极端工况下矿井提升机衬垫摩擦学性能及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
衬垫是摩擦式提升机的关键部件,其性能的优劣直接关系到提升机的工作能力、提升效率和安全可靠性。近年来,有关提升钢丝绳与衬垫之间摩擦学问题的研究均在低速状态下进行,并未涉及重载高速滑动这一极端工况。当出现超载提升等意外因素引起的非正常滑动时,大量摩擦热积聚在衬垫表面,造成衬垫温升急剧变化,从而导致其摩擦因数及耐磨性急剧下降,引发恶性事故。因此,开展极端工况下摩擦衬垫与钢丝绳的高速摩擦学性能研究,进而对现有衬垫材料进行改性,力图提高其在恶劣环境下的摩擦因数和耐磨性,对确保矿井安全生产,提高经济与社会效益等方面都具有重大意义。
     本文在高等学校博士学科点专项科研基金项目——“极端环境下提升钢丝绳与衬垫高速摩擦学性能研究”(编号:20060290505)的资助下,针对矿井摩擦提升机经常发生恶性滑绳事故的问题,采取试验研究与理论分析相结合的方法,在实验室模拟矿井实际环境工况开展提升钢丝绳与摩擦衬垫滑动试验研究,掌握衬垫摩擦磨损特性变化规律,进而研制高性能摩擦衬垫,提高其在恶劣工况下的摩擦学性能。
     首先,模拟矿井提升机极端环境下的恶劣工况,在自制试验台上开展衬垫材料在高速、重载、油润滑条件下的摩擦学试验,利用扫描电镜及X射线能谱仪分析衬垫材料的磨损形貌与化学结构,进而分析衬垫在极端工况下的磨损机理与失效形式。
     其次,考虑不同晶须的特性差异,分别选择若干种无机晶须为填料,制备无机晶须改性衬垫材料,通过力学、热分析及摩擦学试验,考察晶须对衬垫材料力学性能、耐热性能及摩擦磨损特性的影响规律;利用扫描电镜,分析不同衬垫材料的磨损机制,探求不同晶须对衬垫材料的作用规律,从而确定改性效果最优的晶须种类。
     再次,结合拟水平与均匀设计试验方法,以树脂基体、无机晶须及芳纶浆粕的含量为影响因子,对衬垫材料进行配方设计;基于支持向量机理论,建立不同配方改性材料的摩擦学参数预测模型,考察不同组分及其含量对材料摩擦学行为的影响规律;基于多属性决策理论,以典型工况下的摩擦学特性为准则,对无机晶须与芳纶浆粕混杂改性衬垫材料进行配方优选。
     最后,针对改性衬垫材料,以比压和滑动速度为因子,采用中心复合试验设计法开展正常提升及恶劣工况下的模拟试验;基于响应曲面模型理论,探求材料摩擦磨损特性受比压和滑动速度等单因素及多因素交互作用的影响规律,分析材料摩擦因数及磨损率对各因素变化水平的敏感程度;结合对材料微观形貌及表层成分变化的分析,考察在不同条件下材料的磨损机理变化;在摩擦学试验的基础上,利用人工神经网络理论,建立全工况范围的衬垫摩擦因数预测模型。
Friction lining is a key component of the friction hoist, and its performance is directly related to the hoisting capacity, efficiency and safety. In recent years, the studies of wire rope and friction lining were carried out mainly under low velocity, and the tribological properties of friction lining under severe conditions such as heavy load and high velocity have not been totally understood. When the non-normal slide caused by overloading and other unexpected factors occurs, a great deal of friction heat accumulates on the surface of friction lining, which results in drastic changes in temperature filed. Accordingly, the friction coefficient and wear resistance exhibit sharp decline which finally leads to serious accidents. Therefore, to carry out the investigation on tribological behaviors of friction lining and wire rope under severe conditions and consequently modify the material of friction lining, in order to improve its friction coefficient and wear resistance, is helpful to ensure safe hoisting and enhance economic and social benefits.
