PTFE微孔膜物理亲水改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用膜对颗粒的吸附、截留和筛分作用进行分离的微滤技术得到迅速发展。在众多的膜材料中,聚四氟乙烯(PTFE)微孔薄膜由于其耐酸、耐碱、耐高温、微孔结构可调控性强等优点,被广泛应用于环保、过滤、纺织、医疗、军事等方面。但由于PTFE表面能低,表面润湿性差,影响了其在过滤领域的应用,因此薄膜的亲水改性成为研究热点。
     本文在深入分析包括钠-萘化学处理等在内的传统化学改性对材料本体性能影响大的基础上,提出了物理改性的思路。依赖分子间作用力在PTFE微孔膜表面吸附沉积Fe~(3+),再在沉积层上聚合亲水性单体并形成配位键合,在基本不影响薄膜本体性能的前提下,对PTFE微孔膜进行物理亲水改性。通过FTIR、SEM、ζ电位分析、超声振荡、接触角、水通量等手段研究了改性薄膜的结构和性能。结果表明,PTFE薄膜的亲水性能得到了显著的提高。
     主要研究内容和结论:
     (1)超声振荡和FTIR实验表明,Fe(OH)_3胶体可牢度地吸附在PTFE膜上,二者之间通过分子间作用力结合。吸附降低了薄膜与水的接触角,提高了表面张力。最佳吸附条件为:浸渍液为,20mL沸水/FeCl_3溶液(1mol/L)7.5mL/NaOH溶液(2mol/L)1.5mL;浸渍时间20h、浸渍温度15℃。
     (2)依据电负性及离子半径对溶液离子特性与吸附作用进行理论分析,通过ζ电位测试MgCl_2和CuCl_2等溶液进行理论验证,认为由于Fe~(3+)具有大的电负性以及比H~+的离子半径大的特点,赋予了PTFE与Fe~(3+)之间较强的亲合力;与Cu(OH)_2比较,水解能力强的Fe3+容易形成胶体,可牢固吸附到PTFE薄膜上。
     (3)为了进一步提高Fe(OH)_3胶体吸附后PTFE薄膜的亲水性能,再聚合丙烯酸(AA)亲水性单体。采用FTIR分析了聚丙烯酸(PAA)与Fe(OH)3之间的键合作用,认为PAA与Fe(OH)_3通过桥式配位相连接。
     (4)实验研究了单体AA浓度、引发剂(NH_4)_2S_2O_8用量、聚合温度和时间等对薄膜增重率的影响,建立了膜增重率与水通量间的关系。最佳聚合条件为:AA浓度25%,(NH_4)_2S_2O_8用量1%(占单体重量),聚合温度60℃,聚合时间60min。此时薄膜增重率为7.9%,薄膜与水的接触角由146°降至76°,表面张力由1.15×10~(-2)N·m~(-1)增大到5.92×10~(-2)N·m~(-1),水通量从0增大至0.069 m~3·m~(-2)·h~(-1),薄膜的亲水改性效果显著,水透过性能得到改善。
     该方法不仅拓宽了PTFE薄膜亲水改性途径,而且为有机与无机材料相结合提供了新的加工方法。
The use of membrane on particle adsorption, retention and separation by microfiltration technology has been developing rapidly. Among the membrane materials, PTFE microporous membrane due to its acid and alkali resistance, high temperature resistance, strong regulation of pore structure has been widely used in environmental protection, filtration, textile, medical, military and so on. However, because of extremely low surface energy and strong hydrophobicity, PTFE’s application in aqueous filtration is still limited. So, studies on the hydrophilic modification of PTFE membrane become necessary.
     Traditional chemical modification including sodium-naphthalene chemical treatment can damage PTFE material itself. This paper, after analyzing the influence of chemical treatment on PTFE, put forward an idea of physical modification.
     The method of physical modification was as follows: firstly, Fe~(3+) were adsorbed and deposited on the surface of PTFE microporous membrane, then according to the theory of coordination bonding, hydrophilic monomer were polymerized on PTFE membrane which had adsorbed Fe~(3+). This method of physical hydrophilic modification on PTFE microporous membrane did not affect the performance of membrane itself on the whole. The structure and properties of modified membrane were studied by means of FTIR, SEM,ζpotential, ultrasonic oscillation, contact angle, water flux and so on. The results showed that the hydrophilic performance of PTFE membrane was improved significantly.
