新型杯芳烃化合物的合成、识别及几种吸收性树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以间苯二酚为反应底物,分别与六种芳香醛合成了相应的杯[4]间苯二酚芳烃,并通过红外光谱和氢核磁共振谱对这些化合物进行了表征。其中,用香草醛(4-羟基-3-甲氧基苯甲醛)、异香草醛(3-羟基-4-甲氧基苯甲醛)以及3,4,5-三甲氧基苯甲醛合成的杯[4]间苯二酚芳烃为首次合成。
     在2,8,14,20-四对氯苯基杯[4]间苯二酚芳烃37的DMF溶液中,得到了该烃与DMF形成的配合物单晶。测试结果表明,该晶体以C2h构型的椅式构象存在,37分子与DMF分子间的氢键(包括C—H…O与O—H…C弱氢键)作用导致了这一构象的生成。该晶体为片状的三维网络结构,其形成可以被看作是在晶体状态下37分子被DMF“准完全溶剂化(quasi-complete)”的状态。
     采用两条路线成功合成了一种在杯[4]芳烃下缘引入α-苯乙胺的酰胺结构的化合物。路线一的方法是以杯芳烃作为起始的反应平台,将分子链分为几个部分依序与之接合,最后用二氯甲烷-甲醇重结晶的方法纯化产物;路线二的方法则是先合成相应的分子链化合物,然后将其一步链接到杯芳烃平台下缘得到目标产物,最后用生成锌配合物中间体的方法纯化。路线一的产率(45.6%)要高出路线二的产率(23.5%)近一倍。
     合成了对叔丁基杯[4]芳烃L-苯丙氨酸乙酯Schiff碱以及一种新的杯芳烃二醛和新的杯芳烃二溴化物。并分析研究了作为杯芳烃配合物的客体之一的苦味酸锰的晶体结构。苦味酸根离子为正交晶系,与锰离子没有配位作用。苦味酸根离子没有形成配合物,它们是通过静电和氢键作用力排列在一起的。堆积在一起的苦味酸锰分子中的苯环间存在错位面对面π-π堆积作用。每个苦味酸锰晶胞含有两个水分子结晶。
     首次使用钨酸钠作交联剂制备了交联的聚丙烯酸树脂WPAA,并分别用氢氧化钠中和部分树脂得到WPAA-Na以及首次向树脂中引入三乙醇胺得到WPAA-TEA,将上述三种树脂分别进行了红外光谱、热稳定性以及扫描电镜的表征,并将后两种树脂做了吸液性能的测试,结果表明,用钨酸钠交联的聚丙烯酸树脂WPAA-Na和WPAA-TEA有相对较好的吸水和耐盐性能,特别是后者表现出了较高的耐盐性。此外,通过对WPAA-Na的制备与吸水性能的一系列正交实验分析后得出,当单体浓度为45.5%、反应温度为90oC、交联剂浓度为0.4%、引发剂过硫酸钾浓度为1.1%以及中和度为0.85时,树脂的吸水倍率为佳。
     首次使用含有多个羟基的大环超分子类化合物杯芳烃和环糊精分别与丙烯酸单体进行交联共聚,同时还引入了醇胺、肌醇和辛醇等含有羟基的小分子。通过对这些聚合物吸收树脂的吸收性能测试发现:对叔丁基杯[4]、[6]、[8]芳烃交联聚合的聚丙烯酸树脂的吸水率和耐盐性各有高低;上述三种树脂对纯的DMF基本无吸收作用,而加入少许水后就有明显吸收;引入上述含有羟基的小分子后的这类树脂的吸液性能与现有的一些高吸收性树脂接近;三种聚丙烯酸酯类树脂对几种有机溶剂的吸收效果大体上与溶剂的极性大小顺序一致。
     在制备β-环糊精-聚苯乙烯内含复合物的探索中,我们采用三种方法即水溶剂法、四氢呋喃溶剂法和研磨法进行制备。结果只有在用四氢呋喃溶剂法制备的过程中得到一固体产物,在红外光谱测试结果中被认为同时含有环糊精和聚苯乙烯的结构(具体结构有待进一步确定),其余各产物均为相对纯净的β-环糊精或聚苯乙烯固体。
     以聚乙二醇1000为模板成功制备了二氧化硅微球催化剂,使用红外光谱和扫描电镜对其进行了分析和观察。以聚丙烯酸为模板成功制备了钨酸铜多孔微球催化剂,使用高分辨率的场发射透射电镜以及X-射线粉末衍射仪对其进行了形貌的观察和物相的分析。
Six calix[4]recorcinarenes are synthesized by the reaction of resorcin as substrates with six aromatic aldehydes, respectively. These compounds are characterized by IR spectra and 1H NMR spectra. Calix[4]recorcinarenes synthesized with vanillin, isovanillin and 3,4,5-trimethoxy benzaldehyde are first prepared.
     Single-crystal of coordination compound 4-chlorobenzaldehyde calix[4]resorcinarene 37-DMF is obtained in solution of 4-chlorobenzaldehyde calix[4]resorcinarene in DMF. The crystal adopts the C2h symmetrical chair conformation. The force of intermolecular hydrogen bonds, including C—H…O and O—H…C, results in the formation of this conformation. The crystal has a sheet structure with three-dimensional network, and can be regarded as“quasi-complete solvation”of 37 by DMF in the crystalline state.
     A compound of calix[4]arene,α-phenylethylamine-amides on whose lower rim, are synthesized with two routes. One route is that the groups are connected to calix[4]arene step by step, and the products are purified with recrystallization. The other is that the groups are first synthesized, and then are connected to calix[4]arene by one step. The products are purified with zinc coordination compound as intermediate. Adopting the two routes, the yields are 45.6% and 23.5%, respectively.
     The p-tert-butylcalix[4]arenes respectively containing L-phenylane ethyl ester-based Schiff base, aldehyde groups and alkylbromides are synthesised. Hexaaquamanganese(Ⅱ) dipicrate dihydrate is prepared and characterized by single-crystal X-ray diffraction. The anion of picrate is orthorhombic, space group Pccn, and has no coordinative interaction with the manganese metal cation. The picrate anions are uncoordinated, and bound together by electrostatic attraction and hydrogen bonds.They areπ-stacked end to end. There are two lattice water molecules in one unit cell of the compound.
     Sodium tungstate was first employed as crosslinker in the preparation to achieve a better cross linked polymer WPAA. Sodium hydroxide and tris(2-hydroxyethyl)amine(TEA) are introduced in the preparation of WPAA-Na and WPAA-TEA hydrogels, respectively. The crosslinked polymers are characterized by IR spectra, thermogravimetetric analysis and scanning electron microscopy. The liquid absorbencies of WPAA-Na and WPAA-TEA are investigated. Results indicate that WPAA-Na and WPAA-TEA show better salt-resistances and water-absorbing rates. Results of a series of orthogonal design methods demonstrate that a crosslinked PAA superabsorbent composite with sodium tungstate, which is synthesized with a composition of 45.5 wt% of monomer, 0.4 wt% of crosslinker, 1.0 wt% of initiator, a neutralization degree of 83%, and a reaction temperature of 90℃, has a good water absorbency.
     Supermolecular compounds with several hydroxyl groups, containing calix[4]arenes and cyclodextrins, are first used to crosslinking copolymerize with acrylic monomers. Small molecules with hydroxyl groups, as of alcohol amines, inositols and capryl alcohols, etc. are introduced in the preparation of the crosslinking copolymers. The liquid absorbencies of these copolymers are investigated, and results show that water-absorbing rates and salt-resistances of copolymers with p-tert-butylcalixarenes are different. They show little absorption to DMF, and obvious absorption to mixture of DMF and a dram of water. Small molecules with hydroxyl groups make the liquid absorbencies of these copolymers correspond to those of some present super absorb resins. The rates of absorbing organic solvents by three poacrylic esters are substantially in accord with the order of polarity of these solvents.
