二维石英纤维织物增强宽频透波陶瓷基复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了保证导弹制导系统的正常工作,导弹天线罩必须具备透波、防热和承载等多种功能。反辐射导弹作为专门攻击雷达的精确制导武器,还要求其天线罩具备宽频透波的特殊功能。本文以反辐射导弹为背景,针对宽频透波天线罩,通过材料体系选择和结构设计,制备了二维石英纤维织物增强石英基(2D SiO_(2f)/SiO_2)复合材料和二维石英纤维织物增强氮化物基(2D SiO_(2f)/Nitride)复合材料,较为系统地表征了材料的力学性能、介电性能和热物理性能,并深入研究了制备工艺、微观结构与材料性能之间的关系。
     采用溶胶凝胶工艺,通过浓缩硅溶胶并引入手糊成型工艺和模压工艺,实现了2D SiO_(2f)/SiO_2材料的的成型和制备。探讨了制备温度和纤维体积分数对材料微观结构与性能的影响。结果显示,800℃制备的复合材料具有良好的韧性以及较大的断裂功,其弯曲强度和弹性模量分别为97.0MPa、11.6GPa;900℃制备的复合材料同样显示出一定的韧性特征,其弯曲强度和弹性模量分别为72.3MPa、10.2GPa;而1000℃制备的复合材料,力学性能较差,其弯曲强度和弹性模量分别为46.2MPa、9.8GPa,石英纤维的微晶化是材料力学性能降低的主要原因。适当提高纤维体积分数,2D SiO_(2f)/SiO_2复合材料的力学性能提高,纤维体积分数的增大和界面结合的适当增强分别是材料弯曲性能和层间剪切性能提高的主要原因。但是纤维体积分数的增加要通过提高模压压力来实现,当模压压力过大时,纤维出现机械损伤,复合材料变脆、力学性能降低。模压压力为1.5MPa,2D SiO_(2f)/SiO_2复合材料的纤维体积分数为45%时,综合性能较好。当纤维体积分数从34%提高至45%时,材料的弯曲强度、层间剪切强度和弹性模量分别由50.2MPa、3.1MPa、8.3GPa提升至97.0MPa、9.1MPa、11.6GPa,;当纤维体积分数提高至48%时,纤维出现机械损伤,材料的弯曲强度、层间剪切强度和弹性模量分别下降为57.3MPa、5.7MPa、9.3GPa。纤维体积分数为40%和45%的2D SiO_(2f)/SiO_2复合材料,介电常数分别为2.64和2.61,损耗角正切分别为1.9×10~(-3)和1.6×10~(-3),在2~18GHz的频段内理论功率透过系数均大于75%,热导率分别为0.37W×m~(-1)×K~(-1)和0.35W×m~(-1)×K~(-1),热膨胀系数分别为0.30×10~(-6)K~(-1)和0.32×10~(-6)K~(-1)。
     采用先驱体浸渍裂解(PIP)工艺,并引入模压工艺,制备出2D SiO_(2f)/Nitride复合材料。探讨了先驱体裂解温度和纤维体积分数对材料微观结构与性能的影响。结果显示,先驱体裂解温度升高,2D SiO_(2f)/Nitride复合材料力学性能明显降低。裂解温度从800℃提高到1000℃,弯曲强度和弹性模量分别为180.7MPa、20.3GPa下降至90.5MPa、14.5GPa。随着复合材料的纤维体积分数的提高,2D SiO_(2f)/Nitride复合材料的弯曲强度和弹性模量逐渐上升,而层间剪切强度基本保持稳定。当纤维体积分数从45%提高至55%时,材料的弯曲强度和弹性模量分别由119.1MPa、17.4GPa提升至180.7MPa、20.3GPa;材料的层间剪切强度稳定在13GPa左右。2D SiO_(2f)/Nitride复合材料的介电性能和热物理性能随纤维体积分数的变化规律与2D SiO_(2f)/SiO_2复合材料一致。纤维体积分数为45%~55%的2D SiO_(2f)/Nitride复合材料,介电常数处于2.92~2.82,损耗角正切处于3.5×10~(-3)~2.9×10~(-3),在2~18GHz的频段内理论功率透过系数大于70%,热导率处于0.82~0.80W×m~(-1)×K~(-1),热膨胀系数处于1.11×10~(-6)~1.05×10~(-6)K~(-1)。
The radome must possess multifunctions of thermal protection, electromagnetic transparence and load bearing to meet the requirements of the homing guidance systems of the missile. As the precision guided werpon aiming at radars, broadband wave-transparent radome is especially required for the anti-radiation missile. In this dissertation, based on the anti-radiation missile and aiming at the broadband wave-transparent radome, the 2D SiO_(2f)/SiO_2 and 2D SiO_(2f)/Nitride composites were prepared after composites selection and structural design. The mechanical properites, dielectrical properites and thermal physical properties of the composites were characterized systematically, and the relationship between preparation process, microstructure and properties of the composites were studied.