     The main contents and conclusions in research are as follows:
     (1) The ultrasonic oscillation and FTIR results showed that Fe(OH)_3 colloid can be adsorbed on the PTFE membrane stably. The Fe(OH)_3 and PTFE membrane were interacted through intermolecular forces. The contact angle of water on the membrane was decreased and the surface tension was increased after Fe(OH)_3 adsorption. The best conditions of adsorption were as fellows: dipping solution,20mL boiling water /FeCl3 Solution(1mol/L)7.5mL /NaOH Solution(2mol/L)1.5mL; dipping time 20h, and dipping temperature 15℃。
     (2) Ionic characteristics and adsorption were theoretically analyzed based on electronegativity and ionic radius, which was validated byζpotential test of PTFE membrane in MgCl_2 solution, CuCl_2, FeCl_3 solution and so on. The results showed that PTFE and Fe~(3+) had a special affinity, which was derived from the larger electronegativity of Fe~(3+) than other metal ions’and the larger ionic radius of Fe~(3+) than H~+’s. Besides, in comparison with Cu(OH)_2, Fe~(3+) has a strong tendency of hydrolysis and becomes colloid easily, it can absorb onto the PTFE membrane stably.
     (3) In order to further enhance the membrane hydrophilicity which had adsorbed Fe(OH)_3 colloid, the membrane was further put into acrylic acid (AA) aqueous solution and acrylic acid polymerization was carried out. The structure of polyacrylic acid (PAA) and Fe(OH)_3 was analyzed by FTIR, the results showed that the connection between PAA and Fe(OH)_3 were dependent on bridge coordination. (4) In this paper, the factors influencing the weight gain ratio of polyacrylic acid onto the PTFE membrane had been studied, and the relationship between membrane weight gain ratio and water flux had been established. The best conditions of polymerization were as fellows: 25% AA monomer concentration, 1% (NH_4)_2S_2O_8 (initiator) of the total monomer weight, polymerization temperature 60℃, polymerization time 60min. Under the best conditions of polymerization, membrane weight gain ratio was 7.9%, the contact angle of water on the membrane was decreased from 146°to 76°, the surface tension was increased from 1.15×10~(-2)N·m~(-1) to 5.92×10~(-2)N·m~(-1), the water flux was increased from 0 to 0.069 m~3·m~(-2)·h~(-1). The effect of hydrophilic modification was obvious, and the performance of water permeation through the membrane was improved significantly. The method put forward in this paper not only broadens the ways of hydrophilic modification on PTFE, but also provides a new processing method by combination of organic and inorganic materials.
引文
[1]R J Plunkett. Tetrafluorosthene Polymers[P]. U.S:2230654,1941-02-04.
    [2]罗益锋.含氟纤维的制备、特性和应用[J].高科技纤维与应用,1999,24(5):19-23.
    [3]张永明,李虹,张恒.含氟功能材料[M].北京:化学工业出版社,2008:16.
    [4]钱知勉.塑料性能应用手册[M].上海:上海科技技术文献出版社,1988:285-286.
    [5]张永明,李虹,张恒.含氟功能材料[M].北京:化学工业出版社,2008:48-49.
    [6]陈珊妹,李敖琪.双向拉伸PTFE微孔膜的制备及其孔性能[J].膜科学与技术,2003,23(2):19-21.
    [7]Tanaru,Shinji,Tanaka,et al. Polytetrafluoroethylene porous film and preparation and use thereof[P]. U.S:5234739,1988-02-23.
    [8]Gore R W. Very highly stretched polytetratluoroethylene and process therefore [P] U.S:3962153,1976-06-08.
    [9]何燕.聚四氟乙烯的生产应用与市场[J].四川化工与腐蚀控制,2003,6(3):34-41.
    [10]陈珊妹.膨体聚四氟乙烯微孔滤膜孔结构的扫描电镜图像解析[J].化学物理学报,2005,18(2):228-232.
