等规聚丙烯/顺丁橡胶共混物的结构及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用熔融共混法制备了不同共混比和不同加工条件下的等规聚丙烯/顺丁橡胶(iPP/PcBR)共混物,并对它们的相容性、结构及其性能进行了详细研究。
     用DMA测试了iPP/PcBR共混物的相容性。结果显示,共混物两组分之间有部分相容性。当共混时间增加、共混温度升高或共混转速加快时,两组分间的部分相容性没有进一步改善。通过计算平衡熔点值法,证实了DMA的测试结果。
     应用SEM观察了共混物的相形态。分散相呈不规则颗粒状分散在连续相中,当PcBR含量为40-50vol%时,出现了双连续相结构。对SEM图像、SALS的Vv谱图和BSALS图像进行计算机处理发现,分散相含量增加,则分散相尺寸增大,粒径分布变宽;在共混前期,分散相粒径减小,体系分布不均匀,到了中后期,分散相粒径基本不变,体系分布均匀;相结构的改善不随共混温度的升高或者转速的加快呈正比例变化。
     分别采用POM、SALS的Hv谱图和WAXD、SAXS对共混物结晶形态和结构进行了分析。研究发现,PcBR的加入破坏了球晶的完整程度,使球晶边界模糊化,球晶尺寸减小;当加入的PcBR含量小于40vol%时,会诱导PPβ晶产生;另外,共混时间的延长、共混温度或转速的增加,都有利于改善球晶的结晶形态结构。
     用DSC测试了不同共混比的iPP/PcBR共混物的等温和非等温结晶过程。结果显示,添加PcBR,增大了共混物的结晶速率,缩短了结晶诱导时间, PcBR对iPP的结晶起到了异相成核的作用;找到了适合描述我们共混物的等温和非等温结晶过程的模型;添加较高含量的PcBR,使共混物的结晶活化能有所下降。
     力学性能测试显示,添加PcBR相会使共混物拉伸性能下降、冲击性能上升;延长共混时间使共混物的力学性能逐渐改善;降低共混温度或加快共混转速,使得共混物的冲击性能上升;存在最佳的共混温度和转速区间,使得共混物拉伸性能最优。经过流变测试,共混物均表现为非牛顿流体性质;PcBR含量或共混时间增加,共混物的表观粘度增加;共混温度或转速增加,表观粘度减小。用一种新的流变的方法表征了共混物的结晶诱导时间,结果与DSC的测试结果吻合。
Isotactic polypropylene/poly(cis-butadiene) rubber (iPP/PcBR) blends with various blend ratios were prepared by melt mixing under different mixing conditions. The influence of PcBR content and various mixing conditions were investigated in details on structure and properties of iPP/PcBR blends.
     Miscibility of iPP/PcBR blends was studied by dynamic mechanical analysis (DMA). The result showed that iPP and PcBR were partly miscible, which was also validated by calculation of the equilibrium melting temperature of iPP and iPP/PcBR blends. The part miscibility could not improve by means of the increase in mixing time, mixing temperature or mixing rotation speed.
     Phase morphology of iPP/PcBR blends was observed by scanning electron microscope (SEM). The dispersed phase was distributed in the continuous phase in the shape of irregular particles. Co-continuous phase structure appeared as PcBR having 40-50vol% content was added. SEM images of iPP/PcBR blends were dealt with by our soft and some structure parameters were obtained. As the content of the dispersed phase increased, the average size of the dispersed phase increased and the distribution of this phase became broad. During the first 2-3min of mixing, the dispersed phase broke up into smaller particles and it almost didn’t change with the increase of the rest mixing time. The improvement of phase structure wasn’t proportional to the increasing of mixing temperature or rotation speed. Different structure parameters were gained from Vv images of small angle light scattering (SALS) and small angle light back scattering (BSALS), and the same conclusions were gotten by the analysis of change in these parameters.
     Crystalline morphology and structure of iPP/PcBR blends was investigated by polarized optical microscopy (POM), small angle light scattering (SALS), wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SALS), respectively. An increase of PcBR content led to less perfection of spherulites, vaguer boundaries between spherulites and smaller spherulite size. The presence of PcBR also remarkably affected the crystalline structure of iPP. An addition of PcBR with 10-40vol% content caused the form of PPβcrystal. The increase in the content of PcBR, mixing time, mixing temperature or rotation speed involved an improvement in crystalline structure of blends.