     This dissertation was financially supported by Research Fund for the Doctoral Program of Higher Education of China. Aiming at the frequent occurrence of serious slipping accidents in coal mine, the methodology of theoretical and experimental analysis was employed, and the investigation of tribological properties between wire rope and friction lining was carried out in the laboratory simulating the real working conditions of coal mine. The goal is to master the tribological behaviors of friction lining, then to develop new material of friction lining which exhibits better properties under severe condition.
     Firstly, the sliding experiment between friction lining and wire rope was carried out on the tester under the condition of high velocity, heavy load and grease lubrication, which simulated the severe working condition of coal mine. Then, the SEM and XPS were employed to analysis the morphology and chemical structure of worn surfaces, and the wear mechanism and failure reasons were obtained consequently.
     Secondly, taking the character differences into consideration, several types of whiskers were chosen as reinforcements to prepare the whisker modified material. Afterwards, the effect of whisker on the physical and tribological properties was studied with experiments, and the morphology of worn surfaces was investigated with SEM. According to the different action laws of whisker, certain type of whisker which showed the best modification effect was fixed.
     Thirdly, the material formulations, in which the weights of PF, CaSO4 whisker and aramid fibre were considered as factors, were designed with quasi-level uniform method. Based on the support vector theory, the prediction model of tribological properties for different formulations was established to study the effect of ingredients and their weights on the tribological properties. Considering the tribological parameters under different conditions as criteria, the optimal formulation was chosen based on the method of AHP and PROMETHEE.
     Finally, the friction experiments of the newly developed material were conducted with the method of central composite design. The RSM was employed to analyze the sensitivity of friction coefficient and wear rate affected by the independent and interactive effect of velocity and pressure. Furthermore, the wear mechanism of developed material under different conditions was studied on the basis of the morphology and chemical structure of worn surfaces. In the end, with the experimental data, the friction coefficient prediction model was established based on the artificial neural network covering the whole range of velocity.
引文
[1] <煤矿安全>读本委员会.煤矿安全规程[M].北京:煤炭工业出版社, 2004.
    [2]温诗铸,黄平.摩擦学原理(第3版)[M].北京:清华大学出版社, 2008.
    [3]封士彩.多绳摩擦提升钢丝绳与衬垫间磨损机理的研究[J].煤矿机械. 2001(11): 22-24.
    [4]程友胜.多绳提升摩擦衬垫磨损的分析[J].煤矿机械. 2004(10): 56-57.
    [5]黄传辉,叶尔赞,秦信康.摩擦衬垫的磨损与钢丝绳表面状态的关系[J].煤炭科技. 1999(1): 22-24.
    [6]叶尔赞,黄传辉.摩擦衬垫磨损机理的微观分析[J].煤矿机械. 1999(4): 25-28.
    [7]郑志莲,李仪钰,王虹.多绳摩擦提升机衬垫摩擦系数的研究[J].矿山机械. 1999(5): 32-34.
    [8]郑志莲,易幼平,李仪钰.多绳摩擦提升机摩擦系数的实验研究[J].矿业研究与开发. 1999, 19(1): 34-36.
    [9]肖兴明.摩擦提升制动失效和滑绳事故机理分析及安全运行[D].徐州:中国矿业大学, 1989.
    [10]李良洲.摩擦衬垫摩擦系数和磨损率的测试[J].矿山机械. 2002(6): 36-38.
    [11]林福严,张东胜,马向东.聚氨酯弹性体摩擦衬垫材料的摩擦特性研究[J].润滑与密封. 2000(2): 33-34.
    [12]崔玉江,赵学义,王俊玺,等.摩擦提升机衬垫摩擦系数的现场测试方法[J].煤矿机械. 2004(5): 38-40.
    [13]王泳,张继,张德坤.多绳摩擦提升机衬垫的材料性能研究[J].矿山机械. 2005, 33(6): 47-49.
    [14]万理想,丁保华,徐军,等.多绳摩擦提升机衬垫硬度对摩擦系数影响的试验研究[J].煤矿机械. 2008, 29(8): 31-33.
    [15]朱振宝,邱波,颜世忠. K25摩擦衬垫在摩擦轮提升机中的应用[J].煤矿机械. 2008, 29(8): 144-146.
    [16]田雨,张杰,韦永继,等.聚氨酯弹性体摩擦系数影响因素探讨[J].聚氨酯工业. 2002, 17(1): 37-40.