    [11]郭玉海,张建春,张旭东.聚四氟乙烯薄膜防水透湿层压织物的研究[J].北京纺织,1998,19(4):12-15.
    [12]Taketo Kitamura,Shohei Okabe. Morphology change in PTFE porous membrane caused by heat treatment[J]. Polymer Engineering and Science,2000,40(3):809-817.
    [13]郝新敏,张建春,郭玉海等.拉伸工艺对膨体PTFE薄膜微孔结构的影响[J].膜科学与技术,2005,25(4):26-29.
    [14]Guo Yuhai,Jizhi Huang,Jianchun Zhang. Study of a novel process for preparing and co-stretching PTFE membrane and its properties[J]. European Polymer Journal,2004,44(4):667-671.
    [15]张建春.新型军用功能性纺织面料的开发[J].棉纺织技术,2002,30(1):8-12.
    [16]Liu Liying.Study on moisture permeation through waterproof breathable garments during wear[J].Journal of Qingdao University,2002,17(1):44-47.
    [17]张永明,李虹,张恒.含氟功能材料[M].北京:化学工业出版社,2008:83.
    [18]周小红.多孔膜复合防水透湿织物湿传递特性的实验与理论研究[D].上海:东华大学博士论文,2005.
    [19]郝新敏.选择性渗透膜材料、传质模型及生化防护机理的研究[D].上海:东华大学博士论文,2004.
    [20]孙天淦.聚四氟乙烯膜过滤装置处理油田污水现场试验[J].中国石油大学胜利学院学报,2006,20(6):7-8.
    [21]李晓红,刘作华,杜军等.疏水性PTFE微孔膜处理含Cr(Ⅲ)稀溶液的实验研究[J].水处理技术,2005,31(6):12-14.
    [22]商春礼.覆膜滤料的除尘机理及应用[J].冶金环境保护,2001,(1):49-51
    [23]郑文明,蔡志杰,王海峰.覆膜滤料对特殊烟尘处理的优越性[J].工业安全与环保,2001,27(12):7-9.
    [24]王庚.膨体聚四氟乙烯(ePTFE)覆料滤膜过滤性能的研究[D].北京:北京化工大学博士论文,2005.
    [25]王亮梅,王锐兰,钟明强.医用膨体聚四氟乙烯膜材料的制备[J].水处理技术,2004,30(2):72-74.
    [26]史振宇,符伟国,郭大乔等.一种新型国产化人工血管内支架的研制[J].复旦学报(医学版),2005,32(3):309-312.
    [27]Gher M E,Quinter G,Assad D,et a1.Bone grafting and guided bone regeneration for immediate dental implants in humans[J].J Period ontol,1994,65:881-891.
    [28]Becker W,Lynch S E,Lekholm U,et a1.A comparison of ePTFE membranes alone or in combination th platelet-derived growth factors an d insulin-like growth factors-I or demineralized freezedried bone in promoting bo ne formation around immed iate extraction socket implants[J].J Periodontal,1992,63:929-940.
    [29]宋雄彬.新型建筑材料-膜材[J].新型材料,2006(10):24-26.
    [30]张振英,杨淑丽. PTFE的研究及其在密封上的应用[J].工程塑料应用,1994,22(4):52-55.
    [31]耿东森,李培金. PFSI/PTFE复合膜用于质子交换膜燃料电池的研究[J].华北科技学院学报,2009,6(2):37-40.
    [32]Kang E T,Tan K L. Surface modification and functionalization of polytetrafluo roethylene films [J]. Macromolecules,1996,29:6872-6879.
    [33]陈怀九.新型可粘聚四氟乙烯大板的研制[J].武汉大学学报,1986,(1):93.
    [34]郭金彦,张军营.熔融法处理聚四氟乙烯表面的改进[J].中国胶粘剂,2000,9(3):21-23.
    [35]季铁正,林德宽.力化学处理一种用于粘接难粘材料的新方法[J].粘接,1995,(2):1-4.
    [36]M S Shoichet,T J McCarthy. Convenient syntheses of carboxylic acid functionalized fluoropolymer surfaces [J]. Macromolecules,1991,24(5):982-986.