     Isothermal and nonisothermal crystallization of iPP/PcBR blends were carried out by differential scanning calorimetry (DSC). The introduction of PcBR resulted in a faster crystallization rate and a shorter crystallization onset time, meaning a heterogeneous nucleation effect of PcBR upon crystallization of iPP. The Avraim equation was suitable for describing the isothermal crystallization initial process of iPP/PcBR. The combined Avrami and Ozawa equation was more appropriate for the nonisothermal crystallization of our blends. Crystallization activation energy of iPP and blends was calculated by the Kissinger equation; the result showed that crystallization activation energy decreased as the content of PcBR was more than 20 vol%.
     Mechanical properties of iPP/PcBR blends were test. The incorporation of PcBR reduced tensile properties. The increase in mixing time or rotation speed and a decrease in mixing temperature were benefit for the enhancement of impact strength of iPP. There existed an optimal mixing temperature or rotation speeds to make tensile properties of iPP most excellent.
     Finally, rheological properties of blends were examined. Neat iPP and iPP/PcBR blends conformed to the law of Non-Newton behavior. For a given shear frequency, with the increase of PcBR content or mixing time, the apparent viscosity of blends increased. However, as mixing temperature or rotation speed increased, the apparent viscosity of blends decreased. The onset time of isothermal crystallization of iPP and iPP/PcBR blends was measured by a novel rheological method, which accords with the results from DSC.
引文
[1] 吴培熙,张留成. 聚合物共混改性, 北京: 中国轻工业出版社, 1996.
    [2] 何曼君, 陈维孝, 董西侠. 高分子物理, 上海: 复旦大学出版社, 1990.
    [3] 唐萍, 李光宪, 黄锐. 多组分聚合物体系热力学理论研究进展, 高等学校化学学报, 1998, 19: 477-482.
    [4] 沈家瑞, 贾德民. 聚合物共混物与合金, 广州: 华南理工大学出版社, 1999.
    [5] Manson J A, Sperling L H 著, 汤华远等译. 聚合物共混物及复合材料, 北京: 化学工业出版社, 1983.
    [6] Martuscelli E. Influence of composition, crystallization conditions and melt phase structure on solid morphology, kinetics of crystallization and thermal behavior of binary polymer/polymer blends. Polym. Eng. Sci, 1984, 24: 563-586.
    [7] 曾汉民, 杨晨. 聚苯硫醚及其聚醚砜共混物结晶动力学的研究.高分子学报, 1989, (5): 538-543.
    [8] 秦川, 殷敬华等.天然橡胶/聚乙烯共混体相容性的研究, 高分子学报, 1989, (6): 714-720.
    [9] Cruz C A, Paul D R, et al. Polyester-Polycarbonate blends. IV. Poly(ε-caprolactone), Journal of Applied Polymer Science, 1979, 23 (2): 589-600.
    [10] Maiti P, Nam P H, Okamoto M. Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites, Macromolecules, 2002, 35: 2042-2049.
    [11] Zhang Q, Yang H, Fu Q. Kinetics-controlled compatibilization of immiscible polypropylene/polystyrene blends using nano-SiO2 particles, Polymer, 2004, 45 (6): 1913-1922.
    [12] Xu G, Shi W F, Hu P, Mo S P. Crystallization kinetics of polypropylene with hyperbranched polyurethane acrylate being used as a toughening agent, European polymer journal, 2005, 41: 1828-1837.
    [13] Zhang Q X, Yu Z Z, Xie X L, et al. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier, Polymer, 2004, 45: 5985-5994.
    [14] 唐颂超, 周达飞. 聚丙烯/顺丁橡胶动态硫化共混物的交联行为和结晶性能的研究, 功能高分子学报,1995,8 (3):237-242.
    [15] Chiu F C, Peng C G. The atactic polystyrene molecular weight effect on the thermal properties and crystal structure of syndiotactic polystyrene/atactic polystyrene blends, Polymer, 2002, 43 (18): 4879-4886.
