微通道内固体脂质纳米粒的成形与传质机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体脂质纳米粒(solid lipid nanoparticles,SLN)是20世纪90年代初发展起来的一种新型纳米粒载药系统,与传统的微乳、脂质体及聚合物纳米粒相比,SLN因具有良好生理相容性、靶向性、可缓控释性及适合多种给药途径等优点而备受关注。目前已发展起来的SLN制备方法通常存在制备条件苛刻、溶剂残留、过程复杂等问题,且SLN的粒径及分布也是影响其性能的重要因素,因此,研究开发具有粒径小、分布均匀的SLN的新型制备方法具有重要意义。
     论文提出利用抗溶剂法原理在微通道内制备SLN,首先采用同心管微通道法制备了SLN,并与常规大空间间歇成粒法制备结果进行了对比,结果表明采用同心管微通道可制备获得粒径更小的颗粒,说明微通道在SLN制备方面的可行性。而且与传统制备方法相比,微通道法制备具有操作简单、条件温和、易于控制等优点,是一种制备SLN的有效方法。
     论文分别在同心管微通道、T形微通道及“十”字形微通道内考察了脂相流速、水相流速、脂相中脂质体浓度、水相中表面活性剂浓度、脂相溶剂种类及通道尺寸等因数对SLN成粒规律的影响。结果表明:保持水相流速不变,SLN粒径随着脂相流速的增大而增大;对同心管微通道和“十”字形微通道来说,保持脂相流速不变,SLN粒径随水相流速的增大而减小,但在T形微通道内,SLN粒径随水相流速的增大而略有增长;水相中表面活性剂浓度增大时,SLN粒径增大;以乙醇作为酯相溶剂时可得到比丙酮作为溶剂时更小粒径的SLN;微通道尺寸越小,所得到的颗粒粒径也越小。因此,合理控制操作条件,可以使SLN在一定粒径范围内可控。
     论文还考察了向微通道内引入弹状流后对颗粒制备结果的影响,及其在解决微通道堵塞问题上的有效性。结果表明:向微通道的主道内引入气相后所得到的SLN平均粒径与无气相注入时无明显差异,在同心管微通道和“十”形微通道内甚至略有减小趋势,表明气相的引入对制备过程无不良影响,却可有效防止微通道堵塞、实现SLN的长周期连续化制备。
     通过显微技术与高速摄像相结合的方法,对微通道内流体的流动特点进行了可视化研究,在此基础上对微通道内成粒机理进行了分析,并对传质过程建立了相应的数学模型。将弹状流条件下“十”字型微通道内成粒过程分为弹状气泡形成前的对流传质区、弹状气泡进入后的液膜传质区及液塞传质区三个区域,建立了成粒过程的“三区传质模型”。求解结果表明:液膜内的传质速率明显大于液塞内的传质,这一结果与文献报道结果相一致,说明建立的成粒过程模型具有一定的可靠性;另外,增大气量有利于加强液塞内流体的湍动程度及液膜内的液速,从而强化传质,使纳米粒以更快的速度析出。传质模型的建立为微通道内SLN的制备及微通道设计提供了依据。
Solid lipid nanoparticles (SLN) is a new drug delivery system developed in 1990s. It has attracted increasing attention for its advantages of excellent biocompatibility, controlled release, targeted therapy and suitability for different kinds of medication routes comparing to the traditional delivery systems, such as emulsions, liposomes and polymeric nanoparticles. In the traditional preparing methods of SLN, the preparing processes are generally conducted complexly under overcritical operation conditions like high speed, high temperature or pressure, and toxicological solvents were always employed. Furthermore the size and distribution of SLN are important factors for the property of SLN. Therefore, it is important to develop a novel method for preparing SLN with small size and narrow size distribution.
     Microchannels are applied to prepare SLN based on the anti-solvent precipitation in this thesis. The SLN samples were prepared by using a co-flowing microchannel and were compared with the samples prepared by ordinary batch method. The results show that the SLN prepared by co-flowing microchannels had smaller diameter, and that microchannels are suitable for SLN preparation. Compared with the traditional prepartion methods, the prepartion process by using microchannals is a very simple one, with moderate condition and easy to control. Therefore, it could be expected to be an efficient method for SLN preparation.
     The influences of lipid phase velocity, liquid phase velocity, the concentration of surfactant in liquid phase, the concentration of lipid, the solvent kinds and the dimension of microchannels on the formation of SLN were investigated in co-flowing microchannels, T junction microchannels and microchannels with cross-junction, respectively. It was found that the diameter of SLN increases with the increase of the lipid phase velocity at a certain aqueous phase velocity. For co-flowing microchannels and microchannels with cross-junction, the diameter of SLN decreases with the increase of the aqueous phase velocity at a certain lipid phase velocity, on the contrary, the diameter of SLN increases with the increase of the aqueous phase velocity for T junction microchannels. Moreover, the diameter of SLN increases with the increase of surfacent concentration in the aqueous phase, smaller SLN can be prepared when ethanol is used as lipid phase solvent instead of acetone, and the diameter of SLN decreased as the microchannel dimension decreased. Therefore, SLN with expected properties like small diameter and narrow size distribution can be prepared by controlling these operation conditions.