    [37]李子东,王素英,于敏.钠-萘处理液的制备及其对聚四氟乙烯的处理[J].化学与粘结,1995,(3):139-141.
    [38]徐保国.聚四氟乙烯的表面活化与粘接[J].化学与粘合,1996,(4):206-208.
    [39]C Combellas,F Kanoufi ,D Mazouzi ,et a1. Surface modification of halogenated polymers.4.Functionalisation of poly(tetrafluoroethylene) surfaces by diazonium salts[J]. Polymer,2003,44(1):19-24.
    [40]李雷,蒋金芝,尚玉明等.基于微孔聚四氟乙烯的复合质子交换膜[J].化工进展,2009,28(8):1395-1399.
    [41]A Chapiro,E Gordon. Effets des solvants sur le greffage radiochimique de la viny-4-4pyridine dans des films de polytetrafluoroethylene[J]. European Polymer Journal,1973,9(10):975-984.
    [42]A Chapiro. Radiation induced grafting[J]. Radiation Physics and Chemistry,1977,9(1-3):56-67.
    [43]Turmanova S,Kalaijiev O,Kostov G,et al. Radiation grafting of acrylic acid onto polytetrafluoroethylene films for glucose oxidase immobilization and its application in membrane biosensor [J]. Journal of Membrane Science,1997,127:1-7.
    [44]韦亚兵,钱翼清.聚四氟乙烯薄膜表面光接枝改性的ESCA研究[J].南京化工大学学报,1999,21(2):65-67.
    [45]卢婷利,梁国正,杨洁颖等.聚四氟乙烯膜辐射接枝反应条件的研究[J].辐射研究与辐射工艺学报,2003,21(4):251-255.
    [46]蔺爱国,张国忠,刘刚.改性聚四氟乙烯膜在油田含油污水处理中的动电现象[J] .石油学报,2007,23(6):66-69.
    [47]蔺爱国,刘刚.改性聚四氟乙烯膜用于油田污水精细处理[J] .工程塑料应用, 2006 ,34(3);39-41.
    [48]Peng J F,Qiu J Y,Ni J F,et al. Radiation Synthesis and Characteristics of PTFE-g-PSSA Ion Exchange Membrane Applied in Vanadium Redox Battery[J] . Nuclear Science and Techniques,2007,18(1):50-54.
    [49]Bucio E,Burillo G . Radiation Grafting of pH and Thermosensitive N-isopropylacrylamide and Acrylic Acid onto PTFE Films by Two-steps Process [J] . Radiation Physics and Chemistry,2007,76(11-12):1724-1727.
    [50]Griesser H J,Chatelier R C,Gengenbach T R,et al. Plasma surface modifications for improved biocompatibility of commercial polymers[J]. Polymer International,1992,27:109-117.
    [51]D J Wilson,R L Williams,R C Pond Plasma modification of PTFE surfaces. Part I: Surfaces immediately following plasma treatment[J]. Surface and Interface Analysis,2001,31:385-396.
    [52]D J. Wilson,R L Williams,R C Pond Plasma modification of PTFE surfaces. Part II: Plasma-treated surfaces following storage in air or PBS[J]. Surface and Interface Analysis,2001,31:397-408.
    [53]方志,邱航昌,罗毅.用大气压下空气辉光放电对聚四氟乙烯进行表面改性[J].西安交通大学学报,2004,38(2):190-194.
    [54]Hua X,Zheng H,Shihua W,et al. Surface modification of polytetrafluoroethylene by microware plasma treament of H2O/Ar mixture at low pressure[J]. Materials Chemistry and Physics,2003,80(1):278-282.
    [55]孙海翔,张林,陈欢林.聚四氟乙烯膜的亲水化改性研究进展[J].化工进展,2006,25(4):378-382.
    [56]杨少斌,刘小冲.等离子体引发PTFE膜固定化脲酶处理废水研究[J].河南化工,2007,24(10):23-24.
    [57]Turmanova S,Minchev M,Vassilev K,et al. Surface grafting polymerization of vinyl monomers on poly(tetrafluoroethylene) films by plasma treatment[J]. Journal of Polymer Research,2008,15:309-318.