    [16] Wang C, Liao W P, Wang M L, Lin C C. Miscible blends of syndiotacticpolystyrene and atactic polystyrene. Part 2. Depolarized light scattering studies and crystal growth rates, Polymer, 2004, 45 (3): 973-981.
    [17] Shimizu K, Wang H, Wang Z G, Matsuba G, Kim H D, Han C C. Crystallization and phase separation kinetics in blends of linear low-density polyethylene copolymers, Polymer, 2004, 45: 7061-7069.
    [18] Schneider S, Drujon X, Wittmann J C, Lotz B. Impact of nucleating agents of PVDF on the crystallization of PVDF/PMMA blends, Polymer, 2001, 42 (21): 8799-8806.
    [19] Liu X H, Wu Q J. PP/clay nanocomposites prepared by grafting-melt intercalation, Polymer, 2001, 42: 10013-10019.
    [20] Li C Q, Tian G H, Zhang Y, Zhang Y X. Crystallization behavior of polypropylene/polycarbonate blends, Polymer Testing, 2002, 21 (8): 919-926.
    [21] Matsuba G, Shimizu K, Wang H, Wang Z G, Han C C. Kinetics of phase separation and crystallization in poly(ethylene-ran-hexene) and poly(ethylene-ran-octene), Polymer, 2003, 44: 7459-7465.
    [22] Shaffe E E, Ueda W. Crystallization and melting behavior of poly(ethylene oxide)/poly(n-butyl methacrylate) blends, European Polymer Journal, 2002, 38 (7): 1327-1335.
    [23] Wang K, Wu J S, Ye L, Zeng H M. Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites, Composites: Part A: Applied Science and Manufacturing, 2003, 34: 1199-1205.
    [24] Chiu W Y, Wang F T, Chen L W, et al. Crystallization kinetics and thermal degradation behavior of low-density polyethylene blended with poly(bispropoxyphosphazene), Polym Degrad Stabil, 2000, 67: 223-231.
    [25] 孔继兰,世界聚丙烯工业的发展趋势,当代石油石化,2003,11:20-22.
    [26] Kaminsky W, Kulper K, Brintzinger H H. Polymerisation von propen und buten mit einem chiralen Zirconocen und methylaluminoxan als cokatalysator, Angew. Chem., 1985, 97: 507-508.
    [27] Ewen J A. Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts, J. Am. Che. Soc., 1984, 106: 6355-6364.
    [28] 袁晴棠,聚丙烯技术发展,中国工程科学,2001,3: 29-36.
    [29] 中国石油和化学工业协会,国内外聚丙烯工业分析报告,2004
    [30] 崔小明,我国聚丙烯工业前景可观差距犹存,2005,6:44-46.
    [31] 段予忠,徐凌秀主编.常用塑料原料与加工助剂, 北京:科学技术文献出版社,1991.
    [32] 王珂,史贞,王建民.PP 增韧技术的研究进展, 合成树脂及塑料,1996,13 (3):58-61.
    [33] 晋日亚,贺增第.聚丙烯的改性, 现代塑料加工应用,2001,13 (1):62-64.
    [34] Chun H J, Cho S M, Lee Y M, Lee H K, Suh T S, Shinn K S. Graft copolymerization of mixtures of acrylic acid and acrylamide ontopolypropylene film, Journal of Applied Polymer Science, 1999, 72: 251-256.
    [35] D'Orazio L, Guarino R, Mancarella C, Martuscelli E, Cecchin G. Morphology, crystallization, and thermal behavior of isotactic polypropylene /polymethylmethacrylate blends: Effects of the addition of a graft copolymer of propylene with methylmethacrylate, Journal of Applied Polymer Science, 2001, 79: 143-158.
    [36] Thio Y S, Argon A S, Cohen R E, Weinberg M. Toughening of isotactic polypropylene with CaCO3 particles, Polymer, 2002, 43: 3661-3674.
    [37] Ma G. Q, Yuan X B, Sheng J, Bian D C. Blends of Polypropylene with Poly(cis-butadiene) Rubber II. Small-Angle X-ray Scattering Studies of the Phase Structure of Immiscible Blends of Polypropylene with Poly(cis-butadiene) Rubber, Journal of Applied Polymer Science, 2002, 83: 2088-2094.
