度对兔骨骼肌肌球蛋白热凝胶特性的影响[J].江苏农业学报,2004,20(3):159-163.
    [38] Tomberg E. Effects of heat on meat Proteins-implications on structure and quality of meatproducts [J]. Meat Science,2005,70(3):493-508.
    [39]李继红,彭增起.温度、盐浓度和pH对盐溶蛋白热诱导凝胶影响的研究[J].肉类工业,2004,(4):39-41.
    [40]杨琴,胡国华,马正智.海藻酸钠的复合特性及其在肉制品中的应用研究进展[J].中国食品添加剂,2010,(1):164-168.
    [41] Ramirez-Suarez J C, Xiong Y L. Effect of trangluminase-induced cross-lingking on gelationof myofibrillar/soy protein mixtures [J]. Meat science,2003,65(2):899-907.
    [42] Feng, J, Xiong, Y L, Mikel, W B. Effects of thermally/enzymatically modified soy proteinson textural properties of pork frankfurters [J]. Journal of Food Science,2003,68:1220-1224.
    [43] Liu G, Xiong Y L. Thermal transition and dynamic gelling properties of oxidatively midifiedmyosin, β-lactogobulin, soy7s globulin and their mixture [J]. Journal of the Science of Food andAgriculture,2000,80(12):1720-1734.
    [44]王苑.不同处理方式对肌原纤维蛋白和大豆分离蛋白混合凝胶特性的影响[D].江苏:南京农业大学,2007.
    [45]尚永彪,夏杨毅,李洪军.转谷氨酰胺酶对猪肉肌原纤维蛋白凝胶性质的影响[J].食品科学,2009,30(21):135-139.
    [46] Zhu Y, Rinzema, A, Tramper, J, et al. Microbial transglutaminase-a review of its productionand application in food processing [J]. Applied Microbiology and Biotechnology,1995,44(3-4):277-282.
    [47] Yokoyama, K. Nio, N. Kikuchi, Y. Properties and applications of microbial transglutaminase[J]. Applied Microbiology and Biotechnology,2004,64(4):447-454.
    [48]韦航,韦朝英,王荣辉等.转谷氨酰胺酶在食品工业中的应用[J].广西轻工业,2009,25(7):8-9.
    [49] BECKMAN K B, AMES B N. The free radical theory of aging matures [J]. PhysiologicalReviews,1998,78(2):547-581.
    [50]曾卓,王金水,付雅丽.鸡肉蛋白的酶解特性及酶解产物的抗氧化性研究[J].食品工业科技,2008,29(6):126-128.
    [51] Akoh C C, Min D B. Food lipids: Chemistry, Nutrition and Biotecnology [M]. New York:Marcel Dekker,1998.
    [52] Frankel, E N. Lipid oxidation [M]. Dundee, Scotland: The Oil Press,2005.
    [53] Decker, E A, Xiong, Y L, Calvert, J T, et al. Chemical, physical, and functional properties ofoxidized turkey white muscle myofibrillar proteins [J]. Journal of Agricultural and FoodChemistry,1993,41(2):186-189.
    [54]谢宁宁,陈小娥,方旭波等.水产抗氧化肽研究进展[J].浙江海洋学院学报,2010,29(1):74-80.
    [55] Yu L, Haley S, Perret J, et al. Free radical scavenging properties of wheat extracts [J].Journal of Agricultural and Food Chemistry,2002,50(6):1619-1624.
    [56] Alasalvar C, Shahidi F, Miya shita K, et al. Handbook of Seafood Quality, Safety andHealth Applications [M]. Wiley-Blackwell,2010,42:518.
    [57] Lahl W J, Braun S D. Enzymatic production of protein by hydrolysates for food use [J].Food Technology,1994,48:68-72.
    [58] Decker, E A, Crum A D, Calvert J T. Differencesin antioxidant mechanism of carosine inthe presence of copper and iorn [J]. Journal of Agricultural and Food Chemistry,1992,40(5):756-759.
    [59]程时,丁海勤.谷胱甘肽及其抗氧化作用今日谈[J].生理科学进展,2002,33(l):85-90.