    [58]Jin G,Yao Q Z,Zhang S Z,et al. Surface Modifying of Microporous PTFE Capillary for Bilirubin Removing f rom Human Plasma and It s Blood Compatibility[J] . Materials Science and Engineering, Part C:Materials Science and Engineering,2008,28(8):1480-1488.
    [59]叶明.常压低温等离子体对聚四氟乙烯表面接枝改性与表面粘接性能研究[D].上海:复旦大学硕士论文,2008.
    [60]Niino H,Yabe A. Chemical surface modification of fluorocarbon polymers by excimer laser processing [J]. Applied Surface Science,1996,96-98:550-557.
    [61]Niino H, Okano H,Inui K,et al. Surface modification of poly(tetrafluoroethylene) by excimer laser processing: enhancement of adhesion [J]. Applied Surface Science,1997,109-110:259-263.
    [62]B Hopp,Zs Geretovszky,I W Boyd. Comparative tensile strength study of the adhesion improvement of PTFE by UV photon assisted surface processing[J]. Applied Surface Science,2002,186:80-84.
    [63]Hiroyuki,Niino,Akira Yabe. Surface modification an metallization of fluorocarbon polymers by excimer laser processing[J]. Appl Phys lett,1993,63(25):3527-3529.
    [64]Toshio Okamoto,Tomoaki Shimizu,Ken Hatao. Development of even exposure system for improvement of dying property of fluorocarbon-resin surface[J]. Laser Science Progress Report of Riken,1997,(19):67-69.
    [65]吴金坤.氟塑料的表面改性[J].塑料, 1996,25(1):7-12.
    [66]袁海根,曾金芳,杨杰.聚四氟乙烯改性研究进展[J].塑料工业, 2005, 33(8):7-10.
    [67]J B Xu,S Lange,J P Bartley,et al. Alginate-coated microporous PTFE membranes for use in the osmotic distillation of oily feeds[J]. Journal of Membrane Science,2004,240:81-89.
    [68]J B Xu,J P Bartley. Application of sodium alginate-carrageenan coatings to PTFE membranes for protection against wet-out by surface-active agents[J]. Separation Science and Technology,2005,40:1067-1081.
    [69]B Feddes,A M Vredenberg. Initial deposition of calcium phosphate ceramic on polystyrene and polytetrafluoroethylene by RF magnetron sputtering deposition[J]. J.Vac. Sci. Technol. A,2003,21(2):363-368.
    [70]B Feddes,J G C Wolke,A M Vredenberg,et al. Adhesion of calciumphosphate ceramic on polyethylene (PE) and polytetrafluoroethylene (PTFE)[J]. Surface and Coatings Technology,2004, 184:247-254.
    [71]Nakamichi Yamasaki,I R Korablova,S F Korablov. Hydrothermal deposition of nickel on Teflon substrate[J]. Materials Letters,2004,58:768-771.
    [72]M S Korobov,G Yu Yurkov. Metal-containing Poly(tetrafluoroethylene): a novel material[J]. Inorganic Materials,2004,40(1):26-34.
    [73]钱方针,蒋可玉,阮建中.高能球磨法制备铁与聚四氟乙烯纳米复合材料[J].华东师范大学学报(自然科学版),2004,1(3):56-60.
    [74]朱耕宇,趁雪萍,翁志学. PTFE/Fe2O3共凝聚粒子结构与性能研究[J].塑料工业,2004,32(10):41-42.
    [75]Naeem M,El-Sawy,T I Ali. Iron(III) complexed with radiation-grafted acrylic acid onto poly(tetrafluoroethylene-co-perfluorovinyl ether) films[J]. Journal of Applied Polymer Science,2007,103(6):4065-4071.
    [76]韩德刚,高执棣,高盘良.物理化学[M].北京:高等教育出版社,2003:710-712.
    [77]南京大学《无机及分析化学》编写组.《无机及分析化学》[M].第三版.北京:高等教育出版社,2001:235.
    [78]Charles M,Flynn Jr. Hydrolysis of inorganic iron(III) salts[J]. Chemical Review,1984,84(1):31–41.