    [38] Koberstein J T, Morra B, Stein R S. The determination of diffuse-boundary thickness of polymers by small-angle X-ray scattering, J. Appl. Cryst., 1980, 13: 34-45.
    [39] Motohiro S, Hisao U, Youichi M, et al. Study on the thermodynamic interactions between isotactic polypropylene and ethylene-1-hexene random copolymer by SANS, Macromolecules, 2000, 33: 9712-9719.
    [40] Xu X D, Qiao J L, Yin J H, et al. Preparation of fully cross-linked CNBR/PP-g-GMA and CNBR/PP/PP-g-GMA thermoplastic elastomers and their morphology, structure and properties, Journal of Polymer Science Part B: Polymer Physics, 2004, 42: 1042-1052.
    [41] Radonji G. Compatibilization effects of styrenic/rubber block copolymers in polypropylene/polystyrene blends, Journal of Applied Polymer Science, 1999, 72: 291-307.
    [42] Manchado M A L, Biagiotti J, Kenny J M. Rheological behavior and processability of polypropylene blends with rubber ethylene propylene diene terpolymer, Journal of Applied Polymer Science, 2001, 81: 1-10.
    [43] Baranov A O, Erina N A, Kuptsov S A, Medintseva T I, Prut E V. Interphase layer formation in isotactic polypropylene/ethylene-propylene rubber blends, Journal of Applied Polymer Science, 2003, 89: 249-257.
    [44] Naiki M, Matsumura T, Matsuda M. Tensile elongation of high-fluid polypropylene/ethylene-propylene rubber blends: Dependence on molecular weight of the components and propylene content of the rubber, Journal of Applied Polymer Science, 2002, 83: 46-56.
    [45] Sheng J, Qi L Y, Yuan X B, Shen N X, Bian D C. Blends of Polypropylene with Poly(cis-butadiene) Rubber I. Phase Structure and Morphology of Blends, Journal of Applied Polymer Science, 1997, 64: 2265-2272.
    [46] Mehrabzadeh M, Nia K H. Impact modification of polypropylene by ethylene propylene copolymer-grafted maleic anhydride, Journal of Applied PolymerScience, 1999, 72: 1257-1265.
    [47] Zhang H J, Wang J W, Chen M J, Cao S K, Wang X Q. Toughened polypropylene with balanced rigidity (II): morphology, melt flow rate and melting point of toughening master batch, Polymers for Advanced Technologies, 2000, 11: 342-348.
    [48] Kotter I, Grellmann W, Koch T, Seidler S. Morphology-toughness correlation of polypropylene/ethylene-propylene rubber blends, Journal of Applied Polymer Science, 2006, 100: 3364-3371.
    [49] Jang G S, Jo N J, Cho W J, Ha C S. Isothermal crystallization behavior and properties of polypropylene/EPR blends nucleated with sodium benzoate, Journal of Applied Polymer Science, 2002, 83: 201-211.
    [50] Joseph A, George S, Joseph K, Thomas S. Melting and crystallization behaviors of isotactic polypropylene/acrylonitrile-butadiene rubber blends in the presence and absence of compatibilizers and fillers, Journal of Applied Polymer Science, 2006, 102: 2067-2080.
    [51] Li L B, Zhang L. The influence of thermoelastomers on the crystallization behavior of isotactic polypropylene under shear, Journal of Polymer Science Part B: Polymer Physics, 2006, 44: 1188-1198.
    [52] Purnima D, Maiti S N, Gupta A K. Interfacial adhesion through maleic anhydride grafting of EPDM in PP/EPDM blend, Journal of Applied Polymer Science, 2006, 102: 5528-5532.
    [53] Di Y W, Iannace S, Nicolais L. Thermal behavior and morphological and rheological properties of polypropylene and novel elastomeric ethylene copolymer blends, Journal of Applied Polymer Science, 2002, 86: 3430-3439.
    [54] George S, Varughese K T, Thomas S. Thermal and crystallisation behaviour of isotactic polypropylene/nitrile rubber blends, Polymer, 2000, 41: 5485-5503.