    [17]翟文,陈强,孙利,等.摩擦提升机用新型摩阻材料的应用研究[J].弹性体. 2004, 14(6): 50-53.
    [18]张继礼,楚广成. GM-3新型高性能衬垫研制[J].有色矿山. 2002, 31(2): 35-38.
    [19]陈海燕,王成国,王海庆,等.摩擦材料用改性酚醛树脂的研究进展[J].材料导报. 2003, 17(8): 51-53.
    [20] Liu Y Q , Fan Z Q , Ma H Y, et al. Application of nano powdered rubber in friction materials[J]. Wear. 2006, 261(2): 225-229.
    [21] Gurunath P V , Bijwe J. Potential exploration of novel green resins as binders for nao friction composites in severe operating conditions[J]. Wear. 2009, 267(5-8): 789-796.
    [22] Gurunath P V , Bijwe J. Friction and wear studies on brake-pad materials based on newly developed resin[J]. Wear. 2007, 263(7-12): 1212-1219.
    [23] Bijwe J , Nidhi , Majumdar N, et al. Influence of modified phenolic resins on the fade and recovery behavior of friction materials[J]. Wear. 2005, 259(7-12): 1068-1078.
    [24] Hong U S , Jung S L , Cho K H, et al. Wear mechanism of multiphase friction materials with different phenolic resin matrices[J]. Wear. 2009, 266(7-8): 739-744.
    [25] Nam J , Seferis J C. Viscoelastic characterization of phenolic resin–carbon fiber composite degradation process[J]. Journal of Polymer Science: Part B: Polymer Physics. 1999, 37(9): 907-918.
    [26] Kim S J , Jang H. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp[J]. Tribology International. 2000, 33(7): 477-484.
    [27] Mutlu I , Oner C , Findik F. Boric acid effect in phenolic composites on tribological properties in brake linings[J]. Materials & Design. 2007, 28(2): 480-487.
    [28] Wang M , Leitch M , Xu C. Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins[J]. European Polymer Journal. 2009, 45(12): 3380-3388.
    [29]胡平,刘锦霞,张鸿雁,等.酚醛树脂及其复合材料成型工艺的研究进展[J].热固性树脂. 2006(1): 36-41.
    [30]李淑君,陶毓博,李坚,等.用TG-DSC-FTIR联用技术研究酚醛树脂的热解行为[J].东北林业大学学报. 2007, 35(6): 56-58.
    [31]李屹,姚进,周元康,等.复合改性酚醛树脂及其在摩擦材料中的应用[J].非金属矿. 2005, 28(4): 57-58.
    [32]袁新华,陈敏,邵美秀,等.摩阻材料用亚麻油改性酚醛树脂的研究[J].高分子材料科学与工程. 2006, 22(6): 181-183.
    [33] Chen Y , Chen Z , Xiao S, et al. A novel thermal degradation mechanism of phenol-formaldehyde type resins[J]. Thermochimica Acta. 2008, 476(1-2): 39-43.
    [34] Yi G W , Yan F Y. Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers[J]. Wear. 2007, 262(1-2): 121-129.
    [35]李志军,韦玮,程光旭,等.玻璃纤维增强酚醛基摩擦材料摩擦磨损性能研究[J].西安交通大学学报. 2000, 34(4): 67-70.
    [36]张亚娟,齐暑华,张福斌.不同纤维增强酚醛模塑料磨损性的研究[J].塑料工业. 2003, 31(1): 38-39.
    [37]刘佩华,刘旭军,吕仁国,等.芳纶/玻纤混杂纤维增强摩阻材料的研究[J]. 2006(7): 30-32.
    [38] Satapathy B K , Bijwe J. Composite friction materials based on organic fibres: sensitivity of friction and wear to operating variables[J]. Composites Part A: Applied Science and Manufacturing. 2006, 37(10): 1557-1567.
    [39] Satapathy B K , Bijwe J. Performance of friction materials based on variation in nature of organic fibres: part I. Fade and recovery behaviour[J]. Wear. 2004, 257(5-6): 573-584.
    [40] Lu Y F. A combinatorial approach for automotive friction materials: effects of ingredients on friction performance[J]. Composites Science and Technology. 2006, 66(3-4): 591-598.