     The 2D SiO_(2f)/SiO_2 composites were formed and prepared successfully via sol-gel process with the help of silica sol concentration, hand lay-up and molding process. The effects of sintering temperatures and fiber volume fraction on the microscopic structure and properties of the composites were investigated. The results show that composites prepared at 800℃show good toughness and high fracture energy, with the flexural strength and elastic modulus at 97.0MPa and 11.6GPa, respectively. Composites prepared at 900℃also show certain toughness, and the flexural strength and elastic modulus reach 72.3MPa and 10.2GPa, respectively. But composites prepared at 1000℃show poor mechanical properites, with the flexural strength and elastic modulus are 46.2MPa and 9.8GPa, respectively. The better mechanical properties are attributed to microcrystallization of the silica fiber. The composites exhibit better mechanical properties as the fiber volume fraction increases, and the better mechanical properties are attributed to the higher fiber volume fraction and strengthening of the fiber/matrix interfacial bonding, respectively. But fiber volume fraction are raised via elevating molding pressure, when the molding pressure are too high the fibers will be damaged seriously, the composites will become brittler and show poor mechanical properties as a result. The composites exhibit best mechanical properties when the molding pressure is 1.5MPa and the fiber volume fraction is 45%. When the fiber volume fraction increases from 34% to 45%, the flexural strength, interlaminar shear strength and elastic modulus of the composites increase from 50.2MPa, 3.1MPa and 8.3GPa to 97.0MPa, 9.1MPa and 11.6GPa, respectively. When the fiber volume fraction increases to 48%, bending strength, interlaminar shear strength and elastic modulus decreased to 57.3MPa, 5.7MPa and 9.3GPa. For composites with fiber volume fraction of 40% and 45%, the dielectric constant are 2.64 and 2.59, the loss tangent are 1.9×10~(-3) and 1.6×10~(-3), the theoretic power transmission coefficient are above 75% in the frequency range from 2 to 18 GHz, the thermal conductivity are 0.57 and 0.55W×m~(-1)×K~(-1), while the coefficient of thermal expansion are 0.30×10~(-6) and 0.33×10~(-6)K~(-1), respectively.
     The 2D SiO_(2f)/Nitride composites were prepared via precursor infiltration and pyrolysis process with the introduction of molding process. The relationship between pyrolysis temperature, fiber volume fraction, structure and mechanical properties of the composites were studied. The results show that the mechanical properties of the composites decrease significantly as the pyrolysis temperature increases. As the pyrolysis temperature increases from 800℃to 1000℃, the flexural strength and elastic modulus of the composites decrease from 180.7MPa and 20.3GPa to 90.5MPa and 14.5GPa, respectively. With the increase of fiber volume fraction, the flexural strength and elastic modulus of the composites increase gradually, while the interlaminar shear strength remains stable. When the fiber volume fraction increases from 45% to 55%, the flexural strength and elastic modulus of the composites increase from 119.1MPa and 17.4GPa to 180.7MPa and 20.3GPa, respectively, while the interlaminar shear strength remains stable at around 13.0GPa. The dielectric properties and thermophysical properties of 2D SiO_(2f)/Nitride composites exhibited similar results with 2D SiO_(2f)/SiO_2 composites with the change of fiber volume fraction. For composites with fiber volume fraction between 45% and 55%, the dielectric constant are between 2.92 and 2.82, while the loss tangent are between 3.5×10~(-3) and 2.9×10~(-3), the theoretic power transmission coefficient are above 70% in the frequency range from 2 to 18 GHz, the thermal conductivity are between 0.82 and 0.80W×m~(-1)×K~(-1), while the coefficient of thermal expansion are between 1.11×10~(-6) and 1.05×10~(-6)K~(-1).