    [55] Wang W Z, Wu Q H, Qu B J. Mechanical properties and structural characteristics of dynamically photocrosslinked PP/EPDM blends, Polym Eng Sci, 2003, 43: 1798-1805.
    [56] Tang L X, Qu B J, Shen X F. Mechanical properties, morphological structure, and thermal behavior of dynamically photocrosslinked PP/EPDM blends, Journal of Applied Polymer Science, 2004, 92: 3371-3380.
    [57] Phinyocheep P, Axtell F H, Laosee T. Influence of compatibilizers on mechanical properties, crystallization, and morphology of polypropylene/scrap rubber dust blends, Journal of Applied Polymer Science, 2002, 86: 148-159.
    [58] Costa H M da, Ramos V D, Rocha M C G. Analysis of thermal properties and impact strength of PP/SRT, PP/EPDM and PP/SRT/EPDM mixtures in single screw extruder, Polymer Testing, 2006, 25: 498-503.
    [59] Abreu F O M S, Forte M M C, Liberman S A. SBS and SEBS block copolymers as impact modifiers for polypropylene compounds, Journal of Applied Polymer Science, 2005, 95: 254-263.
    [60] Asami T, Nitta K H. Morphology and mechanical properties of polyolefinic thermoplastic elastomer I. Characterization of deformation process, Polymer, 2004, 45: 5301-5306.
    [61] Nakason C, Saiwari S, Kaesaman A. Rheological properties of maleated natural rubber/polypropylene blends with phenolic modified polypropylene and polypropylene-g-maleic anhydride compatibilizers, Polymer Testing, 2006, 25: 413-423.
    [62] Silva A L N D, Rocha M C G, Coutinho F M B, Bretas R, Scuracchio C. Rheological, mechanical, thermal, and morphological properties of polypropylene/ethylene-octene copolymer blends, Journal of Applied Polymer Science, 2000, 75: 692-704.
    [63] Paul D R, Bucknall C B. Polymer Blends: Formulation & Performance. John Wiley & Sons. Inc. Chap. 6, 2000.
    [64] Hoffman J D, Week J J. Melting Process and the Equilibrium Melting Temperature of Polychlorotrifluoroethylene. J Res Natl Bur Stand 66A, 1962:13.
    [65] Gallagher K P, Zhang X, Runt J P, Hunyh-ba G, Lin J S. Miscibility and cocrystallization in homopolymer-segmented block copolymer blends, Macromolecules, 1993, 26: 588-596.
    [66] Nishi T, Wang T T. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures, Macromolecules, 1975, 8: 909-915.
    [67] Hu S, Kyu T, Stein R S. Characterization and properties of polyethylene blends I. Linear low-density polyethylene with high-density polyethylene, J Polym Sci, Part B: Polym Phys, 1987, 25: 71-87.
    [68] 钱保功, 许观藩, 余赋生, “高聚物的转变与松弛”, 北京: 科学出版社, 1986.
    [69] Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K. Equilibrium melting temperature of isotactic polypropylene with high tacticity: I. Determination by differential scanning calorimetry, Macromolecules, 2003, 36: 4790-4801.
    [70] Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K. Equilibrium melting temperature of isotactic polypropylene with high tacticity: II. Determination by optical microscopy, Macromolecules, 2003, 36: 4802-4812.
    [71] 张丁浩,聚丙烯/尼龙 1010 体系共混过程中的在线分析及其结构与性能研究:[硕士学位论文],天津;天津大学,2001.
    [72] Debye P, Bueche A N. Scattering by an Inhomogeneous Solid, J. Appl. Phys., 1949, 20: 518-525.
    [73] Goldstein M , Michalik E R. Theory of Scattering by an Inhomogeneous Solid Possessing Fluctuations in Density and Anisotropy, J. Appl. Phys., 1955, 26: 1450-1457.
    [74] Goldstein M. Depolarized Components of Light Scattered by Glasses. II. Influence of Nonannealable Strains on the Scattering, J. Appl. Phys., 1959, 33: 501.
    [75] Stein S, Rhodes M B. Photographic Light Scattering by Polyethylene Films, J.Appl. Phys., 1960, 31: 1873-1884.
    [76] Guinier A, Fournet G, Small-Angle Scattering of X-ray, Willey, New York, 1955.
