导电芳纶纤维的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通纺织纤维,特别是化纤,极易产生和积累大量静电,在易燃易爆环境中,静电放电火花作为点火源常会引起燃爆灾害事故。同时绝大多数化学纤维又都属于可燃或易燃材料,遇到高热或明火会产生熔融、滴落,对使用者容易造成二次灼伤。芳纶纤维是一种高性能的高分子合成材料,具有高强、高模、耐高温,阻燃,化学稳定性等优异的性能而广泛应用于军工、防护领域、产业领域及复合材料增强体等等。在芳纶纤维表面镀覆导电金属,使纤维表面金属化,可使其具有消除静电、导电、电磁屏蔽的功能,而且具有比金属线质轻、柔软的特点。本文通过对芳纶纤维的表面预处理,采用化学镀的方法,分别制备了导电性能良好的镍-铜复合镀层和银镀层的导电芳纶纤维,并对其性能进行了研究。
     本文主要内容如下:
     (1)采用金属化与溶胀处理相结合的方式,对芳纶纤维进行表面改性。以金属化试剂“DMSO-NaH”,即二甲基亚硫酰钠的二甲亚砜溶液,对芳纶纤维进行金属化溶胀处理,可得到较好的改性效果。控制处理时间在10min,金属化试剂的浓度为5gNaH-150gDMSO,处理温度为30±5℃;处理后,纤维表面均匀布满50~300nm的凹坑,这些凹坑在化学镀过程中作为锚固点,增加镀层与纤维的机械咬合力,从而提高镀层与基体的结合强度。
     (2)芳纶纤维进行化学镀前的预处理工艺条件如下:金属化溶胀处理(金属化试剂5gNaH-150gDMSO;温度30℃;处理时间10min;)、敏化(SnCl_220g/L,浓HCl20ml/L;温度30℃,时间10min)、活化(PdCl20.33g/L,浓HCl4ml/L;温度30℃,时间10min)、中和(NaOH10g/L,甲醛20ml/L;室温下2min)。
     (3)通过电位-pH图等热力学分析,研究了化学镀铜和化学镀镍的热力学可行性。通过正交试验,得到化学镀镍的配方和工艺:硫酸镍25g/L、柠檬酸钠16g/L、氯化铵28g/L、次亚磷酸钠28g/L、硫脲2mg/L、pH值8.5、温度50°C。对化学镀铜过程进行了动力学研究,并计算出镀镍芳纶纤维表面化学镀铜的动力学方程r=16.68[Cu~(2+)]~(0.73)[HCHO]~(0.64)[OH~-]~(0.14)exp[6.515*((T-308)/T)通过正交试验和优化实验,得到化学镀铜的配方和工艺:硫酸铜18g/L、甲醛10ml/L、酒石酸钾钠45g/L、甲醇5ml/L、聚乙二醇(6000)4mg/L、亚铁氰化钾10mg/L、pH值12.5、温度35°C。制备的镍-铜复合镀层芳纶纤维具有良好的导电性能,电阻为0.4/cm,并保持了其优异的力学性能和热稳定性能,断裂强力为45N,强度保持率高达97%。冷热循环试验结果表明镍-铜镀层与芳纶纤维的结合力较好。
     (4)通过电位-pH图等热力学分析,研究了化学镀银的热力学可行性,并绘制了乙二胺、氨水为双络合剂,葡萄糖、酒石酸钾钠为复合还原剂的银-水体系电位-pH图。通过正交试验和优化实验,得到化学镀银的优化配方和工艺:硝酸银10g/L、氨水60ml/L、乙二胺20ml/L、氢氧化钾6g/L、葡萄糖8g/L、酒石酸钾钠2.5g/L、乙醇40ml/L、聚乙二醇(1000)75mg/L、温度25~30°C。对化学镀银过程进行了动力学研究,并计算出芳纶纤维表面化学镀银的动力学方程为:r=2.4591[Ag~+]~(0.27)[L_1]~(-0.25)[L_2]~(-0.57)[C_4O_6H_4~2]~(0.21)[C_6H_(12)O_6]~(0.24)[OH~-]~(0.05)exp[4.95*((T-298)/T)通过优化配方制备的镀银芳纶纤维具有良好的导电性能,电阻为0.25/cm,并保持了其优异的力学性能和热稳定性能,断裂强力为44N,强度保持率高达95.7%,并且银镀层与芳纶纤维的结合力较好。
     (5)经苯骈三氮唑和丙烯酸树脂处理后的镀银芳纶纤维,银镀层的耐腐蚀能力大大提高。
Ordinary fibers, especially chemical fibers, are easy to accumulate staticelectricity, which may result in fire and blasting accidents under flammable andexplosive conditions. However, most of chemical fibers are flammable, and they canmelt into liquid and drip when exposed to heat or fire, which may damage users andburns them. The aramid fiber is a synthetic material made from high performancemacromolecules and it has been widely used in military industry, protection fields andreinforcing fibers in composites due to its outstanding properties, such as thermalstability, chemical durability and mechanical performance. The metal clading aramidfiber is conductive, which can eliminate static electricity, and can be used in theElectro-Magnetic Interference (EMI) shielding and conductive fiber field. The conductivearamid fiber is lighter and softer compared to metal fibers. Surface modification ofaramid fiber is performed by the metalation swelling method before metal depositionby the electroless process. Various metal coated aramid fibers, e.g. Ni-Cu compositecoating and Ag coating of fibers are prepared, respectively in the present work.Furthermore, the performance of metal coated aramid fibers are studied.The conclusions in these investigations are as follows:
     (1) Metalation swelling method as surface modification of fiber is used beforeelectroless deposition in this work. The aramid fibers were immersed in5gNaH-150gDMSO solution with stirring at30℃for10min. After metalationswelling treatment, numerous nano-scale pits with diameter from50nm to300nmdistribute uniformly on the surface. Furthermore, those nano-scale pits weregenerally considered as “anchoring sites” for metal particles deposition, meanwhileimproved the adhesion between the coating and the fiber substrate.
     (2) The pretreatment of aramid fibers before electroless plating was as follows:metalation swelling treatment (5g NaH-150g DMSO for10min at30℃),sensitization (20g/L SnCl_2and20ml/L HCl for10~15min at30℃), activation (0.3g/L PdCl2and3ml/L HCl for10min at30℃), neutralizing (NaOH10g/L,HCHO20ml/L; room temperature for2min).
     (3) Thermodynamic feasibility of electroless plating Ni and Cu was studied throughpotential-pH diagram. The electroless Ni plating process was investigated byorthogonal experiments. The electroless plating process of Ni is carried out with asolution consisting of NiSO4of25g/L, C6H5Na3O7·2H2O of16g/L, NH4Cl of28g/L, NaH2PO2·H2O of28g/L, SC(NH2)2of2mg/L at a pH of8.5and atemperature of50℃. The kinetic equation of electroless copper plating is obtainedby a regression analysis:r=16.68[Cu~(2+)]~(0.73)[HCHO]~(0.64)[OH~-]~(0.14)exp[6.515*((T-308)/T)The electroless plating process of Cu was investigated by orthogonal test. The bestprocess of electroless Cu plating is CuSO4·5H2O18g/L, HCHO10ml/L,C4H4O6KNa·4H2O45g/L, CH3OH5ml/L, PEG60004mg/L, K4Fe(CN)6·3H2O10mg/L, pH12.5and35℃.The Ni-Cu deposited aramid fiber exhibits goodconductivitywith a surface resistance of0.4/cm. The breaking strength of theNi-Cu deposited aramid fibers was45N, and the strength retention reached up to97%of that of original aramid fibers without Ni-Cu coatings. Thermal-cold cyclingexperiments demonstrate a good adhesion of Ni-Cu coating on the fiber.