引文
[1]程梅莎.烧蚀对天线罩材料透波性能影响的试验研究[D].北京:北京空气动力研究所, 2001.
    [2]张大海,黎义,高文,等.高温天线罩材料研究进展[J].宇航材料工艺, 2001, (6): 1-3.
    [3]彭望泽.防空导弹天线罩[M].北京:宇航工业出版社, 1993.
    [4] C.G. Dodds, R.A.Tanzilli. Boron nitride-toughened single phase silicon aluminum oxynitride composite, article and method of making same[P]. US Patent, 5925584, 1999.
    [5] D.G. Paquette. Method of making a radar transparent window material operable above 2000℃. US Patent, 5627542, 1997.
    [6]季宏.美国反辐射武器[J].舰船电子对抗,2002, 25 (1): 14-16.
    [7]刘伟.俄罗斯(前苏联)飞航导弹情况[J].飞航导弹,1994, (10): 22-32.
    [8]刘桐林.巡逻型反辐射导弹的技术进展[J].飞航导弹,1999, (3) :14-21.
    [9]温杰. Harpy反辐射无人机的现状与发展[J].飞航导弹,2000, (7): 4-5.
    [10]马明.反辐射导弹的特点及其应用[J].航空兵器, 2001, (1): 35-38.
    [11]马向玲,刘隆和.面向反辐射导弹的三模复合寻的制导研究[J].飞航导弹, 2003, (3) :50-52.
    [12] R.C. Johnson. Antenna engineering handbook[P]. New York: McGraw-Hill, Inc., 1984.
    [13] M.C. Gilreath, S.L. Castellow. High-temperature dielectric properties of candidate space- shuttle thermal-protection-system and antenna-window materials[R]. NASA TN D-7523, 1974.
    [14] Walton. Radome engineering handbook[M]. New York, 1970.
    [15]张谟杰.天线罩外形形线对天线罩性能的影响[J].上海航天, 1996, (1): 30-33.
    [16]杜耀惟.天线罩电信设计方法[M].北京:国防工业出版社, 1993.
    [17] D.L. Purinton, L.R. Semff. Broadband composite structure fabricated from inorganic polymer matrix reinforced with glass or ceramic woven cloth[P]. US. Patent, 6080455, 2000.
    [18] J. Verzemnieks, Fredrick H Simpson.Silicon nitride articles with controlled multi -density regions[P]. US. Patent, 5103239. 1992.
    [19] T. Goto, A. Fujii, C. Kawai. Radome[P]. US. Patent ,6091375. 2000.
    [20] H. Leggett. Ceramic broadband radome[P]. US. Patent, 4358772. 1982.
    [21] S.S. Oleesky, C.E. Peach, G.B. Speen, et al. Multiple sandwich broad bandradome[P]. US Patent, 3002190, 1961.
    [22] R.L. Copeland, V.A. Chase. Rain erosion resistant material for airborne vehicle[P]. US Patent, 3616140, 1971.
    [23] S.M. Moschiar, C.C. Riceard, R.J. Williama, et al. Rubber-modified epoxies.Ⅲ. Analysis of experimental trends through a phase-separation model. Journal of Applied Polymer Science, 1991, 42: 717-735.