    [77] Moritani M, Inone T, Motegi M, Kawai H. Light Scattering from a Two-Phase Polymer System. Scattering from a Spherical Domain Structure and Its Explanation in Terms of Heterogeneity Parameters, Macromolecules, 1970, 3: 433-441.
    [78] Stein R S 讲述,徐懋等译. 散射和双折射在高聚物织构中的应用. 北京:科学出版社,1983.
    [79] Scott C E, Macosko C W. Morphology development during the initial stages of polymer-polymer blending, Polymer, 1995, 36: 461-470.
    [80] Ratnagiri R, Scott C E. Phase inversion during compounding with a low melting major component: polycaprolactone/polyethylene blends, Polym Eng Sci, 1998, 38 (10):1751-1762.
    [81] Scott C E, Macosko C W. Model experiments concerning morphology development during the initial stages of polymer blending, Polymer Bull., 1991, 26 (3): 341-348.
    [82] Elemans P H M, Bos H L, Janssen J M H. Transient phenomena in dispersive mixing. Chem Eng Sci., 1993, 48 (2): 267-276.
    [83] Labour T, Vigier G, Seguela R, Gauthier C, Orange G, Bomal Y. Influence of the β-crystalline phase on the mechanical properties of unfilled and calcium carbonate-filled polypropylene: Ductile cracking and impact behavior, J Polym Sci, Part B: Polym Phys, 2002, 40 (1): 31-42.
    [84] Varga J. β-Modification of polypropylene and its two-component systems, J Therm Anal, 1989, 35: 1891-1912.
    [85] Varga J. Melting memory effect of the beta-modification of polypropylene, J Therm Anal, 1986, 31: 165-172.
    [86] Stocker W, Schumacher M, Braff S, Thierry A, Wittmann J C, Lotz B. Epitaxial crystallization and AFM investigation of a frustrated polymer structure: Isotactic poly(propylene), beta phase, Macromolecules, 1998, 31: 807-814.
    [87] Meille S V, Ferro D R, Bruckner S, Lovinger A, Padden F J. Structure of β-isotactic polypropylene: a long-standing structural puzzle, Macromolecules, 1994, 27: 2615-2622.
    [88] Lobinger A J. Microstructure and unit-cell orientation in α-polypropylene, J Polym Sci Part B: Polym Phys, 1983, 21: 97-110.
    [89] Moitzi J, Skalicky P. Shear-induced crystallization of isotactic polypropylenemelts: isothermal WAXS experiments with synchrotron radiation, Polymer, 1993, 34: 3168-3172.
    [90] Somani R H, Hsiao B S, Nogales A, Srinivas S, Tsou A, Sics I, Balta-Alleja F J, Ezauerra T A. Structure development during shear flow-induced crystallization of i-PP: in-situ small-angle X-ray scattering study, Macromolecules, 2000, 33: 9385-9394.
    [91] Somani R H, Hsiao B S, Nogales A, Fruitwala H, Srinivas S, Tsou A. Structure development during shear flow induced crystallization of i-PP: In situ wide-angle X-ray diffraction study, Macromolecules, 2001, 34: 5902-5909.
    [92] Turner Jones A, Aizlewood Jean M, Beckett D R. Crystallization forms of isotactic polypropylene, Macromolecular Chemistry and Physics, 1964, 75, (1): 134-158.
    [93] 邵毓芳,嵇根定. 高分子物理实验,南京:南京大学出版社,1998,54-56.
    [94] Avrami M. Kinetics of phase change I general theory, J Chem Phys, 1939, 7: 1103-1112.
    [95] Avrami M. Kinetics of phase change II transformation-time relations for random distribution of nuclei, J Chem Phys, 1940, 8: 212-224.
    [96] Avrami M. Granulation, phase change, and microstructure kinetics of phase changeIII, J Chem Phys, 1941, 9: 177-184.
    [97] Ozawa T. Kinetics of non-isothermal crystallization, Polymer, 1971, 12 (3): 150-158.
    [98] Tobin M C. Theory of phase transition kinetics with growth site impingement. III. Mixed heterogeneous-homogeneous nucleation and nonintegral exponents of the time, J Polym Sci Part B: Polym Phys, 1977, 15 (12): 2269-2270.