     Three methods are used to prepare inclusion complexes between cyclodextrins and polystyrene. Only a solid product, which is considered with structure of cyclodextrins and polystyrene by IR spectra, is prepared with THF as solvent. It’s specific structure needs further confirm.
     Silicon dioxide microspherical catalyst, which is prepared with polyethylene glycol 1000 as template, is charactered by IR spectra and SEM. Porous copper tungstate microspherical catalyst, which is prepared with polyacrylic acid as template, is charactered by TEM and XRD.
引文
[1]Salem L, Chapuisat X, Segal G, eds, Chirality forces, J. Am. Chem. Soc., 1987, 109(10): 2887~2894
    [2]陈淑华,李东红,袁立华等,杯芳烃类受体的分子识别作用研究进展,有机化学,1999,19(4):339~347
    [3]Iwamoto K, Shinkai S, Synthesis and ion selectivity of all conformational isomers of tetrakis[(ethoxycarbonyl)methoxy]calix[4]arene, J. Org. Chem., 1992, 57: 7066~7073
    [4]Gutsche C D, Dhawan B, No K H, eds, Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol, J. Am. Chem. Soc.,1981, 103(13): 3782~3792
    [5]Coruzzi M, Andreetti G D, Bocchi V, eds, Molecular inclusion in functionalized macrocycles. Part 5. The crystal and molecular structure of 25,26,27,28,29-pentahydroxycalix[5]arene–acetone (1 : 2) clathrate, J. Chem. Soc., Chem. Perkin Trans. 2, 1982, 1133~1138
    [6]Ninagawa A, Matsuda H, Formaldehyde polymers, 29. Isolation and characterization of calix[5]arene from the condensation product of 4-tert-butylphenol with formaldehyde, Makromol. Chem., Rapid Commun., 1982, 3: 65~67
    [7]Nakamoto Y, Ishida S, Calix[7]Arene from 4-tert-butylphenol and formaldehyde, Makromol. Chem., Rapid Commun., 1982, 3: 705~707
    [8]Gutsche C D,“Calixarenes”The Royal Society of Chemistry, 1989
    [9]陈淑华,罗光荣,生物有机化学,四川:四川大学出版社,1991.272
    [10]Gutsche C D, Calixarenes, Acc. Chem. Res., 1983, 16: 161~170
    [11]Mckervey M A, Seward E M, Ferguson G, Molecular receptors. Synthesis and X-ray crystal structure of a calix[4] arene tetracarbonate-acetonitrile (1:1) clathrate, J. Org. Chem., 1986, 51: 3581~3584
    [12]Hamann B L, Shimizu K D,Rebek J J, Reversible Encapsulation of Guest Molecules in a Calixarene Dimer, Angew. Chem. Int. Ed Engl., 1996, 35: 1326~1329
    [13] Ungaro R, Arduini A, Casnati A, New synthetic receptors based on calix[4]arenes for the selective recognition of ions and neutral molecules, Pure & Appl. Chem. 1996, 68: 1213~1218
    [14]Schatz J, Schildbach F, Lentz A, eds, Thermal gravimetry, mass spectrometry and solid-state 13C NMR spectroscopy—simple and efficient methods to characterize the inclusion behaviour of p-tert-butylcalix[n]arenes, J. Chem. Soc., Perkin Trans. 2, 75~78
    [15]Perrin R, Harris S, in Calixarenes,“A Versatile Class of Macrocyclic Compounds”Kluwer Academic Publishers, 1991, 235
    [16]Atwood J L, Koutsantonis G A, Raston C L, Purification of C60 and C70 by selective complexation with calixarenes, Nature, 1994, 368: 229~231
    [17]Suzuki T, Nakashima K, Shinkai S, Very Convenient and Efficient Purification Method for Fullerene(C60) with 5, 11, 17, 23, 29, 35, 41, 47-Octa-tert-butylcalix[8]arene-49, 50, 51, 52, 53, 54, 55, 56-octol, Chem. Lett., 1994, 699~702
    [18]查五一,费维扬,杯—[8]—酚超分子包结物纯化C60方法的改进,化学通报,1999,4:39~42
    [19]何俊,安绪武,王真筠,水溶液中对磺酸钠杯[8]芳烃醚与芘间的相互作用,化学学报,1999,57(12):1332~1337
    [20]Chawla H M, Srinivas K M, Calix(n)arene-quinone interactions: Molecular recognition of 2,6-naphthoquinone by 5,11,17,23,29,35-hexa-tert-butyl-37, 38, 39, 40, 41, 42-hexahydroxycalix(6)arene, Tetrahedron, 1995, 51: 2709~2718
    [21]Zhang L, Godinez L A, Lu T B, eds, Interfacial molecular recognition. Binding of monolayer-anchored ferrocene groups by an amphiphilic calixarene host, Angew. Chem. Int. Ed Engl.,1995, 34: 235~237
    [22]Timmerman P, Brinks E A, Reinhoudt W V D N, J. Chem. Soc., Chem. Commun., 1995, 417~418
    [23] Roichi C, Kozuhiko, Salmonella Live Vaccine, Jpn. Kokai Tokoyo Koho JP 07, 206, 706, 1995
    [24]韩宝航,刘育,陈荣悌,水溶性杯芳烃对染料客体分子的包结配位作用,化学学报,2001,59(4): 550~555
    [25]Rebek J, Host–guest chemistry of calixarene capsules, Chem. Commun, 2000, 637~643
    [26]Conn M M, Reberk J, Jr, Self-Assembling Capsules, Chem. Rev., 1997, 97: 1647~1668
    [27]李东红,陈淑华,赵华明,杯[6]芳烃—双金属卟啉仿P—450酶模型的研究Ⅳ.对异丙苯氧化的催化行为,化学学报,2002,60(1):139~142
    [28]刘宇,陶雅秋,曹炎炎,杯芳烃的超分子化学研究(Ⅳ):对—叔丁基杯[4]芳烃对ATP的分子识别及液膜传输作用,化学学报, 2002,60(6):1111~1115
    [29] Kubo Y, Maeda S, Tokita S, eds, Colorimetric chiral recognition by a molecular sensor, Nature, 382: 522~524
    [30]Hamuro Y, Calama M C, Park H S, A Calixarene with Four Peptide Loops: An Antibody Mimic for Recognition of Protein Surfaces, Angew. Chem., Int. Ed. Eng., 1997, 36: 2680~2683
    [31]Park H S, Lin Q, Hamiton A D, Protein Surface Recognition by Synthetic Receptors: A Route to Novel Submicromolar Inhibitors for -Chymotrypsin, J. Am. Chem. Soc., 1999, 121: 8~13
    [32]Molenveld P, Kapsabelis S, Engbersen J F, eds, Highly Efficient Phosphate Diester Transesterification by a Calix[4]arene-Based Dinuclear Zinc(II) Catalyst, J. Am. Chem. Soc., 1997, 119: 2948~2949
    [33]Molenveld P, Stikvoort W M G, Kooijman H, eds, Dinuclear and Trinuclear Zn(II) Calix[4]arene Complexes as Models for Hydrolytic Metallo-Enzymes. Synthesis and Catalytic Activity in Phosphate Diester Transesterification, J. Org. Chem., 1999, 64, 3896~3906
    [34]Molenveld P , Engbersen J F J , Reinhoudt D N , Dinuclear Bisimidazolyl-Cu(II) Calix[4]arenes as Metalloenzyme Models. Synthesis and Bifunctional Catalysis in Phosphate Diester Transesterification, J. Org. Chem., 1999, 64, 6337~6341
    [35]Rondelez Y, Sénèque O, Rager M N, eds, Biomimetic Copper(i)-CO Complexes: A Structural and Dynamic Study of a Calix[6]arene-Based Supramolecular System, Chem. Eur. J., 2000, 6: 4218~4226