     (4) Thermodynamic feasibility of electroless plating Ag was studied throughpotential-pH diagram. The potential-pH diagram of Ag-H2O system, with doublecomplexes of ethylene diamine and ammonia and composite reductants ofglucose and seignette salt, was drawn. The electroless silver plating process wasinvestigated by orthogonal test. The best combination of processing parameters ofelectroless silver plating includes AgNO3of10g/L, NH3·H2O of60ml/L, C2H8N2of20ml/L, KOH of6g/L, C6H12O6of8g/L, C4H4O6KNa·4H2O of2.5g/L, C2H5OHof40ml/L, PEG(1000) of75mg/L at a temperature of25~30°C. The depositionrate of electroless plating of silver is obtained by regression analysis: r=2.4591[Ag~+]~(0.27)[L_1]~(-0.25)[L_2]~(-0.57)[C_4O_6H_4~2]~(0.21)[C_6H_(12)O_6]~(0.24)[OH~-]~(0.05)exp[4.95*((T-298)/T) The silver deposited aramid fiber exhibits good conductivity with a surfaceresistance of0.25/cm. The breaking strength of the silver deposited aramidfibers was44N, and the strength retention reached up to95.7%of that of originalaramid fibers without silver coatings. Thermal-cold cycling experimentsdemonstrate a good adhesion of silver coating on the fiber.
     (5) The anti-tarnish capability of silver coatings was improved significantly aftertreated with Benzotriazole and Acrylic resin.
引文
[1]眭伟民,黄象安,陈佩兰.阻燃纤维及织物[M].北京:纺织工业出版社,1990:17
    [2]马峰,张捷民,马新安等.含芳纶系列阻燃防静电织物的研制[J].纺织高校基础科学学报,2005,18(4):348~350
    [3]张丽.阻燃抗静电织物的研制[J].产业用纺织品,2004,(4):17~21
    [4]李雯,庄勤亮.导电纤维及其智能纺织品的发展现状[J].合成纤维工业.2003,(8):1~3
    [5]陈振洲,陈慕英,陶再荣.导电纤维在防静电针织物中的含量及性能研讨[J].上海纺织科技.2003,31(4):57~58
    [6]许健翔,张巍.短切导电纤维填充的复合材料吸波性能研究[J].玻璃钢/复合材料.2002,(4):16~18
    [7]赵青华,王显军.新型导电纤维电缆制作工艺[J].表面技术.1992,21(2):78~82
    [8]张鸿.聚苯胺复合导电纤维的制备与应用基础研究[D],大连理工大学,2008:22
    [9]刘海洋,刘慧英,王伟霞等.金属纤维的发展现状及前景展望[J].产业用纺织品.2005,(10):1~4
    [10]周娟,肖于德.金属纤维行业发展趋势[J].湖南有色金属.2008,24(2):38~40
    [11]金立国.我国碳纤维工业现状和碳纤维应用[J].合成纤维.2009,10:1~6
    [12]钱伯章.国内外碳纤维应用领域、市场需求以及碳纤维产能的进展(1)[J].高科技纤维与应用.2009,34(5):38~42