    [41] Zhao Y L , Lu Y F , Wright M A. Sensitivity series and friction surface analysis of non-metallic friction materials[J]. Materials & Design. 2006, 27(10): 833-838.
    [42] Satapathy B K , Bijwe J. Wear data analysis of friction materials to investigate the simultaneous influence of operating parameters and compositions[J]. Wear. 2004, 256(7-8): 797-804.
    [43] Kim S J , Cho M H , Lim D S, et al. Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material[J]. Wear. 2001, 251(1-12): 1484-1491.
    [44] Kim Y C , Cho M H , Kim S J, et al. The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials[J]. Wear. 2008, 264(3-4): 204-210.
    [45] Matejka V , Lu Y , Jiao L, et al. Effects of silicon carbide particle sizes on friction-wear properties of friction composites designed for car brake lining applications[J]. Tribology International. 2010, 43(1-2): 144-151.
    [46] Hwang H J , Jung S L , Cho K H, et al. Tribological performance of brake friction materials containing carbon nanotubes[J]. Wear. 2010, 268(3-4): 519-525.
    [47] Dadkar N , Tomar B S , Satapathy B K. Evaluation of flyash-filled and aramid fibre reinforced hybrid polymer matrix composites (PMC) for friction braking applications[J]. Materials & Design. 2009, 30(10): 4369-4376.
    [48] Dadkar N , Tomar B S , Satapathy B K, et al. Performance assessment of hybrid composite friction materials based on flyash-rock fibre combination[J]. Materials & Design. 2010, 31(2): 723-731.
    [49] Suresha B , Siddaramaiah , Kishore, et al. Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites[J]. Wear. 2009, 267(9-10): 1405-1414.
    [50] Xie G Y , Zhuang G S , Sui G X, et al. Tribological behavior of PEEK/PTFE composites reinforced with potassium titanate whiskers[J]. Wear. 2010, 268(3-4): 424-430.
    [51] Bolvari A , Glenn S , Janssen R, et al. Wear and friction of aramid fiber andpolytetrafluoroethylene filled composites[J]. Wear. 1997, 203-204: 697-702.
    [52] Kukureka S N , Hooke C J , Rao M, et al. The effect of fibre reinforcement on the friction and wear of polyamide 66 under dry rolling-sliding contact[J]. Tribology International. 1999, 32(2): 107-116.
    [53] Pihtili H , Tosun N. Effect of load and speed on the wear behaviour of woven glass fabrics and aramid fibre-reinforced composites[J]. Wear. 2002, 252(11-12): 979-984.
    [54] Wan Y Z , Huang Y , He F, et al. Tribological properties of three-dimensional braided carbon/kevlar/epoxy hybrid composites under dry and lubricated conditions[J]. Materials Science and Engineering: A. 2007, 452-453: 202-209.
    [55] Bijwe J , Awtade S , Ghosh A. Influence of orientation and volume fraction of aramid fabric on abrasive wear performance of polyethersulfone composites[J]. Wear. 2006, 260(4-5): 401-411.
    [56] Yu L G , Yang S R. Investigation of the transfer film characteristics and tribochemical changes of kevlar fiber reinforced polyphenylene sulfide composites in sliding against a tool steel counterface[J]. Thin Solid Films. 2002, 413(1-2): 98-103.
    [57] Guo F , Zhang Z Z , Liu W M, et al. Effect of plasma treatment of kevlar fabric on the tribological behavior of kevlar fabric/phenolic composites[J]. Tribology International. 2009, 42(2): 243-249.
    [58]马保吉,朱均.芳纶纤维增强酚醛树脂摩擦材料的磨损机理研究[J].摩擦学学报. 2001, 21(3): 205-209.
    [59] Zhuang G S , Sui G X , Meng H, et al. Mechanical properties of potassium titanate whiskers reinforced poly(ether ether ketone) composites using different compounding processes[J]. Composites Science and Technology. 2007, 67(6): 1172-1181.
    [60] Feng X , Wang H Y , Shi Y J, et al. The effects of the size and content of potassium titanate whiskers on the properties of PTW/PTFE composites[J]. Materials Science and Engineering: A. 2007, 448(1-2): 253-258.