    [36]Prins L J, Jong F D, Timmerman P, eds, Nature, 2000,408: 181~184
    [37]Casnati A, Jacopozzi P, Pochini A, eds, Bridged calix[6]arenes in the cone conformation: New receptors for quaternary ammonium cations, Tetrahedron, 1995, 51: 591~598
    [38]Mandolini L, Ungaro R, Calixarene in Action, Imperial College Press, London, 2000
    [39] B?hmer V, Calixarenes, Macrocycles with (Almost) Unlimited Possibilities, Angew. Chem., Int. Ed. Eng., 1995, 34: 713~745
    [40]Gutsche C D, In Calixarene Revisited, in Monographs in Supermolecular Chemistry, Ed.: Stoddart J F, Royal Society of Chemistry, London, 1998
    [41]Shinkai S,“Bioorganic Chemistry Frontiers 1”, Ed by Dugas H., Springer-Verlag Berlin Heidelberg, 1990, 178 and references cited therein
    [42]Arduini A, Pochini A, Reverberi S, eds, The preparation and properties of a new lipophilic sodium selective ether ester ligand derived from p-t-butylcalix[4]arene, Tetrahedron, 1986, 42: 2089~2100
    [43]Ikeda A, Shinkai S, On the Origin of High Ionophoricity of 1,3-Alternate Calix[4]arenes: .pi.-donor Participation in Complexation of Cations and Evidence for Metal-Tunneling through the Calix[4]arene Cavity, J. Am. Chem. Soc., 1994, 116: 3102~3110
    [44]Arimura T, Kubota M, , Manabe T, eds, Formation of solvent-separated ions pairs in calixarene ester-alkali picrate complexes Bull. Chem. Soc. Jpn., 1989, 62: 1674~1676
    [45]Shinkai S, Otsuka T, Fujimoto K, eds, Metal Selectivity of Conformational Isomers Derived from p-t-Butylcalix[4]arene, Chem. Lett., 1990, 19: 835~838
    [46]Inoue Y, Fujiwara C, Wada K, eds, Lariat effect visualized through the bathochromic shift of counter anion absorption, J. Chem. Soc. Chem. Commun., 1987, 393~394
    [47]Deng G, Sakaki T, Kawahara Y, Shinkan S, Light-switched ionophoric calix[4]arenes Teteahedron Lett., 1992, 33: 2163~2166
    [48]Deng G, Sakaki T, Nakashima K, eds, Light-Responsive Metal Encapsulation in Calix[4]arene, Chem. Lett., 1992, 21: 1287~1290
    [49]murakarm H, Shinkai S,“Metal-switched”molecular receptor site designed on a calix[4]arene platform, Tetrahedron Lett., 1993, 34: 4237~4240
    [50]Bethell D, Dougherty G, Cupertino D C, Selectivity in redox-switched calix[4]arene cationophores: electrochemical detection of a conformational change on cation binding, J. Chem. Soc. Chem. Commun., 1995, 675~676
    [51]Aoki I, Kawabata H, Nakashima K, eds, Fluorescent calix[4]arene which responds to solvent polarity and metal ions, J. Chem. Soc. Chem. Commun., 1991, 1771~1773
    [52]Izuo A, Toru S, Satoru T, eds, Molecular design of calix[4]arene-based fluorescent hosts, Tetrahedron Lett., 1992, 33:89~92
    [53]Aoki I, Sakaki T, and Shinkai S, A new metal sensory system based on intramolecular fluorescence quenching on the ionophoric calix[4]arene ring, J. Chem. Soc. Chem. Commun., 1992, 730~732
    [54]Okada Y, Sugitani Y, Kasai Y, eds, The Catalytic Activity of Ionophoric Calix[4]arene Analog, Bull. Chem. Soc. Jpn., 1994, 67: 586~588
    [55]Fumiyuki N, Masahiro G, Keisuke O, New Calixarene Derivative, Extractant for Metal of Rare Earth Element Comprising the Same as Active Ingredient and Method for Separation and Purifying Metal of Rare Earth Element, JP, 05, 271, 149, 1993
    [56]Sato N, Shinkai S, Energy-transfer luminescence of lanthanide ions encapsulated in sensitizer-modified calix[4]arenes, J. Chem. Soc., Perkin Trans. 2, 1993, 621~624
    [57] Rudkevich D M, Verboom W, van der Tol E, Calix[4]arene-triacids as receptors for lanthanides; synthesis and luminescence of neutral Eu3+ and Tb3+ complexes, J. Chem. Soc., Perkin Trans. 2, 1995, 131~134
    [58]Shinkai S, Calixarenes - the third generation of supramolecules,Tetrahedron, 1993, 49: 8933~8968
    [59]Arnaud-Neu F, Cremin S, Harris S, eds, Complexation of Pr3+, Eu3+, Yb3+ and Th4+ ions by calixarene carboxylates, J. Chem. Soc., Dalton Trans., 1997, 329~334
    [60]Chawla H M, Hooda U, Singh V, Oxidation of simple phenols by a homobimetallic cerium(IV)–calix(8)arene complex in conjunction with hydrogen peroxide, J. Chem. Soc., Chem. Commun., 1994, 617~618
    [61]Steed J W, Johnson C P, Barnes C L, Supramolecular Chemistry of p-Sulfonatocalix[5]arene: A Water-Soluble, Bowl-Shaped Host with a Large Molecular Cavity, J. Am. Chem. Soc., 1995, 117: 11426~11433
    [62]Shinkai S, Koreishi H, Ueda K, eds, A new hexacarboxylate uranophile derived from calix[6]arene, J. Chem. Soc., Chem. Commun., 1986, 233~234
    [63]Shinkai S, Koreishi H, Ueda K, eds, Molecular design of calixarene-based uranophiles which exhibit remarkably high stability and selectivity, J. Am. Chem. Soc., 1987, 109: 6371~6376
    [64]Loeber C, Matt D, Multifunctional phosphane and phosphane oxide ligands derived from p-tert-butylcalix[4]arene. Synthesis of a large diphosphane with C2 symmetry and behaving as a cis or trans binding ligand, J. Organometallic Chemistry, 1994, 475: 297~305
    [65]Shinkai S, Araki K, Shibata J, eds, Autoaccelerative diazo coupling with calix[4]arene: substituent effects on the unusual co-operativity of the OH groups, J. Chem. Soc., Perkin Trans. 1, 1990, 3333~3337
    [66]Shimizu H, Iwamoto K, Fujimoto K, eds, Chromogenic Calix[4]arene, Chem. Lett., 1991, 2147~2150
    [67]Shinkai S, Araki K, Shibata J, eds, Autoaccelerative diazo coupling with calix[4]arene: unusual co-operativity of the calixarene hydroxy groups, J. Chem. Soc., Perkin Trans. 1, 1989, 195~196
    [68]Iwamoto K, Araki K, Fujishima H, eds, Fluorogenic calix[4]arene, J. Chem. Soc., Perkin Trans. 1, 1992, 1885~1887
    [69]Xubo Y, Hamaguchi S, Kotani K, eds, New chromoionophores based on indoaniline dyes containing calix[4]arene, Tetrahedron Lett., 1991, 32: 7419~7420