    [13]靳武刚.碳纤维在电磁屏蔽材料中的应用[J].现代塑料加工应用.2003,16(1):24~27
    [14]倪海燕,孟家光.有机导电纤维的研究进展及应用[J].纺织科技进展.2004,5:16~17
    [15]高绪珊,童俨.导电纤维及抗静电纤维[M].北京:纺织工业出版社,1991:94
    [16]万珍平,叶邦彦,汤勇等.金属纤维制造技术的进展[J].机械设计与制造.2002,6:108~109
    [17]谢发勤,张乾.碳纤维的制备方法与性能研究进展[J].材料导报.2001,15(9):49~52
    [18]张世国,王进美.导电纤维的加工方法及其应用[J].纺织科技进展.2009,1:32~33
    [19]王雪亮.导电纤维的合成[J].合成纤维,1998,27(2):43~46
    [20]金欣.熔融共混和溶解-涂覆型导电纤维的研究[D].天津工业大学,2006
    [21]马卫华,邬国铭.金属化导电纤维[J].广东化纤.1995,3:22~25
    [22]姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,2000
    [23]王鹏,张瑜,陈彦模.复合型导电纤维的制备及其开发现状[J].合成纤维.2004增刊:18~20
    [24]李建新,金立国.导电纤维的发展和应用[J].针织工业.2004,4:72~73
    [25]E·罗德里桂兹等.降静电纤维及其制备方法[P]. CN98806682.3.1998
    [26]李雯.用于智能纺织品的聚苯胺-氨纶复合导电纤维的制备[D].2004
    [27]罗洁等.聚苯胺涂层导电涤纶纤维的制备与性能研究[J].四川大学学报(工程科学版)2000,32(4):80~83
    [28]丁长坤,程博闻,任元林.导电纤维的发展现状及应用前景[J].纺织科学研究2006,3:32~39
    [29]侯庆华.白色复合导电纤维DDY-2的研究[J].合成纤维.2005,9:49~52
    [30]林磊,陈娟子,夏祥华等.一种导电纤维及其制备方法[P]. CN200810139386.9,2008
    [31]于家豪.纳米技术造就白色易染导电纤维[N]科技日报.2006-4-11
    [32]白剑云等.聚吡咯/尼龙6复合导电纤维的研制[J].合成技术及应用.2005,20(4):29~32
    [33]李雯等.聚苯胺/氨纶复合导电纤维的制备工艺探讨[J].东华大学学报(自然科学版).2004,30(6):87~90
    [34]王政,赵炯心.镀银聚氨醋纤维的导电性能研究[J].合成技术及应用.2007,22(3):21~24
    [35]郭振福等.一种离子导电PET纤维的制备[J].高分子学报.2010,3:334~338
    [36]金欣等.新型聚苯胺/聚己内酰胺导电纤维的制备及性能研究[J].材料导报.2010,24(7):29~32
    [37]李健,高绪珊,童俨.含碳纳米管导电PET纤维的研究[J].合成纤维工业.2004,27(4):16~18
    [38]金立国.帝人纤维公司的熔纺结晶碳纳米纤维[J].合成纤维.2010,7:47
    [39]可乐丽开发出导电维纶[J].现代纺织技术.2008,1:23
    [40]钱伯章.日本可乐丽开发新型导电纤维[J].合成纤维.2008,6:56
    [41]可乐丽开发碳纳米管导电纤维[J].合成技术及应用.23:60
    [42]日本制造出纳米级导电纤维[N].中国科技信息.1999-7-15
    [43]管宝琼,许登堡.高强度高模量芳纶的结构、性能及其应用[J].合成纤维.1990,5:41~45
    [44]赵稼祥,姚海文,丁光安.芳纶14、芳纶1414和Kevlar49的结构鉴定和性能分析研究[J].宇航材料分析.1987,2:28~33
    [45]M. Jassal, S. Ghosh. Aramid fibres[J].Indian journal of fibre and textile research.2002,27:290~306
    [46]高启源.高性能芳纶纤维的国内外发展现状[J].化纤与纺织技术.2007,3:31~36
    [47]孙晋良,吕伟元.纤维新材料[M].上海:上海大学出版社,2007,75-80.