    [60] Pomponi S A. The bioprocess-technological potential of the sea [J]. Journal ofBiotechnology,1999,70(1-3):5-13.
    [61] Aneiros A, Garateix A. Bioactive peptides from marine sources: pharmacological propertiesand isolation procedures [J]. Journal of Chromatograph B,2004,803(1):41-53.
    [62] Ren, J Y, Zhao, M M, Shi, J, et al. Purification and identification of antioxidant peptidesfrom grass carp muscle hydrolysates by consecutive chromatography and electrosprayionization-mass spectrometry [J]. Food Chemistry,2008,108(2):727-736.
    [63] Giménez, B, Alemán, A, Montero, P, et al. Antioxidant and functional properties of gelatinhydrolysates obtained from skin of sole and squid [J]. Food Chemistry,2009,114(3):976-983.
    [64] Jae J Y, Qian Z J, Byun H G, Kim S K. Purification and characterization of an antioxidantpeptide obtained from tuna backbone protein by enzymatic hydrolysis [J]. Process Biochemistry,2007,42(5):840-846.
    [65] Zhong S Y, Ma C W, Lin, Y C, et al. Antioxidant properties of peptide fractions from silvercarp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated byelectron spin resonance spectrometry [J]. Food Chemistry,2011,126:1636-1642.
    [66]宋春丽.抗氧化肽的研究进展[J].农产品加工·学刊,2008,(7):112-117.
    [67]段传胜,单杨.淡水鱼鱼糜加工的研究进展与关键性技术探讨[J].农产品加工·学刊,2007(7):52-58.
    [68]陈艳.鱼肉肌原纤维凝胶的modori产生机理研究[D].浙江:浙江工业大学,2004.
    [69] Park D, Xiong Y L, Alderton A L. Concentration effects of hydroxyl radical oxidizingsystems on biochemical properties of procine muscle myofibrillar protein [J]. Food Chemistry,2007,101(3):1239-1246.
    [70]于巍,周坚.鱼类肌原纤维蛋白热凝及流变特性研究进展[J].食品科技,2007,32(11):14-16.
    [71] Nalinanon S, Benjakul S, Kishimura H, et al. Functionalities and antioxidant properties ofprotein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjacktuna [J]. Food Chemistry,2011,124(4):1354-1362.
    [72] Molina E, Papadopoulou A, Ledward D A. Emulsifying properties of high pressure treatedsoy protein isolate and7S and11S globulins [J]. Food Hydrocolloids,2001,15(3):263-269.
    [73]郭凤仙.热处理对大豆分离蛋白结构及功能特性的影响[D].江苏:江南大学,2009.
    [74]张根生,岳晓霞,李继光等.大豆分离蛋白乳化性影响因素的研究[J].食品科学,2006,27(7):48-51.
    [75]申瑞玲,董吉林,姚惠源等.燕麦胶的乳化性和起泡性研究[J].中国粮油学报,2007,22(6):55-57.
    [76]郭延娜,吴菊清,周光宏等.匀浆机转速、pH值和肌原纤维蛋白质浓度对肌原纤维蛋白质乳化特性的影响[J].江苏农业学报,2010,26(6):1371-1377.
    [77]张根生,岳晓霞,李继光,等.大豆分离蛋白乳化性影响因素的研究[J].食品科学,2006,27(7):48-51.
    [78]熊拯,陈敏娥,黄贵秋.海藻酸钠对大豆分离蛋白乳化稳定性的研究[J].钦州学院学报,2009,24(3):44-47.
    [79]曾卫国.花生蛋白溶解性和乳化性的研究[J].农产品加工·学刊,2005,(1):16-18.
    [80]吕银德,赵俊芳,朱永义.蒸谷米糠蛋白功能特性研究[J].粮食加工,2009,34(2):34-36.
    [81]何希强,肖怀秋,王穗萍.豌豆蛋白质起泡性与乳化性研究初探[J].粮油食品科技,2008,16(3):50-54.
    [82]郭兴凤.豌豆蛋白的功能特性研究[J].郑州粮食学院学报,1996,17(1):69-74.
    [83]赵伟华,王志耕,王玲琴等.两种干燥珠蛋白起泡性和乳化活性的研究[J].食品工业科技,2010,31(11):148-150,215.