    [70]King A M, Moore C P, Sandanayake K R A S, eds, A highly selective chromoionophore for potassium based upon a bridged calix[4]arene, J. Chem. Soc., Chem. Commun., 1992, 582~584
    [71]McCarrick M, Wu B, Harris S J, eds, Novel chromogenic ligands for lithium and sodium based on calix[4]arene tetraesters, J. Chem. Soc., Chem. Commun., 1992, 1287~1289
    [72]Chawla H M, Srinivas K, Synthesis of new chromogenic calix(8)arenes, Tetrahedron Lett, 1994, 35: 2925~2928
    [73]袁立华,黄枢,冯文等,靛酚型生色杯[4]芳烃及其与金属离子络合的紫外—可见光谱研究,合成化学,1995,3(3):194~197
    [74]Kimura K, Miura T, Matsuo M, eds, Polymeric membrane sodium-selective electrodes based on lipophilic calix[4]arene derivatives, Anal. Chem., 1990, 62: 1510~1513
    [75]Beer P D, Drew M G B, Hazlewood C, eds, Dicarboxylate anion recognition by a redox-responsive ditopic bis(cobalticinium) calix[4]arene receptor molecule, J. Chem. Soc., Chem. Commun., 1993, 229~231
    [76]Sessler J L, Andrievsky A, Gale P A, eds, Anion Binding: Self-Assembly of Polypyrrolic Macrocycles, Angew. Chem. Int. Ed. Engl., 1996, 35: 2782~2785
    [77]Miyaji H, Jr P A, Sessler J L, eds, Anthracene-linked calix[4]pyrroles: fluorescent chemosensors for anions, Chem. Commun., 1999, 17: 1723~1724
    [78]Sdira S B, Felix C, Giudicelli M B,eds, Synthesis, structure and anion binding properties of lower rimα-hydroxyamide calix[4]arene derivatives, Tetrahedron Lett., 2005, 46: 5659~5663
    [79]Rathore R, Lindeman S V, Rao K S S P, eds, Guest Penetration Deep within the Cavity of Calix[4]arene Hosts: The Tight Binding of Nitric Oxide to Distal (Cofacial) Aromatic Groups, Angew. Chem. Int. Ed. Engl., 2000, 39: 2123~2127
    [80]Nigam S, Durocher G, Spectral and Photophysical Studies of Inclusion Complexes of Some Neutral 3H-Indoles and Their Cations and Anions withβ-Cyclodextrin, J. Phy. Chem., 1996, 100, 7135~7142
    [81]Martín L, Martín M A, Castillo B del, Spectrofluorimetric Study of the Effects of Cyclodextrins on the Acid–Base Equilibria of Harmine and Harmane, Analyst, 1997, 122: 45~49
    [82]解宏智,吴世康,化学修饰环糊精在醇/水混合溶剂中的包结行为,物理化学学报,2000,16(3):248~252
    [83]朱利中,陆州舜,戚文彬,影响β-环糊精及其衍生物对萘胺荧光增强效应的一些因素,分析化学,1997,25(5):563~566
    [84]Grabner G, Monti S, Marconi G,eds, Spectroscopic and Photochemical Study of Inclusion Complexes of Dimethoxybenzenes with Cyclodextrins, J. Phy. Chem., 1996, 100, 20068~20075
    [85]Nakamura A, Sato S, Hamasaki K, eds, Association of 1:l Inclusion Complexes of Cyclodextrins into Homo- and Heterodimers: A Spectroscopic Study Using a TICT-Forming Fluorescent Probe as a Guest Compound, J. Phy. Chem., 1995, 99, 10952~10959
    [86]Haskard C A, Easton C J, May B L, eds, Cooperative Binding of 6-(p-Toluidinyl)naphthalene-2-sulfonate byβ-Cyclodextrin Dimers, J. Phys. Chem., 1996, 100: 14457~14461
    [87]Liao Y, Cornelia B, Alcohol Effect on Equilibrium Constants and Dissociation Dynamics of Xanthone-Cyclodextrin Complexes, J. Phys. Chem., 1996, 100: 734~743
    [88]van Stam J, De Feyter S, De Schryver F C, eds, 2-Naphthol Complexation byβ-Cyclodextrin: Influence of Added Short Linear Alcohols, J. Phys. Chem., 1996, 100: 19959~19966
    [89] Yvette Will A, Sehuette-Parsons J M, Agbaria R A, Studies of Chiral Modifiers onγ-Cyclodextrin-Pyrene Complexes using Fluorescence Lifetime Measurements, Applied Spearoscopy,1995, 49:1762~1765
    [90]Shen X H, Belletête M, Durocher G, Study of the interactions between substituted 2,2’-bithiophenes and cyclodextrins, Chem. Phys. Lett., 1998, 298: 201~210
    [91]Emara S, Morita I, Tamura K,eds, Effect of cyclodextrins on the stability of adriamycin, adriamycinol, adriamycinone and daunomycin, Talanta, 2000, 51: 359~364
    [92]Ferreira L F V, Lemos M J, Wintgens V, eds, Influence of the alkyl chain length on the fluorescence properties of N-alkyl-2,3-naphthalimides included inβ-cyclodextrin, Spectrochimica Acta Part A, 1999, 55: 1219~1227
    [93]Loukas Y L, Multiple Complex Formation of Fluorescent Compounds with Cyclodextrins: Efficient Determination and Evaluation of the Binding Constant with Improved Fluorometric Studies, J. Phys. Chem. B., 1997, 101: 4863~4866
    [94]Sbai M, Lyazidi S Ait,Lerner D A,eds, Stoichiometry and association constants of the inclusion complexes of ellipticine with modifiedβ-cyclodextrin, Analyst, 1996, 121: 1561~1564
    [95]Pena A M de la,Agbaria R A,Pena M S, eds, Spectroscopic Studies of the Interaction of 1,4-Diphenyl一1.3-Butadiene withα-,β-, andγ-Cyclodextrins, Applied Spectroscopy, 1997, 51: 153~159
    [96]Duran-Meras I,Pena A M de la, Salinas F, eds, Spectrofluorimetric Study of the Inclusion Complex of 7-Hydroxymethylnalidixic Acid with 7-Cyclodextrin in Aqueous Solution, Applied Spectroscopy,1997, 51: 684~688
    [97]陈亮,王宝俊,黄淑萍,氟哌酸β-环糊精包结配合物的研究,波谱学杂志,1998,15(3):243~248
    [98]朱晓峰,许旭,林炳承,β-环糊精和十二烷基硫酸钠包合作用的微量热法研究,高等学校化学学报,1998,19(9):1504~1506
    [99]赵晓斌,何炳林,环状低聚糖-β-环糊精与胆红素包络作用的研究,高等学校化学学报,1994,15(8):1250~1252
    [100]张勇,黄贤智,荧光光谱法研究α-溴代萘与β-环糊精2:2重叠包络物的形成,化学学报,1997,55(1):69~75
    [101]雍国平,李光水,郑飞等,β-环糊精包合物的结构研究,高等学校化学学报,2000,21(7):ll24~ll26
    [102]Anigbogu V C,Warner I M, Fluorescence Studies of the Effects of t-Butyl Functionalities on the Formation of Ternaryβ-Cyclodextrin Complexes with Pyrene, Applied Spectroscopy,1996, 50: 995~999
    [103]Kamitori S, Hirotsu K, Higuchi T, Crystal and molecular structures of double macrocyclic inclusion complexes composed of cyclodextrins, crown ethers, and cations, J. Am. Chem. Soc., 1987, 109: 2409~2414
    [104]Saenger W, Cyclodextrin Inclusion Compounds in Research and Industry, Angew. Chem. Int. Ed. Engl., 1980, 19: 344~362
    [105]Wenz G, Cyclodextrins as Building Blocks for Supramolecular Structures and Functional Units, Angew. Chem. Int. Ed. Engl., 1994, 33, 803~822