     The effect of slug flow on the formation of SLN was studied by inputing gas flow in microchannels. No blockage is observed in the mirochannels when slug flow is employed. The experiments also display that the slug flow has no negative influence on the size of SLN and its distribution, but smaller diameter SLN could be prepared for co-flowing microchannels and microchannels with cross-junction. This may indicate that slug flow can eliminate blockage and is good to the continueous production of SLN in microchannels.
     The flow patterns in the microchannels were inspected by digital inversion microscope and electron eyepiece or CCD. The mechanisms of mass transfer and the formation of SLN were analysed, and mathematical models were established. For the cross-junction microchannels, the process of SLN formation under slug flow was divided into three zones, such as convectional zone before bubble formation, liquid film zone and slug zone after bubble formation. The corresponding mathematical models for these zones were developed respectively. The solution of the models indicated that the velocity of mass transfer in the film is higher than that in the slug, which is similar to the reports in references, indicating that the model established is credible. On the other hand, the solution of the models also indicated that the increase of gas velocity resulted in the increase of slug turbulence, the film flow velocity and the mass transfer, so SLN was precipited faster. The mechanisms of mass transfer provide a reference for the the preparation of SLN and the design of microchannel apparatus.
引文
1. Miiller R H, Keck C M. Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technologyand lipid nanoparticles. Journal of Biotechnology, 2004,113(1-3):151-170.
    2. Olbrich C, Bakowsky U, Lehr C M, et al. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. Journal of Controlled Release,2001,77(3):345-355.
    3. Wolfgang M, Arsten M. Solid lipid nanoparticles production, characterization and applications. Advanced Drug Delivery Reviews,2001,47(2):165-196.
    4. Miiller R H, Mehnert W, Lucks J S, et al. Solid lipid nanoparticles (SLN)-an alternative colloidal carrier system for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics,1995,41(1):62-69.
    5. Schafer-Korting M, Mehnert W, Hans-Christian K. Lipid nanoparticles for improved topical application of drugs for skin diseases. Advanced Drug Delivery Reviews,2007, 59(6):427-443.
    6. Rai, S, Paliwal R. Solid lipid nanoparticles (SLNs) as a rising tool in drug delivery science: One step up in nanotechnology. Current Nanoscience,2008,4(1):30-44.
    7. Keck C M, Miiller R H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. European Journal of Pharmaceutics and Biopharmaceutics, 2006,62(1):3-16.
    8.胡俊,刘玉玲.载药纳米粒的研究进展.中国医药工业杂志,2004,35(5):310-314.
    9. Miiller R H, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics,2000,50(1):161-177.
    10. Wissing S. A., Kayser O., Miiller R. H., Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews,2004,56(6):1257-1272.
    11.王影,宦定才,陆兵.固体脂质纳米粒的特点及存在问题.解放军药学学报,2006,22(1):15-45.
    12.侯冬枝,谢长生,朱长虹.固体脂质纳米粒的制备和载体结构的研究进展及其应用.中国医院药学杂志,2004,24(1):34-54.
    13. Ishii F, Nagasaka Y. Interaction between erythrocytes and free phospholipids as an emulsifying agent in fat emulsions or drug carrier emulsions for intravenous injections. Colloids and Surfaces B:Biointerfaces,2004,37(1-2):43-47.
    14. Wretlind A. Development of fat emulsions. Nutrition,1999,5(7-8):641-645.
    15. Sharma A, Sharma U S. Liposomes in drug delivery:progress and limitations. International Journal of Pharmaceutics,1997,154(2):123-140.
    16. Vemuri S, Rhodes C T. Preparation and characterization of liposomes as therapeutic delivery systems:a review. Pharmaceutics Acta Helvetiae,1995,70(2):95-111.
    17.黄寿吾,王昆,黄复生.新型脂质体的研究进展.食品与药品,2005,7(7A):5-9.
    18. Soppimath K S, Aminabhavi T M, Kulkarni A R. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release,2001,70(1-2):1-20.
    19. Owens III D E, Peppas N A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics,2006,307(1):93-102.
    20. Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery:II. Drug incorporation and physicochemical characterization. J. Microencapsul,1999,16(2) 205-213.
    21. Schwarz, C, Mehnert W. Solid Lipid Nanoparticles (Sln) for Controlled Drug-Delivery.1. Production, Characterization and Sterilization. Journal of Controlled Release,1994,30(1): 83-96.
    22. Almeida A J, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Advanced Drug Delivery Reviews,2007,59(6):478-490.
    23. Goppert T M, Muller R H. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. International Journal of Pharmaceutics,2005,302(1-2): 172-186.
    24.项琪,姚崇舜,肖健,等.生物技术药物给药系统的研究进展.药物生物技术,2006,13(2):149-153.
    25. Pedersen N, Hansen S, Heydenreich A V, et al. Solid lipid nanoparticles can effectively bind DNA streptavidin and biotinylated ligands. European Journal of Pharmaceutics and Biopharmaceutics,2006,62(2):155-162.
    26. Muller R H, Runge S, Ravelli V, et. al. Oral bioavailability of cyclosporine:Solid lipid nanoparticles(SLNR) versus drug nanocrystals. International Journal of Pharmaceutics, 2006,317(1):82-89.