    [48]钱伯章.杜邦公司扩大Kevlar纤维生产能力.合成纤维工业[J].2007,30:22
    [49]李晔.对位芳纶的发展现状、技术分析及展望[J].合成纤维.2009,9:1~5
    [50]毕鸿章.日本开发新品级对位芳纶使其FRP的耐冲击性能大幅提高[J].高科技纤维与应用.2009,34(2):50
    [51]韩国科龙增扩对位芳纶产能[J].合成纤维.2009,9:55
    [52]芳纶14初步试制成功[J].合成纤维.1979,2:40
    [53]年产千吨芳纶II生产线在四川落户[J].辽宁化工.2002,31(4):163
    [54]陆慕寒.对位芳纶纤维中试研究项目通过鉴定[N].中国纺织报.2007-10-29
    [55]钱伯章.芳纶的发展现状和市场[J].新材料产业.2009,1:40~44
    [56]秦建成.芳纶1414顺利完成项目中试[N].中国国门时报.2009-3-9
    [57]孙茂健,宋西全.我国间位芳纶产业的发展现状及前景[J].纺织导报.2007,12:65~68
    [58]张蓓.我国芳纶公司的发展概况[J].精细与专用化学品.2010,18(10):6~9
    [59]王中平等.国产间位芳纶在产业纺织品领域的应用[J].山东纺织科技.2010,4:54~56
    [60]芳纶1313纤维在苏州通过新产品技术鉴定[J]..高科技纤维与应用.2008,33(4):20
    [61]王普慧等.溶胀处理提高芳砜纶可染性[J].印染,2006(2):1~4
    [62]吴英,唐志勇,张德仁.芳砜纶纤维膨化剂染色方法的研究[J].纺织学报,1997;18(1):38~40
    [63]孙枝林等.载体Sa提高芳砜纶可染性的研究[J].印染,2007,9:8~11
    [64]徐忠志等.芳砜纶分散染料载体法染色[J].印染,2003,(12):4~7
    [65]汪晓峰,张玉华.芳砜纶的性能及其应用[J].纺织导报,2005,1:19~23
    [66]汪家铭.芳砜纶纤维发展概况及市场前景[J].精细化工原料及中间体,2009,6:18~21
    [67]叶键青.芳砜纶织物的阻燃性能和隔热性能的研究[D].东华大学.2005
    [68]唐志勇,张德仁,孙晋良等.聚砜酰胺/粘土纳米复合材料及其纤维的制备[J].上海纺织科技,2005,33(3):6~9
    [69]唐志勇,张德仁,孙晋良等.芳香族聚酰胺纤维织物的抗光老化整理方法[P].CN200810032386.9
    [70]唐志勇,张德仁,孙晋良等.芳香族聚酰胺电磁屏蔽织物的制备方法[P].CN200810032385.4
    [71]Rongzhi Li,Lin Ye et al.Composites Part A,1997,28A:73-86·
    [72]V.OOIJ,J.WIM,S.J.LUO,D.SASWATI..Plasmas and Polymers,1999,4(1):33-55.
    [73]D. Pappas, A. Bujanda, D. Demaree, J. K. Hirvonen, Surf. Coat.Technol.2006,201,4384
    [74]K.KUEPPER,P.SCHEWARTZ..Journal of Adhesion Science and Technology,1991,5(2):165-176.
    [75]陈平等.等离子体技术对高性能有机纤维表面改性的研究[J].纤维复合材料.2008,21(3):21~26
    [76]Zhang L H. Radiat. Phys. Chem.,1993,42:125~128.
    [77]刘丽等.超声作用对芳纶纤维表面性质的影响[J].复合材料学报.2003,20(2):35~40
    [78]Kenneth S S.The chemical effects of ultrasound[J]. Scientific American,1989,2(2):80-86·
    [79]Bogdan N.Chemical activation of ultrasonic cavitation[J].UltrasonicsSonochemistry,1999,25(6):211-216·
    [80]张进,陈克.强超声波辐照下聚合物的降解[J].成都科技报,1989,45(3):131-137
    [81]刘丽等.超声波对F-12/环氧复合材料力学性能的影响[J].复合材料学报.1999,16(1):67~70
    [82]赵克熙.宇航材料工艺,1995,(5):8~19
    [83]贺泓,朱鹤孙,孙慕瑾.芳纶纤维的表面改性[J].复合材料学报.1990,7(3):17~24
    [84]A.G.ANDREOPOULOS.A New Coupling Agent for Aramid Fibers[J].Journal of AppliedPolymer Science,1989,38:1053-1064.