    [106]Miyajima K, Komatsu H, Inoue K, eds, The Protective Effects of Cyclodextrins against the Oxidation of Methyl Orange by Singlet Oxygen, Bull. Chem. Soc. Jpn., 1990, 63: 6~10
    [107]Matsui Y, Nishioka T, Fujita T, Quantitative structure-reactivity analysis of the inclusion mechanism by cyclodextrins Top. Curr. Chem., 1985, 128: 61~89
    [108]Yamashoji Y, Tanaka M, Shono T, Evaluation of Host–Guest Interaction of Cyclodextrins with DL-Alanineβ-Naphthylamide by 1H NMR Spectroscopy Chem. Lett., 1990, 945~948
    [109]Gelb R I, Schwartz L M, Complexation of adamantane-ammonium substrates by beta-cyclodextrin and itsO-methylated derivatives, J. Inclusion Phenom. and Mol. Recognit. Chem., 1989, 7: 537~543
    [110]Isnin R, Salam C, Kaifer A E, Bimodal cyclodextrin complexation of ferrocene derivatives containing n-alkyl chains of varying length, J. Org. Chem., 1991, 56: 35~41
    [111]Harada A, Takahashi S, Preparation and properties of inclusion compounds of transition metal complexes of cyclo-octa-1,5-diene and norbornadiene with cyclodextrins, J. Chem. Soc., Chem. Commun., 1986, 1229~1230
    [112]Cardona, C. M, McCarley, T D, Kaifer A E, Synthesis, Electrochemistry, and Interactions withβ-Cyclodextrin of Dendrimers Containing a Single Ferrocene Subunit Located "Off-Center", J. Org. Chem., 2000, 65: 1857~1864
    [113]Munoz de la P A, Ndou T, Zung J B, eds, Stoichiometry and formation constants of pyrene inclusion complexes with .beta.- and .gamma.-cyclodextrin, J. Phys. Chem., 1991, 95: 3330~3334
    [114]Ueno A, Suzuki I, Osa T, Host-guest sensory systems for detecting organic compounds by pyrene excimer fluorescence, Anal. Chem., 1990, 62: 2461~2466
    [115]V?gtle F, Müller W M, Complexes ofγ-Cyclodextrin with Crown Ethers, Cryptands, Coronates, and Cryptates, Angew. Chem. Int. Ed. Engl., 1979, 18: 623~624
    [116]Hamai S, Inclusion complexes ofγ-cyclodextrin with coronene in aqueous methanol, J. Inclusion Phenom. and Mol. Recognit. Chem., 1991, 11: 55~61
    [117]Andersson T, Nilsson K, Sundahl M, eds, C60 embedded inγ-cyclodextrin: a water-soluble fullerene, J. Chem. Soc., Chem. Commun., 1992, 604~606
    [118]Kuroda Y, Nozawa H, Ogoshi H, Kinetic Behaviors of Solubilization of C60 into Water by Complexation withγ-Cyclodextrin, Chem. Lett., 1995, 24: 47~48
    [119]Masuhara A, Fujitsuka M, Ito1 O, Photoinduced Electron-Transfer of Inclusion Complexes of Fullerenes (C60 and C70) inγ-Cyclodextrin, Bull. Chem. Soc. Jpn., 2000, 73: 2199~2206
    [120]Furuishi T, Endo T, Nagase H, eds, Solubilization of C70 into water by complexation withδ-cyclodextrin, Chem. Pharm. Bull., 1998, 46: 1658~1659
    [121]Inoue Y, Hakushi T, Liu Y, eds, Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with .alpha.-, .beta.-, and .gamma.-cyclodextrins: enthalpy-entropy compensation, J. Am. Chem. Soc., 1993, 115: 475~481
    [122]Nishijo J, Ushiroda Y, Interaction of 2-naphthalenesulfonate withβ-cyclodextrin: Studies with calorimetryand proton nuclear magnetic resonance spectroscopy, Chem. Pharm. Bull., 1998, 46: 1790~1796
    [123]Chen W H, Fukudome M, Yuan D Q, eds, Restriction of guest rotation based on the distortion of a cyclodextrin cavity, Chem. Commun., 2000, 541~542
    [124]Cromwell W C, Bystrom K, Eftink M R, Cyclodextrin-adamantanecarboxylate inclusion complexes: studies of the variation in cavity size, 1985, 89: 326~332
    [125]Eftink M R, Andy M L, Bystrom K, eds, Cyclodextrin inclusion complexes: studies of the variation in the size of alicyclic guests, J. Am. Chem. Soc., 1989, 111: 6765~6772
    [126]尤长城,赵彦利,刘育,竞争包结法研究β-环糊精及其两种衍生物对一些手性脂肪族客体分子的识别作用,高等学校化学学报,2001,22(2):218~222
    [127]Siegel B, Breslow R, Lyophobic binding of substrates by cyclodextrins in nonaqueous solvents, J. Am. Chem. Soc., 1975, 97: 6869~6870
    [128]Spencer J N, Mihalick J E, Paul I M, eds, Complex formation betweenα-cyclodextrin and amines in water and DMF solvents, J. Solution Chem., 1996, 25: 747~756
    [129]Harada A, Takahashi S, Chem. Lett., 1980, 1081~1088
    [130]Hamai S, Hydrogen Bonding in Inclusion Complexes of Heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin with Chlorophenols in Organic Solvents, Bull. Chem. Soc. Jpn., 1992, 65: 2323~2327
    [131]Komiyama M, Yamamoto H, Hirai H, Complex formation of modified cyclodextrins with organic solventsChem. Lett., 1984, 1081~1084
    [132] Danil de Namor A F, Traboulssi R Levis D F V, Complexation of cyclodextrins with anion constituents of antigenic determinants in water (axial complexes) and in N,N-dimethylformamide (equatorial complexes). A thermodynamic study, J. Chem. Soc., Chem. Commun., 1990, 751~753
    [133]Kobayashi N, Osa T, Complexation of aromatic carboxylic acids with heptakis(2,6-di-O-methyl)cyclomaltoheptaose in chloroform and water, Carbohydr. Res., 1989, 192: 147~157
    [134]Etten R L Van, Clowes G A, Sebastian J F, eds, The mechanism of the cycloamylose-accelerated cleavage of phenyl esters, J. Am. Chem. Soc., 1967, 89: 3253~3262
    [135]Okubo T, Kitano H, Ise N, Conductometric studies on association of cyclodextrin with colloidal electrolytes, J. Phys. Chem., 1976, 80: 2661~2664
    [136]Schuette J M, Ndou T T, Munoz de la Pena A, eds, Influence of alcohols on the .beta.-cyclodextrin/acridine complex, J. Am. Chem. Soc., 1993, 115: 292~298
    [137]Fornasier R, Parmagnani M, Tonellato U, Induced circular dichroism and UV spectra of inclusion complexes of N-alkyl-dihydronicotinamides with cyclomaltoheptose and heptakis (2,6-di-O-methyl)cyclomaltoheptose, J. Inclusion Phenom.Macrocyclic Chem.,1991, 11: 225~231