    27. Chen H B, Chang X L, Du D R. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. Journal of Controlled Release,2006,110(2):296-306.
    28.王天晓.肿瘤靶向治疗的生物药物研究进展.中国药业,2008,17(9):71-73.
    29.李锦娟,杨广德,王红英,等.氟尿苷二丁酸酯固体脂质纳米粒的制备和肝靶向性研究.药学学报,2008,43(7):761-765.
    30. Wong H L, Bendayan R, Rauth A M, et al. Chemotherapy with anticancer drugs encapsulated in solid. Advanced Drug Delivery Reviews,2007,59(6):491-504.
    31. Zhang N, Ping Q N, Huang G H, et al. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. International Journal of Pharmaceutics,2006, 327(1-2):153-159.
    32.张波,张东娜,王洪权,等.难溶性药物增溶技术的研究进展.解放军药学学报,2009,25(5):425-427.
    33. Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. Journal of Controlled Release,2005,107(2):215-228.
    34. Ugazio E, Cavalli R, Gasco M R. Incorporation of cyclosporin A in solid lipid nanoparticles(SLN). International Journal of Pharmaceutics,2002,241(2):341-344.
    35.白帆,刘春喜,戴璐萍,等.托氟啶固体脂质纳米粒的制备及其小鼠体内药动学.中国新药与临床杂志,2009,28(3):185-190.
    36. Luo Y F, Chen D W, Ren L X, et al. Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability. Journal of Controlled Release,2006,114(1):53-59.
    37. Mei Z N, Chen H B, Weng T, et al. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. European Journal of Pharmaceutics and Biopharmaceutics,2003, 56(2):189-196.
    38. Casadei M A, Cerreto F, Cesa S, et al. Solid lipid nanoparticles incorporated in dextran hydrogels:A new drug delivery system for oral formulations. International Journal of Pharmaceutics,2006,325(1-2):140-146.
    39. Cavalli R, Gasco M R, Chetoni P. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. International Journal of Pharmaceutics,2002,238(1-2):241-245.
    40. Wissing S A, Muller R H. Solid lipid nanoparticles as carrier for sunscreens:in vitro release and in vivo skin penetration. Journal of Controlled Release,2002,81(3):225-233.
    41. Liu J, Gong T, Fu H L, et al. Solid lipid nanoparticles for pulmonary delivery of insulin. International Journal of Pharmaceutics,2008,356(1-2):333-344.
    42. Schubert M A, Muller-Goymann C C. Characterisation of surface-modified solid lipid nanoparticles (SLN):Influence of lecithin and nonionic emulsifier. European Journal of Pharmaceutics and Biopharmaceutics,2005,61(1-2):77-86.
    43. Attama A A, Muller-Goymanna C C. Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity. Colloids and Surfaces A:Physicochemical and Engineering Aspects,_2008,315(1-3):189-195.
    44. Li X W, Lin X H, Zheng L Q. Effect of poly(ethylene glycol) stearate on the phase behavior of monocaprate/Tween80/water system and characterization of poly(ethylene glycol) stearate-modified solid lipid nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,317(1-3):352-359.
    45. Han F, Li S M, Yin R, et al. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system:Nanostructured lipid carriers. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,315(1-3):210-216.
    46. Xie S Y, Wang S L, Zhao B K, et al. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles. Colloids and Surfaces B:Biointerfaces,2008,67(2):199-204.
    47. Casadei M A, Cerreto F, Cesa S, et al. Solid lipid nanoparticles incorporated in dextran hydrogels:A new drug delivery system for oral formulations. International Journal of Pharmaceutics,2006,325(1):140-146.
    48. Shahgaldian P, Silva E D, Coleman A W, et al. Para-acyl-calix-arene based solid lipid nanoparticles (SLNs):a detailed study of preparation and stability parameters. International Journal of Pharmaceutics,2003,253(1-2):23-38.
    49. Liedtke S, Wissing S, Muller R H, et al. Influence of high pressure homogenisation equipment on nanodispersions characteristics. International Journal of Pharmaceutics, 2000,196(2):183-185.
    50. Souto E B, Anselmi C, Centini M, et al. Preparation and characterization of n-dodecyl-ferulate-loaded. International Journal of Pharmaceutics,2005,295(1-2): 261-268.
    51. Corte's-Munoz M, Chevalier-Lucia D, Dumay E. Characteristics of submicron emulsions prepared by ultra-high pressure homogenization:Effect of chilled or frozen storage. Food Hydrocolloids,2009,23(3):640-654.
    52. You J, Wan F, Cui F D, et al. Preparation and characteristic of vinorelbine bitartrate-loaded. International Journal of Pharmaceutics,2007,343(1-2):270-276.
    53. Tiyaboonchai W, Tungpradit W, Plianbangchang P. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. International Journal of Pharmaceutics, 2007,337(1-2):299-306.
    54. Dingier A, Gohla S. Production of solid lipid nanoparticles (SLN):scaling up feasibilities. Journal of Microencapsulation,2002,19(1):11-16.