    [61] Feng X , Diao X S , Shi Y J, et al. A study on the friction and wear behavior of polytetrafluoroethylene filled with potassium titanate whiskers[J]. Wear. 2006, 261(11-12): 1208-1212.
    [62] Tjong S C , Meng Y Z. Performance of potassium titanate whisker reinforced polyamide-6 composites[J]. Polymer. 1998, 39(22): 5461-5466.
    [63] Yu D M , Wu J S , Zhou L M, et al. The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend[J]. Composites Science and Technology. 2000, 60(4): 499-508.
    [64] Wu P L , Tian Z , Wang L D, et al. Effect of changing rate of residual stress on thermal expansion behavior of magnesium borate whisker-reinforced aluminum composite[J]. Thermochimica Acta. 2007, 455(1-2): 7-10.
    [65] Wu P L , Yao C Y , Wang L D, et al. Effect of solution treatment on tensile properties of AA2024 matrix composite reinforced with magnesium borate whisker[J]. Key Engineering Materials. 2007, 353-358(pt2): 1334-1337.
    [66] Wu P L , Wang L D , Fei W D. Interfacial reaction in Al matrix composites reinforced by Mg borate whisker[J]. Materials Science Forum. 2007, 546-549: 643-648.
    [67]王德波,杨继萍,黄鹏程.硫酸钙晶须改性聚氨酯环氧树脂的粘接性能[J].复合材料学报. 2008, 25(4): 1-6.
    [68]胡晓兰,余谋发.硫酸钙晶须改性双马来酰亚胺树脂摩擦磨损性能的研究[J].高分子学报. 2006(5): 686-691.
    [69] Osterle W , Klob H , Urban I, et al. Towards a better understanding of brake friction materials[J]. Wear. 2007, 263(7-12): 1189-1201.
    [70] Osterle W , Dorfel I , Prietzel C, et al. A comprehensive microscopic study of third body formation at the interface between a brake pad and brake disc during the final stage of a pin-on-disc test[J]. Wear. 2009, 267(5-8): 781-788.
    [71] El-tayeb N S , Liew K W. On the dry and wet sliding performance of potentially new frictional brake pad materials for automotive industry[J]. Wear. 2009, 266(1-2): 275-287.
    [72] Anoop S , Natarajan S , Kumaresh B S. Analysis of factors influencing dry sliding wear behaviour of Al/SiCp-brake pad tribosystem[J]. Materials & Design. 2009, 30(9): 3831-3838.
    [73] Kukutschova J , Roubicek V , Malachova K, et al. Wear mechanism in automotive brake materials, wear debris and its potential environmental impact[J]. Wear. 2009, 267(5-8): 807-817.
    [74] Kukutschova J , Roubicek V , Maslan M, et al. Wear performance and wear debris of semimetallic automotive brake materials[J]. Wear. 2010, 268(1-2): 86-93.
    [75] Severin D , D S. Friction mechanism in industrial brakes[J]. Wear. 2001, 249(9): 771-779.
    [76] Jacobson S , Hogmark S. Surface modifications in tribological contacts[J]. Wear. 2009, 266(3-4): 370-378.
    [77] Ostermeyer G P. On the dynamics of the friction coefficient[J]. Wear. 2003, 254(9): 852-858.
    [78] Blau P J. The significance and use of the friction coefficient[J]. Tribology International. 2001, 34(9): 585-591.
    [79] Savaskan T , Alemdag Y. Effects of pressure and sliding speed on the friction and wear properties of Al-40Zn-3Cu-2Si alloy: a comparative study with SAE 65 bronze[J]. MaterialsScience and Engineering: A. 2008, 496(1-2): 517-523.
    [80] Kwok J K , Lim S C. High-speed tribological properties of some Al/SiCp composites: I. Frictional and wear-rate characteristics[J]. Composites Science and Technology. 1999, 59(1): 55-63.
    [81] Straffelini G , Pellizzari M , Molinari A. Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material[J]. Wear. 2004, 256(7-8): 754-763.
    [82]罗霞,张永振,陈跃,等.材料高速干摩擦的研究现状及其发展[J].润滑与密封. 2005(2): 179-182.