    [138] ?rstan A, Wojcik J F, The effect of dimethyl sulfoxide on the kinetics of azo dye-cyclomaltohexaose (α-cyclodextrin) inclusion complex formation, Carbohydr. Res., 1988, 176: 149~154
    [139]Opallo M, Kobayashi N, Osa T, J. Inclusion Phenom.Macrocyclic Chem.,1989, 7: 413~422
    [140]Gerasimowicz W V, Wojcik J F, Azo dye-α-cyclodextrin adduct formation, Bioorg. Chem., 1982, 11: 420~427
    [141]Gelb R I, Schwartz L M, Radeos M, eds, Cyclohexaamylose complexation with organic solvent molecules, J. Am. Chem. Soc., 1982, 104, 6283~6288
    [142]Nakajima A, Effect of ethanol on the inclusion complex formation betweenβ-cyclodextrin and pyrene, Bull. Chem. Soc. Jpn., 1984, 57: 1143~1144
    [143]Bergmark W R, Davis A, York C, eds, Dramatic fluorescence effects for coumarin laser dyes coincluded with organic solvents in cyclodextrins, J. Phys. Chem., 1990, 94: 5020~5022
    [144]Eftink M R, Harrison J C, Calorimetric studies of p-nitrophenol binding toα- andβ-cyclodextrin, Bioorg. Chem., 1981, 10: 388~398
    [145]Lin S F, Connors K A, Complex formation between -cyclodextrin and 4-substituted phenols studied by potentiometric and competitive spectrophotometric methods, J. Pharm. Sci., 1983, 72: 1333~1338
    [146]Bertrand G L, Faulkner J R, Han S M, eds, Substituent effects on the binding of phenols to cyclodextrins in aqueous solution, J. Phys. Chem., 1989, 93: 6863~6867
    [147]Castronuovo G, Elia V, Iannone A, eds, Factors determining the formation of complexes betweenα-cyclodextrin and alkylated substances in aqueous solutions: a calorimetric study at 25?C, Carbohydr. Res., 2000, 325: 278~286
    [148]Yamashoji Y, Fujiwara M, Matsushita T, eds, Evaluation of Association between Cyclodextrins and Various Inorganic Anions in Aqueous Solutions by 81Br NMR Spectroscopy, Chem. Lett., 1993, 1029~1032
    [149]Yi Z P, Huang Z Z, Yu J S, eds, Be Careful When You Want to Use Buffers in Aqueous Solutions of Cyclodextrins. Effect of Buffers on the Formation Constants of 3-Hydroxy-2-Naphthoic Acid withβ-Cyclodextrin, Chem. Lett., 1998, 1161~1162
    [150]Wang A S, Matsui Y, Solvent Isotope Effect on the Complexation of Cyclodextrins in Aqueous Solution, Bull. Chem. Soc. Jpn., 1994, 67: 2917~2910
    [151]龙家杰王惠珍,陈霞,β-环糊精对阳离子染料的包合作用,纺织学报, 2002,23(4):281~283
    [152]叶素芳,环糊精和环糊精包合物,化工时刊,2002,16(8):1~8
    [153]宋洪涛,郭涛,赵明宏等,冰片β-环糊精包合物的理化性质考察,沈阳药科大学学报,2002,19(4):249~252,268
    [154]袁曦,洪清,林功舟等,氯化血红素—β环糊精包合物的研制,中国药学杂志,2001,36(6):389~391
    [155]杨晓东,杜红进,肖珊美等,金华佛手挥发油β-环糊精包合物的制备,金华职业技术学院学报,2003,3(1):40~41
    [156]顾新波,鲁晓明,环糊精金属配合物研究进展,化学通报,2006,69:1~5
    [157]鲁润华,汪汉卿,环糊精与抗癌药物HMBA相互作用的谱学研究,化学研究与应用,1999,11(1):17~20
    [158]宋乐新,周桃玉,郭子建,环糊精及其衍生物的超分子晶体结构研究进展,无机化学学报,2000,17(1):9~l6
    [159]Mu?oz Botella S, Lerner D A, Castillo B del, eds, Analytical applications of retinoid–cyclodextrin inclusion complexes. Part 2. Luminescence properties at room temperature, Analyst, 1996, 121: 1557~1560
    [160]Yang H, Bohne, C, Effect of Amino Acid Coinclusion on the Complexation of Pyrene withβ-Cyclodextrin, J. Phys. Chem., 1996: 100: 14533~14539
    [161]董川,杨频,环糊精包结物的形成及光谱表征,光谱实验室,2000,17(3):247~256
    [162]王蕾,殷亚辉,环糊精整理织物的技术开发,印染,2004,30(8):47~49
    [163]李培之.毛敏缓,朱婷婷,循环伏安法研究硝基药物的β-环糊精包含络合物,分析化学,1994,22(1):58~60
    [164]Shi X Y, Fan R F, Zhang Y Q,eds, Synthesis and Characterization of Water-Soluble Carboxymethyl-Cyclodextrin Polymer as Capillary Electrophoresis Chiral Selector, Chin. Chem. 1ett., 2000, 11: 69~70
    [165]Shuang S, Choi M M F, Retention behaviour and fluorimetric detection of procaine hydrochloride using carboxymethyl-β-cyclodextrin as an additive in reversed-phase liquid chromatography, J. Chromatogr. A., 2001, 919: 321~329
    [166]Murphy R S, Barros T C, Barnes, J, eds, Complexation of Fluorenone and Xanthone to Cyclodextrins: Comparison of Theoretical and Experimental Studies, J. Phys. Chem. A., 1999, 103: 137~146
    [167]Yannis L L, Vassiliki V, Gregory G, Fluorimetrie Studies of the Formation of Riboflavin-β-Cyclodextrin Inclusion Complex: Determination of the Stability Constant by Use of a Non-Linear Least-Squares Model, J.Plmrm.Pharmaco1.,1997, 49: 127~130
    [168]Yvette W A , Pena A M de la, Ndou T T , eds, Influence of Triethanolamine on Aqueousβ-Cyclodextrin/Pyrene Complexes, Applied Spectroscopy, 1995, 49: 520~525
    [169]Zornoza A, Sanchez M, Velaz I, eds, Diflunisal and Its Complexation with Cyclodextrins, A Fluorimetric Study. Biomed. Chromatogr., l999,l3: 111~112
    [170]Swadeshmukul S, Zhang P, Tan W H, The Restoration of Pyrene Fluorescence of a Cu2+-β-Cyclodextrin-Pyrene Complex, Chem. Commun., 1999, 1301~1302
    [171]Merino C, Junquera E, Jimenez-Barbero J, eds, Effect of the Presence ofβ-Cyclodextrin on the Solution Behavior of Procaine Hydrochloride, Spectroscopic and Thermodynamic Studies. Langmuir., 2000,16: 1557~1565
    [172]Hamai S, Inclusion Complexes and the Room-Temperature Phosphorescence of 6-Bromo-2-naphthol in Aerated Aqueous Solution of .alpha.-Cyclodextrin, J. Phys. Chem., 1995, 99: 12109~12114
    [173]刘芸,卟啉与环糊精、DNA及蛋白质超分子体系的研究:[硕士学位论文],山西;山西大学,2004
    [174]杨郁,张国梅,双少敏等,环糊精包合作用及其分子识别功能的研究进展,光谱实验室,2003,20(2):169~180
    [175]潘祖亭,姚兵,姚礼蜂,土霉素酸性降解物与β-环糊精包络配合物的荧光光谱研究与应用,武汉大学学报(自然科学版),l996,42(6):669~675
    [176]殷开梁,刘加庚,徐端钧,β-环糊精和甲酚包结体动态结构及平衡常数的NMR研究,无机化学学报,2000,16(1):l47~150
    [177]石硕,鲁润华,汪汉卿,环糊精-表面活性剂包结作用的研究,化学物理学报,1998,11(4):363~367
    [178]Letellier S, Maupas B, Gramond J P, eds, Determination of the formation constant for the inclusion complex between rutin and methyl-β-cyclodextrin, Anal. Chim. Acta, 1995, 315: 357~363
    [179]李向军,连军,双少敏等,大黄素甲醚-环糊精超分子体系包结行为研究,化学研究与应用,1999,11(3):298~3O1