    55. Marengo E., Cavalli R, Caputo O, et al. Scale-up of the preparation process of solid lipid nanospheres. Part I. International Journal of Pharmaceutics,2000,205(1-2):3-13.
    56. Liedtke S, Wissing S, Miiller R H, et al. Influence of high pressure homogenisation equipment on nanodispersions characteristics. International Journal of Pharmaceutics, 2000,196(2):183-185.
    57. Gasco M. Solid lipid nanoparticles from microemulsions. Pharmacy Technologe in Europe,1997,9(2):52-58.
    58. Siekmann B, Westesen K. Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions. European Journal of Pharmaceutics and Biopharmaceutics, 1996,42(2):104-109.
    59. Lin X H, Li X W., Zheng L Q. Preparation and characterization of monocaprate nanostructured lipid carriers. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007, 311(1-3):106-111.
    60.李姜晖,王柏.乳化蒸发法制备固体脂质纳米粒.药学进展,2008,32(3):127-133.
    61. Yuan H, Jiang S P, Du Y Z, et al. Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles, Colloids and Surfaces B:Biointerfaces, 2009,70(2):248-253.
    62.吕青志,于爱华,席延卫,等.喷昔洛韦固体脂质纳米粒的制备及其经皮渗透作用.山东大学学报(医学版),2009,47(3):101-105.
    63. Kawashima Y, Yamamoto H, Takeuchi H, et al. Properties of a peptide containing dl-lactide/glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methods. European Journal of Pharmaceutics and Biopharmaceutics,1998,45(1):41-48.
    64. Shah K A, Date A A, Joshi M D, et al. Solid lipid nanoparticles (SLN) of tretinoin-. Potential in topical delivery. International Journal of Pharmaceutics,2007,345(1-2): 163-171.
    65. Trotta M., Debernardi F., Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. International Journal of Pharmaceutics,2003, 257(1-2):153-160.
    66. Hu F Q, Yuan H, Zhang H H, et al. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. International Journal of Pharmaceutics,2002,239(1-2):121-128.
    67. Subedi R K, Kang K W, Choi H K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. European Journal of Pharmaceutical Sciences, 2009,37(3-4):508-513.
    68.连佳芳,张三奇.固体脂质纳米粒研究进展.第四军医大学学报,2005,26(17):1621-1623.
    69. Li Y C, Lei D, Jia A, et al. Preparation and characterization of solid lipid nanoparticles loaded traditional Chinese medicine. International Journal of Biological Macromolecules, 2006,38(3-5):296-299.
    70. Hou D Z, Xie C S, Huang K. J., et al. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials,2003,24(10):1781-1785.
    71. Joscelyne S M, TragardhG. Membrane emulsification-a literature review. Journal of Membrane Science,2000,169(1):107-117.
    72. Charcosset C, Limayem I, Fessi H, et al. The membrane emulsification process-a review. Journal of Chemical Biochemistry Technology,2004,79(3):209-218.
    73. Charcosset C, El-Harati A., Fessi H., et al. Preparation of solid lipid nanoparticles using a membrane contactor. Journal of Controlled Release,2005,108(1):112-120.
    74. Charcosset C., El-Harati A., Fessi H. A membrane contactor for the preparation of solid lipid nanoparticles. Desalination,2006,200(1-3):570-571.
    75. Schubert M. A., Muller-Goymann C. C. Solvent injection as a new approach for manufacturing lipid nanoparticles-evaluation of the method and process parameters. Eur. J. Pharm. Biopharm.,2003,55(1):125-131.
    76. Sugiura S., Nakajima M., Yamamoto K., et al. Preparation characteristics of water-in-oil-in-water multiple emulsions using microchannel emulsification. Journal of Colloid and Interface Science,2004,270(1):221-228.
    77. Kobayashi I., Nakajima M., Mukataka S. Preparation characteristics of oil-in-water emulsions using differently charged surfactants in straight-through microchannel emulsification. Colloids and Surfaces A,2003,229(1-3):33-41.
    78. Cramer C, Fischer P, Windhab E J. Drop formation in a co-flowing ambient fluid. Chemical Engineering Science,2004,59 (15):3045-3058.
    79.鞠景喜,曾昌凤,张利雄,等.微通道反应器在微-纳米材料合成中的应用研究进展.化工进展,2006,25(2):152-158.
    80. Charpentier J C, The triplet "molecular processes-product-process" engineering:the future of chemical engineering? Chemical Engineering Science,2002,57:4667-4690.
    81.陈光文,袁权.微化工技术.化工学报,2003,54(4):427-439.
    82. Jensen K F, Microreaction engineering-is small better? Chemical Engineering Science, 2001,56(2):293-303.
    83. Juta K, Mori Y, and Shu K, Multiphase Organic Synthesis in MicroChannel Reactors, Chemistry-An Asian Journal,2006,1(1-2),22-35.
    84. Patrick L M, Quiram D J, Ryley J F. Microreactor technology and process miniaturization for catalytic reactions-A perspective on recent developments and emerging technologies, Chemical Engineering Science,2007,62(24):6992-7010.