    [84]李迪,刘晓兰,郑喜群等. pH对膨化玉米蛋白酶解产物功能性质的影响[J].食品工业科技,2007,28(8):123-125.
    [85]吕银德,赵俊芳,朱永义.蒸谷米糠蛋白功能特性研究[J].粮食加工,2009,34(2):34-37.
    [86]徐幸莲,王霞,周光宏等.磷酸盐对肌球蛋白热凝胶硬度、保水性和超微结构的影响[J].食品科学,2005,26(3):42-46.
    [87] Saguer, E, Fort, N, Parés, D, et al. Structure-functionality relationships of porcine plasmaproteins probed by FTIR spectroscopy and texture analysis [J]. Food Hydrocolloids,2007,22(3):459-467.
    [88] Lesiów T, Xiong Y L. Chicken muscle homogenate gelation properties: effect of pH andmuscle fiber type [J]. Meat Science,2003,64(4):399-403.
    [89]杨龙江,南庆贤.肌肉蛋白质的热诱导凝胶特性及其影响因素[J].肉类工业,2001,(10):39-42.
    [90]尚永彪.转谷氨酰胺酶对PSE猪肉的处理效果及机理[D].重庆:西南大学,2009.
    [91]赵玉红.鲢鱼副产物蛋白酶解的研究[D].黑龙江:东北农业大学,2000.
    [92]赵新淮,冯志彪.大豆蛋白水解物水解度测定的研究[J].东北农业大学学报,1995,26(2):178-181.
    [93] Anusha G.P. Samaranayaka, Eunice C.Y. Li-Chan. Autolysis-assisted production of fishprotein hydrolysate with antioxidant properties from pacific hake (Merluccius Productus)[J].Food Chemistry,2008,27:768-776.
    [94]任玮,金振涛,陈亮等.食源性低聚肽体外抗氧化活性研究[J].食品与发酵工业,2008,34(12):44-46.
    [95]丁晓雯,李洪军,章道明.抗氧化肽研究进展[J].食品研究与开发,2003,24(3):36-38.
    [96]冯志彪.大豆蛋白水解物及其在食品工业中应用[J].山西食品工业,1994,(2):33-35.
    [97]赵冬艳,王金水,叶涛.微波处理提高谷朊粉乳化性的研究[J].食品科学,2003,24(5):25-28.
    [98]李玉珍,肖怀秋.大豆分离蛋白不同酶解方式水解度与乳化性和起泡性关系[J].2009,31(2):30-32.
    [99] Kristinsson, H G, Rasco, B A. Fish protein hydrolysates: production, biochemical, andfunctional properties [J]. Critical Reviews in Food Science and Nutrition,2000,40(1):43-81.
    [100] Gbogouri, G A, Linder, M, Fanni, J, et al. Influence of hydrolysis degree on the functionalproperties of salmon byproduct hydrolysates [J]. Journal of Food Science,2004,69(8):615-622.
    [101]玄国东,何国庆,熊皓平等.大米蛋白酶法改性及酶解物功能特性研究[J].中国粮油学报,2005,20(3):1-5.
    [102]郭浩楠,杨荣华,袁晓晴等.鲢鱼蛋白的酶解及其酶解物功能性质的研究[J].中国粮油学报,2010,10(4):106-111.
    [103] Mutilangi, W A M, Panyam, D, et al. Functional properties of hydrolysates fromproteolysis of heat-denatured whey protein isolate [J]. Journal of Food Science,1996,61:270-274,303.
    [104]李升福,郑冬梅,孔保华.玉米蛋白水解物功能特性的研究[J].食品工业科技,2002,23(11):42-45.
    [105] Liu Q, Kong B H, Xiong Y L. et al. Antioxidant activity and functional properties ofporcine plasma protein hydrolysate as influenced by the degree of hydrolysis [J]. FoodChemistry,2010,118(2):403-410.
    [106] Jamdar S N, Rajalakshmi V, Pednekar M D, et al. Influence of degree of hydrolysis onfunctional properties, antioxidant activity and ACE inhibitory activity of peanut proteinhydrolysate [J].Food Chemistry,2010,121(1):178-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700