    [79]汤鸿霄.无机高分子絮凝理论与絮凝剂[M].北京:中国建筑工业出版社,2006:155.
    [80]严宣申.制备氢氧化铁胶体[J].化学教育,2006(8):33-38.
    [81]郭慧.氢氧化铁和羟基氧化铁的催化相转化机理研究[D].河北:河北师范大学硕士论文,2006.
    [82]孟哲,贾振斌,魏雨.δ-FeOOH的制备及热处理产物的FTIR光谱[J].过程工程学报,2004,4(2):146-149.
    [83]田宝珍,汤鸿霄.聚合铁的红外光谱和电导特征[J].环境化学, 1990,9(6):70-76.
    [84]Chukhrov F V,Zvyagin B B,Gorshkov A I. Ferrihdrite[J]. Izv Akad Nauk SSSR, Ser Geol,1973,4:23-33.
    [85]张玉亭,吕彤,胶体与界面化学[M].北京:中国纺织出版社,2008:148-149.
    [86]朱定一,戴品强,罗晓斌等.润湿性表征体系及液固界面张力计算的新方法(Ⅰ)[J].科学技术与工程,2007,7(13):3067-3072.
    [87]朱定一,张远超,戴品强等.润湿性表征体系及液固界面张力计算的新方法(Ⅱ)[J].科学技术与工程,2007,7(13):3073-3079.
    [88]胡福增,陈国荣,杜永娟.材料表界面[M].上海:华东理工大学版社,2007:35.
    [89]韩德刚,高执棣,高盘良.物理化学[M].北京:高等教育出版社,2003:499.
    [90]张玉亭,吕彤.胶体与界面化学[M].北京:中国纺织出版社,2008:176-177.
    [91]顾惕人,朱步瑶,李外郎等.表面化学[M].北京:科学出版社,2001:138-139.
    [92]大连理工大学无机化学教研室.无机化学[M].第四版.北京:高等教育出版社,2003:247.
    [93]张太平.离子的电负性的计算及应用[J].高等函授学报(自然科学版),2003,16(5):31-32.
    [94]梁永锋,王传蛾.金属离子水解程度的定量标度[J].科技咨询导报,2007,(8):35.
    [95]任永丽,董海峰,吴启勋.自适应模糊神经网络预测金属离子水解常数的研究[J].西南师范大学学报(自然科学版),2009,34(4):42-46.
    [96]任建新.物理清洗[M].北京:化学工业出版社,2000:328.
    [97]薛建跃.有关Fe(OH)3“稍显两性”的解释[J].安庆师范学院学报(自然科学版),2001,7(3):106-107.
    [98]汤鸿霄.无机高分子絮凝理论与絮凝剂[M].北京:中国建筑工业出版社,2006:159.
    [99]Poeius A V. Adhesion and adhesion teehndogy: An introduction[M]. New York: Marc Dekker,2002:73-l02.
    [100]潘祖仁.高分子化学[M].第三版.北京:化学工业出版社,2005:37-44.
    [101]回瑞华,关崇新,侯冬岩.羧酸及其盐红外光谱特性的研究[J].鞍山师范学院学报,2001,3(1):95-98.
    [102]常建华,董绮功.波谱原理及解析[M].北京:科学出版社,2001:89.
    [103]陈小明,童明良.羧基配位结构—共面与非共面[J].大学化学,1997,12(6):24-27.
    [104]Deacon G B,Phillips R J. Relationships between the carbon-oxygen stretching frequencies of carboxylate complexes and the type of carboxylate coordination[ J ]. Coordination Chemistry Reviews,1980,33:227-250.
    [105]中本一雄.无机和配位化台物的红外和拉曼光谱[M].第四版.北京:化学工业出版社,1999:255-258.
    [106]魏姗姗,张艺,许家瑞.聚丙烯酸/Fe3O4纳米复合材料的制备及性能研究[J].中山大学学报(自然科学版),2006,45(5):47-50.
    [107]李国锋,李小俊,黄允兰.硬脂酸盐对石蜡油的增稠作用与其结构的关系[J].化学研究与应用,2001,13(6):645-648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700