    85. Li C M, Dong H, Zhou Q, Electrochemical Sensors, Biosensors and their Biomedical Applications [M],2008,307-383.
    86. Paul Watts and Stephen J. Haswell, Continuous flow reactors for drug discovery, DDT, 2003,8(13):586-593.
    87. Saisorn S, Wongwises S, A review of two-phase gas-liquid adiabatic flow characteristics in micro-channels, Renewable and Sustainable Energy Reviews,2008,12(3):824-838.
    88. Schusterb A, Sefianea K, Pontona J, Multiphase mass transport in mini/micro-channels microreactor, chemical engineering research and design,86(5A):527-534.
    89. Doku G, Verboom W, Reinhoud D N, et al. On-microchip multiphase chemistry-a review of microreactor design principles and reagent contacting modes, Tetrahedron,2005, 61(11):2733-2742.
    90. Lioubov K M, Renken A. Microstructured reactors for catalytic reactions. Catalysis Today, 2005,110 (1-2):2-14.
    91. Kreutzer M, Kapteijn F, Moulijn J. Multiphase monolith reactors:chemical reaction engineering of segmented flow in microchannels, Chemical Engineering Science,2005, 60(22):5895-5916.
    92. McGovern S, Harish G, Pai C S. Multiphase flow regimes for hydrogenation in a catalyst-trap microreactor. Chemical Engineering Journal,2008,135S:S229-S236.
    93. Trachsel F, Hutter C, Philipp R. Transparent silicon/glass microreactor for high-pressure and high-temperature reactions. Chemical Engineering Journal,2008,135S:S309-S316.
    94. Jahnisch K, Baerns M, Hessel V. Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors. Journal of Fluorine Chemistry,2000,105(1):117-128.
    95. Dessimoz A L, Cavin L, Renken A. Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular Glass microreactors. Chemical Engineering Science, 2008,63 (16):4035-4044.
    96. Zhao Y, Chen G, Yuan Q. Liquid-liquid two-phase mass transfer in the T-junction microchannels. AICHE,2007,53(12):3042-3053.
    97. Kockmann N, Kiefer T, Engler M. Convective mixing and chemical reaction in microchannels with high flow rates, Sensors and Actuators B,2006,117(2):495-508.
    98. Joshua D, Helen S, Adam D, et al. Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary number. Langmuir,2003, 19(22):9127-9133.
    99. Okubo Y, Maki T, Aoki N. Liquid-liquid extraction for efficient synthesis and separation by utilizing micro spaces. Chemical Engineering Science,2008,63(16):4070-4077.
    100. Miyaguchi H, Tokeshi Manabu., Kikutani Y., Microchip-based liquid-liquid extraction for gas-chromatography analysis of amphetamine-type stimulants in urine. Journal of Chromatography A,2006,1129(1):105-110.
    101. Tokeshi M, Minagawa T, Kitamori T. Integration of a microextraction system Solvent extraction of a Co-2-nitroso-5-dimethylaminophenol complex on a microchip. Journal of Chromatography A,2000,894(1-2):19-23.
    102. Xu J H, Tan J, Li S W, et al. Enhancement of mass transfer performance of liquid-liquid system by droplet flow in microchannels, Chemical Engineering Journal,2008,141(1-3): 242-249
    103. Matsushita Y, Ohba N, Kumada S. Photocatalytic N-alkylation of benzylamine in microreactors. Catalysis Communications,2007,8(12):2194-2197.
    104. Matsushita Y, Ohba N, Kumada S. N-Alkylation of amines by photocatalytic reaction in a microreaction system. Catalysis Today,2008,132(1-4):153-158.
    105.乐军,陈光文,袁权.微混合技术的原理与应用.化工进展,2004,23(12):1271-1276.
    106. Hassell D G, Zimmerman W B, Investigation of the convective motion through a staggered herringbone micromixer at low Reynolds number flow. Chemical Engineering Science,2006,61(9):2977-2985.
    107. Tsai T, Liou D S, Kuo L S. Chen P.H., Rapid mixing between ferro-nanofluid and water in a semi-active Y-type micromixer. Sensors and Actuators A:Physical,2009,153(2): 267-273.
    108.乐军,陈光文,袁权.微通道内气-液传质研究.化工学报,2006,57(6):1296-1302.
    109. Burns J R, Ramshaw C. Development of a Microreactor for Chemical Production. Chemical Engineering Research and Design,1999,77(3):206-211.
    110. Gorke O, Pfeifer P, Schubert K. Highly selective methanation by the use of a microchannel reactor, Catalysis Today,2005,110(1-2):132-139.
    111. Liu S, Chang C, Paul B, et al. Convergent synthesis of polyamide dendrimer using a continuous flow microreactor. Chemical Engineering Journal,2008,135 (Supplement 1): S333-S337.
    112.穆金霞,殷学锋.微通道反应器在合成反应中的应用.化学进展,2008,20(1):60-75.
    113. Halder R, Lawal A, Damavarapu R. Nitration of toluene in a microreactor. Catalysis Today,2007,125(1-2):74-80.
    114. Shen J, Zhao Y, Chen G, et al. Investigation of Nitration Processes of iso-Octanol with Mixed Acid in a Microreactor. Chinese Journal of Chemical Engineering,2009,17(3): 412-418.