    [180]Krois D, Brinker U H, Induced Circular Dichroism and UV-Vis Absorption Spectroscopy of Cyclodextrin Inclusion Complexes: Structural Elucidation of Supramolecular Azi-adamantane (Spiro[adamantane-2,3'-diazirine]), J. Am. Chem. Soc., 1998, 120: 11627~11632
    [181]Hee Sook C, Determination of Dissociation Constants of Selected Cyclodextrin-Benzaldehyde Inclusion Complexes Using Pulse Polarography, Pharm.Res.,1992,9: 582~584
    [182]董绍俊,张东波,环糊精包络物的循环伏安法研究,化学学报,1988,46: 335~339
    [183]Gu J, Pan J H, Determination of the cyclodextrin inclusion constant with the constant current coulometric titration method, Talanta, 1999, 50: 35~39
    [184]Diaz A, Quintela P A, Schuette J M, eds, Complexation of redox-active surfactants by cyclodextrins, J. Phys. Chem., 1988, 92: 3537~3542
    [185]Gelb R I, Schwartz L M, Radeos M, eds, Cycloamylose complexation of inorganic anions, J. Phys. Chem., 1983, 87: 3349
    [186]Velaz I, Sanchez M ,Zornoza A,eds, Application of Fluorimetry to the Analysis of Naproxen and Its Complexation with Modified Cyclodextrins, Biomed.Chromatogr.,1999,13: l55~l56
    [187]Palaniappan K, Perumal R , Vayalakkavoor R, Binding of Acridinedione Dyes withα,βandγ-Cyclodextrins: Fluorescence Quenching and Estimation of Thermodynamic Parameters, J. Inclusion Phenom.Macrocyclic Chem.,1999,34: lO5~ll4
    [188]Diaz D,Lianos C M E,Bernad M J B, Study of the Binding in an Aqueous Medium of Inclusion Complexes of Several Cyclodextrins Involving Fenoprofen Calcium, Drug Dev. Ind. Pharm.,1999,25: lO7~llO
    [189]邹新禧,超强吸水剂,北京:化学工业出版社,1991
    [190]黄美玉,超高吸水性聚丙烯酸钠的制备,高分子通讯,1984,2:129~132
    [191]Yoshinobu M, Morita M, Higuchi M, eds, Morphological study of hydrogels of cellulosic super water absorbents by CRYO-SEM observation, J. Appl. Polym. Sci., 1974, 53: 1203~1209
    [192]蒋文伟,高分子吸水树脂研究进展,化学世界,1996,37(1):3~6
    [193]赵德仁,交联物合成工艺学,北京:化学工业出版社,1981,46~57
    [194]王惠忠,有机化学与试剂,北京:中国建筑工业出版社,1987,410~415
    [195]Calab V,焦必林,膜浓缩果汁技术的新进展,食品与发酵工业,1993,2:77~79
    [196]张建军,蔡同一,减轻超滤苹果汁后浑浊的途径,食品工业科技,1992,3:8~l1
    [197]杨俊华,高吸油性树脂,合成树脂及塑料,1991,4:39~43
    [198]黄歧善,黄志明,高吸油树脂的结构和特性,合成树脂及塑料,1996,4:55~56
    [199]高志祥,黄可龙,高吸油性树脂的加工材料,化工新型材料,1995,9:31~32
    [200]Du?ek K, Galina H, Mike? J, Features of network formation in the chain crosslinking (co) polymerization, Polym. Bull., 1980, 3: 19~25
    [201]吴璧耀,张超灿,章文贡等,有机-无机杂化材料及其应用,北京:化学工业出版社,2005
    [202]Li Z T, Ji G Z, Zhao C X, eds, Self-Assembling Calix[4]arene
    [2]Catenanes. Preorganization, Conformation, Selectivity, and Efficiency, J. Org. Chem., 1999, 64: 3572~3584
    [203]Hoegberg A G S, Cyclooligomeric phenol-aldehyde condensation products. 2. Stereoselective synthesis and DNMR study of two 1,8,15,22-tetraphenyl[14]metacyclophan-3,5,10,12,17,19,24,26-octols, J. Am. Chem. Soc., 1980, 102: 6046~6050
    [204]Taylor R, Kennard O, Crystallographic evidence for the existence of CH.cntdot..cntdot..cntdot.O, CH.cntdot..cntdot..cntdot.N and CH.cntdot..cntdot..cntdot.Cl hydrogen bonds, J. Am. Chem. Soc., 1982, 104(19): 5063~5070
    [205]Sarma J A R P, Desiraju G R, The role of Cl.cntdot..cntdot..cntdot.Cl and C-H.cntdot..cntdot..cntdot.O interactions in the crystal engineering of 4-.ANG. short-axis structures, Acc. Chem. Res., 1986, 19(7): 222~228
    [206]Viswamitra M A, Radhakrishnan R, Bandekar J, eds, Evidence for O-H.cntdot..cntdot..cntdot.C and N-H.cntdot..cntdot..cntdot.C hydrogen bonding in crystalline alkynes, alkenes, and aromatics, J. Am. Chem. Soc., 1993, 115(11): 4868~4869
    [207]Timmerman P, Verboom W, Reinhoudt D N, Resorcinarenes, Tetrahedron, 1996, 52(8): 2663~2704
    [208](a)Cram D J, Cram J M, Container Molecules and Their Guests in Monographs in Supramolecular Chemistry ( Ed.: Stoddart J F), The Royal Society of Chemistry, Cambridge, 1994. (b)B?hmer V, Calixarenes, Macrocycles with (Almost) Unlimited Possibilities, Angew. Chem. Int. Ed. Engl., 1995, 34, 713~745
    [209]郭勋,刘芳,陆国元,杯芳烃衍生物研究进展,有机化学,2005,25(9):1021~1028
    [210]Belhamel K, Nguyen T K D, Benamor M, eds, Design of callxarene—type ligands for second sphere complexation of noble metal ions, Eur. J. Inorg. Chem., 2003, 22: 4110~4116
    [211]Georgiev E M, Wolf N, Roundhill D M, Lower rim alkylammonium-substituted calix[4]arenes as“proton-switchable”extractants for chromate and dichromate anions, Polyhedron, 1997, 16: 1581~1584
    [212]Wolf N J, Georgiev E M, Yordanov A T, eds, Synthesis and crystal structures of lower rim amine and carbamoyl substituted calixarenes as transfer agents for oxyanions between an aqueous and a chloroform phase, Polyhedron, 1999, 18: 885~896
    [213]Falana O M, Koch H F, Roundhill D M, eds, Synthesis and extraction studies of 1,2-and 1,3-disubstituted butylcalix[4]arene amides with oxyions; geometric and conformational effects, Chem. Commun., 1998, 503~504
    [214]Stastny V, Lhoták P, MichlováV, eds, Novel biscalix[4]arene-based anion receptors, Tetrahedron, 2002, 58: 7207~7211
    [215]Beer P D, Drew M G B, Gradwell K, Synthesis and anion coordination chemistry of new calix[4]arene pyridinium receptors, J. Chem. Soc., Perkin Trans. 2, 2000, 511~519
    [216] Gutsche C D, Iqbal M, Stewart D, Calixarenes. 19. Syntheses procedures for p-tert-butylcalix[4]arene, J. Org. Chem., 1986, 51: 742~745
    [217]段长强,孟庆芳,张泰等,现代化学试剂手册,第一分册,通用试剂,北京:化学工业出版社,1991,592
    [218] Carlson R, Lejon T, Lundstedt T, eds, ISSN 0904-213X. Source / Source, 1993, 47: 1046~1049
    [219] Francoise A-N, Collins E M, Deasy M, eds, Synthesis, x-ray crystal structures, and cation-binding properties of alkyl calixaryl esters and ketones, a new family of macrocyclic molecular receptors, J. Am. Chem. Soc., 1989, 111: 8681~8691
    [220]Elizabeth M, Collins M, Mckervey A, eds, Chemically modified calix[4]arenes. Regioselective synthesis of 1,3-(distal) derivatives and related compounds. X-Ray crystal structure of a diphenol-dinitrile, J. Chem. Soc., Perkin Trans. 1, 1991,3127~3135