    [85]C.Y.YUE,K.PADMANABHAN.Interfacial Studies on Surface Modified Kevlar Fiber/EpoxyMatrix Composites[J].Composites:Part B,1999,30:205-217
    [86]Breznick M, Banbaji J, Baklagina Y G, et a1.Polym Common,1987,28(1):55
    [87]袁海根等.表面处理对Kevlar纤维复合材料界面结合强度的影响[J].化学推进剂与高分子材料.2005,3(5):38~41
    [88]Martin A Doherty, Rijpkema B, Weening W. Promoting aramid-rubber adhesion withoutepoxies-an alternative approach[J]. Rubber World,1995,212(6)
    [89]王普慧,周翔,王明勇.溶胀处理提高芳砜纶可染性[J]印染,2006,32(2):1-4.
    [90]Cates B J, Fitzgerald T E, Davis J K, Russell E J. Improving flame resistance of aramid andpolybenzimidazole fibres-by using swelling agent to allow phosphonate ester flame retardantto enter and become fixed to fibres opt. with dyeing agent[P] US4749378-A,1988
    [91]赵华,韩庆平.PET纤维与有机溶剂相互作用研究.纺织学报[J],1991,12(4):173-175
    [92]Ju Wu et al.Journal of Applied Polymer Science,2006,Vol.102,4165–4170
    [93]曾金芳,丘哲明,乔生儒.纤维表面处理对F-12复合材料剪切性能的影响[J].玻璃钢/复合材料.2000,5:20~21.
    [94]顾澄中等.砜芳纶浆粕增强密封材料中纤维表面处理研究[J].非金属矿.1999,22(5):42~44
    [95]高称意.Akzo公司开发出新型粘合活化的芳纶[J].产业用纺织品.2000,18(2)40~41
    [96]John J.Mc Evoy等.新开发的用于导线和电缆的包覆金属的芳纶[J].产业用纺织品.2000,18(8):44~46
    [97]KokaiTokkyoKoho.Electrically conductive fiber threads[P].JP1983-48204,1983
    [98]Nitsusei, Masao; Ogushi, Katsunori. Electrically conductive fibers for flexible heaters[P].JP1986-209598,1986
    [99]Kato, Tetsuo; Furumoto, Goro. Electrically conductive para-oriented aramid fibers andtheir manufacture.[P]. JP1987-77477,1987
    [100]Andreatta, Alejandro; Heeger, Alan J.; Smith, Paul. Electrically conductive polyblend fibersof polyaniline and poly(p-phenylene terephthalamide)[J]. Polymer Communications.1990,31(7):275-8.
    [101]Burch,Robert Ray,Jr.;Gould,Richard;Lee,Kiu Seung et al. Electroless plating of aramidsurfaces with metals for good electric conductivity[P].US91-674402,1992
    [102]Grinevich,I.A.; Filippov,D.I.; Tolochik,V.S. et al. Production of electrically conductivethreads for use as resistive elements of electric heaters[P].RU2001-117479,2003
    [103]Gabara,Vlodek;Hsu,Che-Hsiung et al.Process for electroless plating of aramid fibers with adurable metal coating[P]. US92-987898,1994
    [104]Hsu, Che Hsiung.Process for making electroless plated aramid surfaces[P].US94-261074,1995
    [105]Hsu,Che Hsiung;Sweeny,Wilfred.Silver-plated fibers of poly(p-phenylene terephthalamide)and a process for making them[P]. US95-436849,1996
    [106]Hsu, Che Hsiung.Electroless coating of aramid fibrids with conductive and highly durablemetal coating[P]. US1994-226124,1995
    [107]Takano, Kyosuke; Yamaguchi, Junji.Conductive aramid fibers containing carbon nanotubesand conductive particles[P]. JP2005-170856,2006
    [108]Yeo, Jong Bo. Environment-friendly functional conductive aramid fibers with good heatand flame resistance[P]. KR2008-48912,2009
    [109]Maeda, Makoto; Zhao, Xi; Yamamoto, Tsutomu et al.Method for manufacture ofhigh-tenacity electrically conductive filament yarns[P]. JP2009-214937,2010
    [110]肖志红,倪必红.Kevlar-49表面金属化工艺研究[J].航天制造技术,2004(1):8-12.