    [83]邱明,张永振,朱均.高速干滑动下材料摩擦学性能的研究进展[J].材料科学与工艺. 2006, 14(6): 646-650.
    [84]尹斌,滕杰,陈振华.基体共混改性对树脂基摩阻材料摩擦磨损性嫩的影响[J].矿冶工程. 2006, 26(4): 72-75.
    [85] Jang H , Ko K , Kim S J, et al. The effect of metal fibers on the friction performance of automotive brake friction materials[J]. Wear. 2004, 256(3-4): 406-414.
    [86] Cho M H , Ju J , Kim S J, et al. Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials[J]. Wear. 2006, 260(7-8): 855-860.
    [87] Natarajan N , Vijayarangan S , Rajendran I. Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction material[J]. Wear. 2006, 261(7-8): 812-822.
    [88] Zhang S , Wang F. Comparison of friction and wear performances of brake materials containing different amounts of ZrSiO4 dry sliding against SiCp reinforced Al matrix composites[J]. Materials Science and Engineering: A. 2007, 443(1-2): 242-247.
    [89] Boz M , Kurt A. The effect of Al2O3 on the friction performance of automotive brake friction materials[J]. Tribology International. 2007, 40(7): 1161-1169.
    [90] Cho K H , Jang H , Hong Y , et al. The size effect of zircon particles on the friction characteristics of brake lining materials[J]. Wear. 2008, 264(3-4): 291-297.
    [91] Ma Y , Martynkov G S , Val M, et al. Effects of ZrSiO4 in non-metallic brake friction materials on friction performance[J]. Tribology International. 2008, 41(3): 166-174.
    [92] Matejka V , Lu Y , Fan Y, et al. Effects of silicon carbide in semi-metallic brake materials on friction performance and friction layer formation[J]. Wear. 2008, 265(7-8): 1121-1128.
    [93] Lee K , Blau P J , Truhan J J. Effects of moisture adsorption on laboratory wear measurements of brake friction materials[J]. Wear. 2007, 262(7-8): 925-930.
    [94] El-tayeb N S , Liew K W. Effect of water spray on friction and wear behaviour ofnoncommercial and commercial brake pad materials[J]. Journal of Materials Processing Technology. 2008, 208(1-3): 135-144.
    [95] Daoud A , Abou E M. Wear and friction behavior of sand cast brake rotor made of A359-20vol% SiC particle composites sliding against automobile friction material[J]. Tribology International. 2010, 43(3): 544-553.
    [96]煤炭科学研究总院. MT/T 248-91摩擦提升机用衬垫摩擦因数测试方法[S].北京:中国标准出版社, 1991.
    [97]全国矿山机械标准化技术委员会. JB/T 10347-2002摩擦式提升机摩擦衬垫[S].北京:中国标准出版社, 2002.
    [98]曾幸荣.高分子近代测试分析技术[M].广州:华南理工大学出版社, 2007.
    [99]李新明,李晓林,苏志强,等.丁腈橡胶共聚改性酚醛树脂[J].热固性树脂. 2002, 17(3): 11-13.
    [100]李武.无机晶须[M].北京:化学工业出版社, 2005.
    [101]中华人民共和国化学工业部. GB/T2411-1980塑料邵氏硬度试验方法[S].北京:中国标准出版社, 1980.
    [102]中国国家标准化管理委员会. GB/T 1040.2-2006塑料拉伸性能的测定第2部分:模塑和挤塑塑料的试验条件[S].北京:中国标准出版社, 2006.
    [103] Lubrecht T , Mazuyer D , Cann P. Starved elastohydrodynamic lubrication theory: application to emulsions and greases[J]. Comptes Rendus de l'Academie des Sciences - Series IV - Physics. 2001, 2(5): 717-728.
    [104]方开泰.均匀设计与均匀设计表[M].北京:科学出版社, 1994.
    [105]布尚.摩擦学导论[M].北京:机械工业出版社, 2006.
    [106]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社, 1986.
    [107]袁哲明,左斌,谭泗桥,等.基于均匀设计与支持向量回归的发酵配方优化[J].过程工程学报. 2009, 9(1): 148-152.