    115.韩非,余武斌,李郁锦.微通道反应器中催化裂解合成N,N-二甲基丙烯酰胺新工艺研究.高校化学工程学报,2009,23(1):166-170.
    116. Chambers R D, Fox M A, Sandford G, et al. Elemental fluorine:Part 20. Direct fluorination of deactivated aromatic systems using microreactor techniques. Journal of Fluorine Chemistry,2007128(1):29-33.
    117.Hessel V, Hofmann C, et al., Aqueous Kolbe-Schmitt synthesis using resorcinol in a microreactor laboratory rig under high-p-T conditions. Organic Process Research& Development,2005,9(4):479-489.
    118.Hessel V, Hofmann C, et al., Aqueous Kolbe-Schmitt synthesis using resorcinol in a microreactor laboratory rig under high-p-T conditions. Chemical Engineering& Technology,2007,30(3):355-362.
    119.葛皓,陈光文,袁权.微反应器内甲苯气相催化氧化反应动力学.化工学报,2007,58(8):1967-1972.
    120. Tadepalli S, Qian D, Lawal A. Comparison of performance of microreactor and semi-batch reactor for catalytic hydrogenation of o-nitroanisole. Catalysis Today,2007, 125:64-73.
    121. Gorke O, Pfeifer P, Schubert K. Kinetic study of ethanol reforming in a microreactor. Applied Catalysis A:General,2009,360(2):232-241.
    122.曹彬,陈光文,袁权.微通道反应器内氢气催化燃烧.化工学报,2004,55(1)42-47.
    123. Samanta C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen:An overview of recent developments in the process. Applied Catalysis A:General,2008, 350(1):133-149.
    124. Miao F, Tao B, Sun L, et al. Preparation and characterization of novel nickel-palladium electrodes supported by silicon microchannel plates for direct methanol fuel cells. Journal of Power Sources,2010,195(1):146-150.
    125. Sohn J M, Byun Y C, Cho J Y, et al. Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol. International Journal of Hydrogen Energy,2007,32(18):5103-5108.
    126. Bae J M, Ahmed S, Kumar R, et al. Microchennel development for autothermal reforming of hydrocarbon fuels. Journal of Power Sources,139(1-2):91-95.
    127. Sohn J M, Byun Y C, Cho J Y. Elemental fluorine Part 16. Versatile thin-film gas-liquid multi-channel microreactors for effective scale-out. Lab on a Chip.2005.5(2):191-198.
    128. Srinivas S, Dhingra A, Im H, et al. A scalable silicon microreactor for preferential CO oxidation:performance comparison with a tubular packed-bed microreactor. Applied Catalysis A:General,2004,274(1-2):285-293.
    129. Himmer T, Nakagawa T, Anzai M. Lamination of metal sheets. Computers in Industry, 1999,3(1):27-33.
    130. Obikawa T, Yoshino M, Shinozuka J. Sheet steel lamination for rapid manufacturing. Journal of Materials Processing Technology,1999,89-90:171-176.
    131.潘敏强,汤勇,陆龙生.基于薄片层叠技术的制氢燃料处理系统研究进展.化工进展,2006,25(9):1011-1017.
    132. Tonkovich A, Kuhlmann D, Rogers A, et al. Microchannel Technology Scale-up to Commercial Capacity. Chemical Engineering Research and Design,2005,83(6):634-639.
    133. Tonkovich A, Perry S, Wang Y, et al. Microchannel process technology for compact methane steam reforming. Chemical Engineering Science,2004,59(22-23):4819-482.
    134.陈光文.微化工技术研究进展.现代化工,2007,27(10):8-13.
    135.刘志鹏,徐进良.T型微流控芯片中的液滴形成.微纳电子技术,2004,7(3):137-141.
    136. Shui L, Eijkel J, van den Berg A. Multiphase flow in microfluidic systems-Control and applications of droplets and interfaces. Advances in Colloid and Interface Science,2007, 133(1):35-49.
    137. Ke C, Berney H, Mathewson A. Rapid amplification for the detection of Mycobacterium tuberculosis using a non-contact heating method in a silicon microreactor based thermal cycler. Sensors and Actuators B,2004,102(2):308-314.
    138. Ke C, Kelleher A, Berney H, et al. Single step cell lysis/PCR detection of Escherichia coli in an independently controllable silicon microreactor. Sensors and Actuators B,2007,120 (2):538-544.
    139. Sugiura S, Nakajima M, Tong J. Nabetani, H., Seki, M. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. Journal of Colloid and Interface Science,2000,227(1),95-103.
    140.赵风云,刘洪杰,赵华.微反应器制备纳米碱式碳酸锌研究.无机盐工业,2009,41(3):35-39.
    141. Vladisavljevic, G T, Kobayashi I, Nakajima M. Generation of highly uniform droplets using asymmetric microchannels fabricated on a single crystal silicon plate:Effect of emulsifier and oil types. Powder Technology,2008,183(1):37-45.
    142. Wagner J, Kirner T, Mayer G, et al. Generation of metal nanoparticles in a microchannel reactor. Chemical Engineering Journal,2004,101(1-3):251-260.