    [1]赵择卿,陈小立.高分子材料导电和抗静电技术及应用[M].北京:中国纺织出版社2006
    [2]袁海根等.表面处理对Kevlar纤维复合材料界面结合强度的影响[J].化学推进剂与高分子材料.2005,3(5):38~41
    [3]Luan, B., et al., Chemical surface preparation for metallization of stereolithography polymers[J]. AppliedSurface Science,2000.156(1-4):26-38.
    [4]S.D. Gardner, G.B. Hoflund, J. Phys. Chem.,1991.95,835
    [5]J. Horkans, J. Electrochem. Soc.1983.130,311
    [6]B.M. Choudary, K.R. Kumar, Z. Jamil and G. Thyagarajan, J. Chem. Soc. Chem. Commun.,1985.931.
    [1]姜晓霞,沈伟著.化学镀理论及实践[M].北京:国防工业出版社,2000.
    [2] Mallory, Glenn O.; Hajdu, Juan B. Electroless Plating-Fundamentals and Applications[M], William AndrewPublishing/Noyes,1990.
    [3]甘雪萍.电磁屏蔽用导电涤纶织物制备新技术及其产业化应用研究[D].2007.
    [4]伍学高,李铭华等著.化学镀技术[M].成都:四川科学技术出版社.1985:58-59.
    [5]方景礼著.电镀添加剂理论与应用[M].北京:国防工业出版社.2006:321.
    [6] Marta E. G. Mosquera, Marielle Jamond. Thermal Transformations of Kevlar Aramid Fibersduring Pyrolysis: Infrared and Thermal Analysis Studies[J]. Chem. Mater.1994,(6):1918-1924
    [1]姜晓霞,沈伟著.化学镀理论及实践[M].北京:国防工业出版社,2000.
    [2]吴维昌,冯洪清等著.标准电极电位数据手册[M].北京:科学出版社.1991.
    [3]伍学高,李铭华等著.化学镀技术[M].成都:四川科学技术出版社.1985.
    [4] Mallory, Glenn O.; Hajdu, Juan B. Electroless Plating-Fundamentals and Applications[M], William AndrewPublishing/Noyes,1990.
    [5]Marta E. G. Mosquera, Marielle Jamond. Thermal Transformations of Kevlar Aramid Fibersduring Pyrolysis: Infrared and Thermal Analysis Studies[J]. Chem. Mater.1994,(6):1918-1924
    [1]方景礼,方欣.金属表面配合物保护膜述评(Ⅱ)——银的防变色配合物膜[J]材料保护.2007,40(10):85~87
    [2]郑翼.银及其产品表面改性研究[J].甘肃冶金.2008,30(4):61~63
    [3] Xue G, Ding J F, Lu P, et al. J. Phys. Chem.,1991,95:7380.
    [4] Rubim J, Gutz I G R, Sala O, et al. J. Mol. St ruct.,1983,100:571.
    [5]于淼等.苯并三唑的用量对青铜文物封护剂耐蚀性能的影响[J].北京化工大学学报.2004,31(3):3~6
    [6] Cao P G, Yao J L, Zheng J W, et al. Langmuir,2002,18:100.
    [7] Yao J L, Ren B, Huang Z F, et al. Elect rochim. Acta,2003,48:1263.
    [8]文斯雄.苯骈三氮唑在金属抗蚀防护上的作用[J].腐蚀与防护.2004,25(7):813~814

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700