    [108] Pourbasheer E , Riahi S , Ganjali M R, et al. Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity[J]. European Journal of Medicinal Chemistry. 2009, 44(12): 5023-5028.
    [109] Tan Z X , Li P X , Yan L L, et al. Study of the method to calculate subsidence coefficient based on svm[J]. Procedia Earth and Planetary Science. 2009, 1(1): 970-976.
    [110] Cao S , Liu Y , Wang Y. A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM[J]. Journal of China University of Mining and Technology. 2008, 18(2): 172-176.
    [111] Matheny M E , Resnic F S , Arora N, et al. Effects of SVM parameter optimization ondiscrimination and calibration for post-procedural pci mortality[J]. Journal of Biomedical Informatics. 2007, 40(6): 688-697.
    [112] Wang H , Pi D Y , Sun Y X. Online SVM regression algorithm-based adaptive inverse control[J]. Neurocomputing. 2007, 70(4-6): 952-959.
    [113] Cherkassky V , Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks. 2004, 17(1): 113-126.
    [114] Gao J B , Gunn S R , Harris C J. SVM regression through variational methods and its sequential implementation[J]. Neurocomputing. 2003, 55(1-2): 151-167.
    [115]高延超.基于多元回归分析——支持向量机的财务危机预警模型[J].商业经济. 2008(11): 8-9.
    [116]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社, 2004.
    [117] Cho J R , Shin S W. Material composition optimization for heat-resisting FGMs by artificial neural network[J]. Composites Part A: Applied Science and Manufacturing. 2004, 35(5): 585-594.
    [118] Sitek W , Dobrzanski L A. Application of genetic methods in materials' design[J]. Journal of Materials Processing Technology. 2005, 164-165: 1607-1611.
    [119] De K W , Peeters P. A note on the use of promethee multicriteria methods[J]. European Journal of Operational Research. 1996, 89(3): 457-461.
    [120] De L I , Pastijn H. Selecting land mine detection strategies by means of outranking MCDM techniques[J]. European Journal of Operational Research. 2002, 139(2): 327-338.
    [121] Brans J P. Ethics and decision[J]. European Journal of Operational Research. 2002, 136(2): 340-352.
    [122] Ulengin F , Topcu Y I , Sahin S O. An integrated decision aid system for bosphorus water-crossing problem[J]. European Journal of Operational Research. 2001, 134(1): 179-192.
    [123] Goumas M , Lygerou V. An extension of the PROMETHEE method for decision making in fuzzy environment: ranking of alternative energy exploitation projects[J]. European Journal of Operational Research. 2000, 123(3): 606-613.
    [124] Albadvi A. Formulating national information technology strategies: a preference ranking model using PROMETHEE method[J]. European Journal of Operational Research. 2004, 153(2): 290-296.
    [125] Macharis C , Springael J , De B K, et al. PROMETHEE and AHP: the design of operational synergies in multicriteria analysis.: Strengthening promethee with ideas of AHP[J]. European Journal of Operational Research. 2004, 153(2): 307-317.
    [126] Chou T Y , Lin W T , Lin C Y, et al. Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM[J]. Journal of Hydrology. 2004, 287(1-4): 49-61.
    [127] Chou W C , Lin W T , Lin C Y. Application of fuzzy theory and PROMETHEE technique to evaluate suitable ecotechnology method: a case study in shihmen reservoir watershed, taiwan[J]. Ecological Engineering. 2007, 31(4): 269-280.
    [128] Parreiras R O , Vasconcelos J A. A multiplicative version of PROMETHEE II applied to multiobjective optimization problems[J]. European Journal of Operational Research. 2007, 183(2): 729-740.
    [129] Albadvi A , Chaharsooghi S K , Esfahanipour A. Decision making in stock trading: an application of PROMETHEE [J]. European Journal of Operational Research. 2007, 177(2): 673-683.
    [130] Halouani N , Chabchoub H , Martel J M. PROMETHEE -MD-2T method for project selection[J]. European Journal of Operational Research. 2009, 195(3): 841-849.
    [131] Behzadian M , Kazemzadeh R B , Albadvi A, et al. PROMETHEE: a comprehensive literature review on methodologies and applications[J]. European Journal of Operational Research. 2009, 200(1): 198-215.