    143. Song Y J, Hartwog M, Laurence L H, et al. Microfluidic synthesis of cobalt nanoparticles, Chemical Material,2006,18(12):2817-2827.
    144. T. Nisisako, T. Torii, T. Higuchi, Novel microreactors for functional polymer beads, Chemical Engineering Journal,2004,101(1-3):23-29.
    145. Salazar-Alvarez G, Muhammed M, Zagorodni AA. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chemical Engineering Science,2006, 61(14):4625-4633.
    146. Schwarzer H., Peukert. W., Experimental investigation into to the influence of mixing in nanoparticle precipitation, Chemical Engineering Technology,2002,25(6):657-661.
    147. Su Y, Kim H, Kovenklioglu S, et al. Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization. Journal of Solid State Chemistry 2007,180(9):2625-2629.
    148. Kockmann N, Kastner J, Woias P. Reactive particle precipitation in liquid microchannel flow, Chemical Engineering Journal,2008,135 (Supplement 1):S110-S116.
    149. Li S, Xu J, Wang Y, et al. Controllable Preparation of Nanoparticles by Drops and Plugs Flow in a microchannel device. Langmuir,2008,24(8):4194-4199.
    150. Karnik P, Gu F. Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Letters,2008,8(9):2906-2912.
    151. Lewis P C, Graham R, Nie Z H, et al. Continuous Synthesis of Copolymer Particles in Microfluidic Reactors. Macromolecules,2005,38(10):4536-4538.
    152. Takagi M, Maki T, Miyahara M, et. al. Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe. Chemical Engineering Journal,2004, 101(1-3):269-276.
    153.Bouquey M, Serra C, Berton N, et al. Microfluidic synthesis and assembly of reactive polymer beads to form new structured polymer materials. Chemical Engineering Journal, 2008,13(Supplement 1):S93-S98.
    154. Wang Q A, Wang J X, Li M, et al. Large-scale preparation of barium sulphate nanoparticles in a high-throughput tube-in-tube microchannel reactor. Chemical Engineering Journal,2009,149(1-3):473-478.
    155. Cui Z F, Chang S, Fane A G The use of gas bubbling to enhance membrane processes. Journal of Membrane Science,2003,221(1-2):1-35.
    156. Khan SA, Gunther A, Schmidt M A, et al. Microfluidic synthesis of colloidal silica. Langmuir,2004,20(20):263-269.
    157. Garstecki P, Fuerstman M J, Fischbach M A. Mixing with bubbles:a practical technology for use with portable microfluidic devise. Lab on a Chip,2006,6(2):207-212.
    158. Xu J L, Cheng P, Zhao T S. Gas-liquid two-phase flow regimes in rectangular channels with mini/micro gaps. International Journal of Multiphase Flow,1999,25(3):411-432.
    159. Pfund D, Rector D, Shekarriz A. Pressure drop mesurements in a microchannel. Fluid Mechanics and Transprot Phenomena,2000,46(8):1496-1507.
    160. Gunther A, Jensen K F. Multiphase microfluidics:from flow characteristics to chemical and materials synthesis. Lab on a chip,2006,6(12):1487-1503.
    161. Aubin J, Ferrando M, Jiricny V. Current methods for characterising mixing and flow in microchannels. Chemical Engineering Science,2010,65(6):2065-2093.
    162. Steijn V V, Kreutzer M T, Kleijn C R.μ-PIV study of formation of segmented flow in microfluidic T-junctions. Chemical Engineering Science,2007,62(24):7505-7514.
    163.Engler M, Kockmann N, Kiefer T, et al. Numerical and experimental investigations on liquid mixing in static micromixers. Chemical Engineering Journal,2004,101(1-3): 315-322.
    164. Dessimoz A L, Cavin L, Renken A, et al. Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors. Chemical Engineering Science,2008,63(16):4035-4044.
    165. Soleymani A, Kolehmainen E, Turunen I. Numerical and experimental investigations of liquid mixing in T-type micromixers. Chemical Engineering Journal,2008, 135(Supplement 1):S219-S228.
    166. Zhao Y, Chen G, Yuan Q. Liquid-Liquid Two-Phase Flow Patterns in a Rectangular MicroChannel. AIChE Journal,2006,52(12):4052-4060.
    167.Mansur E A, Yie M X, Wang Y D, et al. A State-of-the-Art review of mixing in microfluidic mixers. Chinese Journal of Chemical Engineering,2008,16(4):503-516.
    168. Liu Y Z, Kim B J, Sung H J. Two-fluid mixing in a microchannel. International Journal of Heat and Fluid Flow,2004,25(6):986-995.
    169. Miceli Raimondi N D, Prat L, Gourdon C, et al. Direct numerical simulations of mass transfer in sq Miceli Raimondi uare microchannels for liquid-liquid slug flow. Chemical Engineering Science,2008,63(22):5522-5530.
    170. Sarrazin F, Loubiere K, Prat L. Experimental and numerical study of droplets hydrodynamics in microchannels. AIChE Journal,2006,52(12):4061-4070.
    171.Zeng Y, Lee T-S, Yu P, et al. Numerical study of mass transfer coefficient in a 3D flat-plate rectangular microchannel bioreactor. International Communications in Heat and Mass Transfer,2007,34(2):217-224.