    [99] Clark E J, Hoffman J D. Regime III crystallization in polypropylene, Macromolecules, 1984, 17 (4): 878-885.
    [100] Khanna Y P. A barometer of crystallization rates of polymeric materials, Polym Eng Sci, 1990, 30 (24): 1615-1619.
    [101] Cazé C, Devaux E, Crespy A, Cavrot J P. A new method to determine the Avrami exponent by d.s.c. studies of non-isothermal crystallization from the molten state, Polymer, 1997, 38 (3): 497-502.
    [102] Liu T X, Mo Z S, Wang S Q, Zhang H F. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone), Polym Eng Sci, 1997, 37 (3): 568-575.
    [103] Evans U R. The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals, Transactions of the Faraday Society, 1945, 41 (0): 365-374.
    [104] Kissinger H E. Reaction Kinetics in Differential Thermal Analysis, Anal Chem, 1957, 29 (11): 1702-1706.
    [105] Avalos F, Lopez-Manchado M A, Arroyo M. Crystallization kinetics of polypropylene: 1. Effect of small additions of low-density polyethylene,Polymer, 1996, 37 (25): 5681-5688.
    [106] 吴其晔,巫静安. 高分子材料流变学,北京:高等教育出版社,2002.
    [107] Zuidema H. Flow induced crystallization of polymer, Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, Netherlands, 2000.
    [108] Vleeshouwers S, Meijer H E H. A rheological study of shear induce crystallization, Rheol. Acta., 1996, 35: 391-399.
    [109] Ito H, Kikutani T, Toada K, Takimot J, Koyama K. Modelling and numerical simulation of polymer crystallization in injection moulding process, In Proceedings regional PPS meetings, Goteborg Sweden, 1998.
    [110] Hadinata C, Gabriel C, Ruellman M, Laun H M. Comparison of shear-induced crystallization behavior of PB-1 samples with different molecular weight distribution, J. Rheol., 2005, 49: 327-349.
    [111] Lagasse R R, Maxwell B. An experimental study of the kinetics of polymer crystallization during shear flow, Polym Eng Sci, 1976, 16: 189-199.
    [112] Nieh J, Lee L J. Hot plate welding of polypropylene, Part I: Crystallization kinetics, Polym Eng Sci, 1998, 38: 1121-1132.
    [113] Teh J W, Blom H P, Rudin A. A study on the crystallization behavior of polypropylene, polyethylene and their blends by dynamic mechanical and thermal methods, Polymer, 1994, 35: 1608-1680.
    [114] Carrot C, Guillet J, Boutahar K. Rheological behavior of a semi-crystallization polymer during isothermal crystallization, Rheol. Acta., 1993, 32: 566-574.
    [115] Chen Q, Fan Y R, Zheng Q. A novel approach to rheological characterization for the gelation in polymer crystallization, Chinese Journal of Polymer Science, 2005, 23: 423-434.
    [116] Fan Y R, Chen Q, Zheng Q. Characterization of physical gelation in the isothermal polymer crystallization, Proc. XIVth Int. Congr. on Rheol. 2004, RE11-1-RE11-3.
    [117] 陈青,范毓润,李文春,郑强. HDPE 等温结晶中液-固转变的流变特性, 高等学校化学学报,2006, 2: 365-368.
    [118] Ferry J D. Viscoelastic properties of Polymers, Wiley, New York, 1980.
    [119] Vrentas C M, Graessley W W. Relaxation of shear and normal stress components in step-strain experiments, J. Non-Newtonian Fluid Mech., 1981, 9: 339-355.
    [120] Venerus D C, Brown E F, Burghardt W R. The nonlinear response of a polydisperse polymer solution to step strain deformations, Macromolecules, 1998, 31: 9206-9212.
    [121] Laun H M. Description of non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function, Rheol. Acta, 1978, 17: 1-15.
    [122] Koscher E, Fulchiron R. Influence of shear on polypropylene crystallization: morphology development and kinetics, Polymer, 2002, 43: 6931-6942.
     [123] Wassner E, Maier R D. Shear-induced crystallization of polypropylene melts, the XIIIth international congress on rheology, Cambridge, UK, 2000: 1-183-1-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700