    [221]张萍,李文红,李媛,微波作用下1,5-苯并硫氮杂α-溴代-β-内酰胺衍生物的合成,有机化学,2004,24(3):334~337
    [222] Liu G, Kozmina N S, Winn M, eds, Design, Synthesis, and Activity of a Series of Pyrrolidine-3-carboxylic Acid-Based, Highly Specific, Orally Active ETB Antagonists Containing a Diphenylmethylamine Acetamide Side Chain, J. Med. Chem., 1999, 42: 3679~3689
    [223]思洋,刘乐乐,张廓等,氨基酸甲乙酯的合成及纯化,内蒙古医学院学报,2005,27(1):33~34
    [224]Cecconi F, Ghilardi C A, Midollini S, eds, Isolation of [Be3(μ-OH)3(H2O)6]3+. Synthesis, 9Be NMR Spectroscopy, and Crystal Structure of [Be3(μ-OH)(H2O)6](picrate)36H2O, Inorg. Chem., 1998, 37, 146~148
    [225]Honda K, Yamawaki H, Matsukawa M, eds, Hexaaquairon(II) dipicrate dehydrate, Acta Cryst., C59(8), 2003, m319~m321
    [226]Harrowfield J K, Peachey B J, Skelton B W, eds, Synthesis and crystal structural of Thorium hydroxyl picrate hexadecahydrate (Basic Thorium Picrate), Aust. J. Chem., 1995, 48, 1349~1356
    [227]Maartmann-Moe K, The crystal and ionic structure of potassium picrate and ammonium picrate. Acta Cryst., B25, 1969, 1452~1460
    [228]Shao B, Zhang T L, Zhang J G, eds, Crystal structure and molecular structure of [C6H2(NO2)3OK]n. Energetic Materials, 2001, 9(3): 122~125
    [229]杨利,张同来,冯长根等,苦味酸晶体及分子结构的研究,含能材料,2001,9(1):37~39
    [230] Ma G X, Zhang T L, Shao B, eds, Crystal Structure and thermal decomposition mechanism of [Mn(SCZ)3](PA)2·H2O, Chin. J. Struct. Chem., 2004, 23(4): 445~451
    [231] Lu C H, Zhang T L, Wei Z R, eds, a study of parparation and molecular structure of [Mn2(CHZ)4(H2O)](PA)4·10H2O, Chin. J. Inorg. Chem., 1999, 15(3): 377~382
    [232]Liu M Z, Cheng R S,Wu J J, Preparation and swelling properties of superabsorbent polymer [J]. Chin. J. Polym. Sci., 1996, 14 (1): 48~56
    [233]Liu M Z, Guo T H, Preparation and Swelling Properties of Crosslinked Sodium Polyacrylate. J. Appl. Polym. Sci., 2001, 82: 1515~1520
    [234]柳明珠,曹丽歆,丙烯酸与海藻酸钠共聚制备耐盐性高吸水树脂,应用化学,2002,19(5):455~458
    [235]Ma S M, Liu M Z, Chen Z B, Preparation and properties of a salt-resistant superabsorbent polymer, J. Appl. Polym. Sci., 2004, 93(6): 2532~2541
    [236]邹新禧,超强吸水剂(第二版),北京:化学工业出版社,2002
    [237]Chen J W, Zhao Y M, An efficient preparation method for superabsorbent polymers, J. Appl. Polym. Sci., 1999, 74(1): 119~124
    [238]Flory P J, Principles of Polymer Chemistry, New York: Cornell University Press, 1953
    [239]Gutsche C D, Dbawan B, Leonis M, eds, Org. Synth., New York: John Wiley & Sons, 1990, 68: 238~242
    [240]Dhawan B, Chen S I, Gutsche C D, Calixarenes, 19. Studies of the formation of calixarenes via condensation of p-alkylphenols and formaldehyde, Makromol. Chem., 1987, 188(5): 921~950
    [241]吴志明,醇类交联剂对聚丙烯酸钠高吸水性树脂吸水性能的探讨,南通职业大学学报,2002,16(4):16~18
    [242]杨英杰,罗志臣,成乐琴等,丙烯酸高级醇酯合成工艺的研究,精细石油化工,1999,5:40~42
    [243]徐永群,汤俊名,周群等,β-环糊精变温红外光谱的二维相关分析,分析化学,2003,31(5):590~593
    [244]No V B, Krivtsova S N, Petrova N E, eds, Method of Producing Acryloyl Chloride [P]. US1595835, 1991-03-16
    [245]黄冶,范晓东,胡晖,甲基丙烯酸N,N-二甲氨基乙酯与丙烯酰β-环糊精共聚水凝胶的合成及其性能研究,高分子学报,2004,2:177~183
    [246]齐瑞平,高吸水性树脂发展概况,丙烯酸化工与应用,2006,19(2):1~9
    [247]蔺海兰,廖双泉,张桂梅等,高吸油性树脂的研究进展,热带农业科学,2005,25(2):78~83
    [248]Harada A, Kamachi M, Complex formation between poly(ethylene glycol) and -cyclodextrin, Macromolecules, 1990, 23(10): 2821~2823
    [249]Harada A, Li J, Kamachi M, Preparation and properties of inclusion complexes of polyethylene glycol with .alpha.-cyclodextrin, Macromolecules, 1993, 26(21): 5698~5703
    [250]Stoddart J F, Cyclodextrins, Off-the-Shelf Components for the Construction of Mechanically Interlocked Molecular Systems, Angew. Chem. Int. Ed. Engl., 1992, 31(7): 846~848
    [251]Harada A, Preparation and structures of supramolecules between cyclodextrins and polymers, Coord. Chem. Rev., 1996, 148, 115~133
    [252]Harada A, Li J, Kamachi M, Molecular Recognition: Preparation of Polyrotaxane and Tubular Polymer from Cyclodextrin, Polym. Adv. Tech., 1997, 8, 241~249
    [253]Harada A, Polyrotaxanes, Acta Polym., 1998, 49, 3~17
    [254]Harada A, Construction of supramolecular structures from cyclodextrins and polymers, Carbohydr. Polym., 1997, 34: 183~188
    [255]Huang L, Tonelli A E, Polymer Inclusion Compounds, J. M. S.-Rev. Macromol. Chem. Phys., 1998, C38: 781~837
    [256]Nakashima N, Kawabuchi A, Murakami H, Design and Synthesis of Cyclodextrin-Based Rotaxanes and Polyrotaxanes, J. Inclus. Phenom. Molec. Recog. Chem., 1998, 32: 363~373
    [257]Born M, Ritter H, Side-Chain Polyrotaxanes with a Tandem Structure Based on Cyclodextrins and a Polymethacrylate Main Chain, Angew. Chem. Int. Ed. Engl., 1995, 34(3): 309~311
    [258]Harada A, Adachi H, Kawaguchi Y, eds, Recognition of Alkyl Groups on a Polymer Chain by Cyclodextrins, Macromolecules, 1997, 30(17): 5181~5182
    [259]Weickenmeier M, Wenz G, Huff J, Association thickener by host guest interaction of aβ-cyclodextrin polymer and a polymer with hydrophobic side-groups, Macromol. Rapid. Commun., 1997, 18(12): 1117~1123
    [260]Amiel C, S?bille B, Association between amphiphilic poly(ethylene oxide) andβ-cyclodextrin polymers: aggregation and phase separation, Adv. Coll. Interf. Sci., 1999, 79, 105~122
    [261]Wenz G, Keller B, Threading Cyclodextrin Rings on Polymer Chains, Angew. Chem. Int. Ed. Engl., 1992, 31(2): 197~199
    [262]Jeromin J, Ritter H, Cyclodextrins in Polymer Synthesis: Free Radical Polymerization of a N-Methacryloyl-11-aminoundecanoic Acidβ-Cyclodextrin Pseudorotaxane in an Aqueous Medium, Macromolecules,1999, 32(16): 5236~5239
    [263]李国栋,环糊精包合技术,第二军医大学药学院全军“新剂型、新技术”学习班课程,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700