    172.马友光,付涛涛,朱春英.微通道内气液两相流行为研究进展.化工进展,2007,26(8):1068-1074.
    173.Waelchli S, Rohr P R. Two-phase flow characteristics in gas-liquid microreactors. International Journal of Multiphase Flow,2006,32(7):791-806.
    174. Triplett K A, Ghiaasiaan S M, Abdel-Khalik S I, et al. Gas-liquid two-phase flow in microchannels Part I:two-phase flow patterns. International Journal of Multiphase Flow, 1999,25(3):377-394.
    175. Saisorn S, Wongwises S. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel. Experimental Thermal and Fluid Science,2008,32(3):748-760.
    176. Saisorn S, Wongwises S. The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels. Experimental Thermal and Fluid Science,2010,34(3):454-462.
    177. Serizawa A, Feng Z, Kawara Z. Two-phase flow in microchannels. Experimental Thermal and Fluid Science,2002,26(6-7):703-714.
    178. Barajas A M, Panton R. L. The effects of contact angle on two-phase flow in capillary tubes. International Journal of Multiphase Flow,1993,19(2):337-346.
    179. Yue J, Chen G W, Yuan Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel. Chemical Engineering Science,2007, 6(7):2096-2108.
    180.宋静.微通道内气-液两相流动特性研究.青岛科技大学学报,2006,27(4):299-303.
    181.Shao N, Gavriilidis A, Angeli P. Flow regimes for adiabatic gas-liquid flow in microchannels. Chemical Engineering Science,2009,64(11):2749-2761.
    182. Taylor G I. Deposition of a viscous fluid on the wall of a tube. Journal of Fluid Mechanics Digital Archive,1961,10(2):161-165.
    183.Thulasidas T C, Abraham M A, Cerro R L. Flow patterns in liquid slugs during bubble-train flow inside capillaries. Chemical Engineering Science,1997,52(17): 2947-2962.
    184. Kolb W B, Cerro R L. The motion of long bubbles in tubes of square cross, section. Physical Fluids A,1993,5(7):1549-1557.
    185. Warnier M J F, Rebrov E, De Croon M. H. J. M., et al. Gas hold-up and liquid film thickness in Taylor flow in rectangular microchannels. Chemical Engineering Journal, 2008,135(Supplement 1):S153-S158.
    186. Bretherton F P. The motion of long bubbles in tubes. Journal of Fluid Mechanics Digital Archive,1961,10(2):166-188.
    187. Laborie S, Cabassud C, Durand-Bourlier L, et al. Characterisation of gas-liquid two-phase flow inside capillaries. Chemical Engineering Science,1999,54(23): 5723-5735.
    188. Kawahara A, Sadatorni M, Nei K, et al. Experimental study on bubble velocity, void fraction and pressure drop for gas-liquid two-phase flow in a circular microchannel. International Journal of Heat and Fluid Flow,2009,30(5):31-841.
    189. Chung P M-Y., Kawaji M. The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. International Journal of Multiphase Flow,2004,30(7-8): 735-761.
    190. Steinbrenner J E, Hidrovo C H, Wang F. M. Measurement and modeling of liquid film thickness evolution in stratified two-phase microchannel flows. Applied Thermal Engineering,2007,27(10):1722-1727.
    191. Aussillous P, Quere D. Quick deposition of a fluid on the wall of a tube. Physics of Fluids, 2000,12(10):2367-2371.
    192. Han Y, Shikazono N. Measurement of the liquid film thickness in micro tube slug flow. International Journal of Heat and Fluid Flow,2009,30(5):842-853.
    193. Fries D M, Trachsel F, von Rohr P R. Segmented gas-liquid flow characterization in rectangular microchannels. International Journal of Multiphase Flow,2008,34(12): 1108-1118.
    194. Han Y, Shikazono N. Measurement of liquid film thickness in micro square channel. International Journal of Multiphase Flow,2009,35(10):896-903.
    195. Qian D Y, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chemical Engineering Science,2006,61(23):7609-7625.
    196. Sobieszuk P, Pawel C, Ryszard P. Bubble lengths in the gas-liquid Taylor flow in microchannels. Chemical Engineering Research and Design,2010,88(3):263-269.
    197. Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab on a Chip,2006,6(3): 437-446.
    198. Yue J, Lingai L, Gonthier Y, et al. An experimental investigation of gas-liquid two-phase flow in single microchannel contactors. Chemical Engineering Science,2008,63(16): 4189-4202.
    199. Steijn V, Kreutzer M T, Kleijn C R. μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chemical Engineering Science,2007,62(24):7505-7514.
    200. Pohorecki R, Kula K. A simple mechanism of bubble and slug formation in Taylor flow in microchannels. Chemical Engineering Research & Design,2008,86(9A):997-1001.
    201.时钧,汪家鼎,余国琮,等.化学工程手册.北京:化学工业出版社,1996:1-150.
    202.陈卓.矩形微通道内固体脂质纳米粒的制备研究.浙江工业大学硕士论文,2009.
    203.雷强.脂质体溶解性及微通道成粒过程相关弹状流特性的研究.浙江工业大学硕士论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700