    [132] Beynon M J , Wells P. The lean improvement of the chemical emissions of motor vehicles based on preference ranking: a PROMETHEE uncertainty analysis[J]. Omega. 2008, 36(3): 384-394.
    [133] Dagdeviren M , Yavuz S , Kilin N. Weapon selection using the AHP and TOPSIS methods under fuzzy environment[J]. Expert Systems with Applications. 2009, 36(4): 8143-8151.
    [134] Da M. Decision making in equipment selection: an integrated approach with AHP and PROMETHEE [J]. Journal of Intelligent Manufacturing. 2008, 19(4): 397-406.
    [135] Brans J P , Vincke P , Mareschal B. How to select and how to rank projects: the PROMETHEE method[J]. European Journal of Operational Research. 1986, 24(2): 228-238.
    [136] Herngren L , Goonetilleke A , Ayoko G A. Analysis of heavy metals in road-deposited sediments[J]. Analytica Chimica Acta. 2006, 571(2): 270-278.
    [137] Albayrak E , Erensal Y C. Using analytic hierarchy process (AHP) to improve human performance: an application of multiple criteria decision making problem[J]. Journal of Intelligent Manufacturing. 2004, 15(4): 491-503.
    [138] Takahisa K , Hiroshi S. Friction material design for brake pads using database[J]. Tribology transactions. 2001, 44(1): 137-141.
    [139] Saaty T L. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences. 2008, 1(1): 83-98.
    [140] Brans J P , Vincke P. A preference ranking organisation method (the PROMETHEE method for multiple criteria decision-making).[J]. Management Science. 1985, 31(6): 647-656.
    [141]王炜,马国富.芳纶浆粕预处理方法的研究进展[J].特种橡胶制品. 2003, 24(1): 54-56.
    [142]袁海根,王汝敏,艾涛.表面处理对Kevlar纤维复合材料界面结合强度的影响[J].化学推进剂与高分子材料. 2005, 3(5): 38-41.
    [143]路向辉,曹继平,史爱娟,等.表面处理芳纶纤维在丁羟橡胶中的应用[J].火炸药学报. 2007, 30(1): 21-23.
    [144]贺泓,朱鹤孙,孙慕瑾.芳纶纤维的表面改性[J].复合材料学报. 1990, 7(3): 17-24.
    [145]廖颖芳,申明霞,蒋林华.改善芳纶与橡胶粘合性能的处理方法[J].高科技纤维与应用. 2005, 30(3): 32-35.
    [146]中华人民共和国化学工业部. GB/T15598-1995塑料剪切强度试验方法穿孔法[S].北京:中国标准出版社, 1995.
    [147]何桢,潘越,刘子先,等.因子试验、RSM与田口方法的比较研究[J].机械设计. 1999(10): 1-4.
    [148]杨兆建.提升机衬垫摩擦系数的回归正交优化设计与分析[J].矿山机械. 1990(11): 18-23.
    [149] Sivasankaran S , Narayanasamy R , Ramesh T, et al. Analysis of workability behavior of Al-SiC P/M composites using backpropagation neural network model and statistical technique[J]. Computational Materials Science. 2009, 47(1): 46-59.
    [150] Rapetto M P , Almqvist A , Larsson R, et al. On the influence of surface roughness on real area of contact in normal, dry, friction free, rough contact by using a neural network[J]. Wear. 2009, 266(5-6): 592-595.
    [151] Ozerdem M S , Kolukisa S. Artificial neural network approach to predict the mechanical properties of Cu-Sn-Pb-Zn-Ni cast alloys[J]. Materials & Design. 2009, 30(3): 764-769.
    [152] Ray S , Roy C S. Prediction of contact temperature rise between rough sliding bodies: an artificial neural network approach[J]. Wear. 2009, 266(9-10): 1029-1038.
    [153] Zhu J H , Shi Y J , Feng X, et al. Prediction on tribological properties of carbon fiber and TiO2 synergistic reinforced polytetrafluoroethylene composites with artificial neural networks[J]. Materials & Design. 2009, 30(4): 1042-1049.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700