    [24] D. Verchere, J.P. Pascault, H. Sautereau, et al. Rubber-modified epoxies.Ⅱ. Influence of the cure schedule and rubber concentration on the generated morphology[J]. Journal of Applied Polymer Science, 1991, 42: 701-716.
    [25] O.G. Caldwell, L.J. Clercq. Hyper-environmental radome and the like[P]. US patent 3292544, 1966.
    [26] T.M. Place, D.W. Bridges. Fused quartz reinforced silica composites. Proceedings of the 10th Symposium on Electromagnetic Windows[C]. Georgia Institute of Technology, Atlanta, GA, 1970: 115-119.
    [27]袁海根,周玉玺.透波复合材料研究进展[J].化学推进剂与高分子材料, 2006, 4(5): 30-36.
    [28] A.W. Rudge, K. Milne, A.D. Olver, et al. The handbook of antenna design[M]. London: Peter Peregrinus Ltd, 1983.
    [29]李斌.氮化物陶瓷基耐烧蚀、透波复合材料及其天线罩的制备与性能研究[D].长沙:国防科技大学, 2007.
    [30]陈虹,胡利明,贾光耀,等.陶瓷天线罩材料的研究进展[J].硅酸盐通报, 2002, 21(4): 40-44.
    [31]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社, 2004.
    [32] A.W. Rudge, K. Milne, A.D. Olver, et al. The handbook of antenna design. London: Peter peregrinus Ltd, 1983.
    [33]秦明礼,曲选辉,黄栋生,等.氮化铝(AlN)陶瓷的特性、制备及应用[J].陶瓷工程, 2000, (8): 39-42.
    [34]陈帮.石英纤维的表面处理[D].长沙:国防科技大学, 2007.
    [35] H. Leggett. Ceramic broadband radome[P]. US Patent, 4358772, 1982.
    [36] K.N. Letson, W.G. Burleson. Final evaluation of rain erosion sled test results at Mach 3.7 to 5.0 for slipcast fused silica radome structures. AD A077348, 1979.
    [37] J.T. Neil, L.J. Bowen, B.E. Michaud. Fused silica radome. US Patent, 4949095, 1990.
    [38]华兆瑁.石英陶瓷性能[J].河北陶瓷.1992, (2): 20-25.
    [39]孙银宝,张宇民,韩杰才.耐高温透波材料及其性能研究进展[J].宇航材料工艺, 2008, 38(3): 11-14.
    [40] W. Ho, D.R. Clarke. High temperature millimeter wave dielectric properties of hot pressed silicon nitride. Proceedings of the 16th Symposium on Electromagnetic Windows, Atlanta, GA, 1982.
    [41] M.Y. Hsieh, H.Mizuhara. Silicon nitride having low dielectric constant[P]. US Patent, 4708943, 1987.
    [42] M.Y. Hsieh. Low dielectric loss silicon nitride based material[P]. US Patent, 4654315, 1987.
    [43] T. Arakawa, T. Mori, Y. Matsumoto. Silicon nitride sintered body and process for preparation thereof[P]. US Patent, 5017530, 1991.
    [44] K. Miura, Y. Hattori, Y. Matsuo. Process for the production of silicon nitride sintered bodies[P]. US Patent, 4521358, 1985.
    [45] D.R. Messier, P. Wong. Effect of processing conditions on microwave dielectric properties of reaction-sintered silicon nitride[C]. Proceedings of the 13th Symposium on Electromagnetic Windows, Atlanta, GA, 1976.
    [46] J. Barta, M. Manela, R. Fisher. Preparation and properties of silicon nitride for radome applications[C]. Proceedings of the 16th Symposium on Electromagnetic Windows, Atlanta, GA, 1982.
    [47]张雯,王红洁,金志浩.先驱体热解制备BN复合陶瓷材料研究进展[J].兵器材料科学与工程, 2004, 27 (5): 58-63.
    [48] R.W. Rice, W.J. McDonough, S.W. Freiman, et al. Ablative-resistant dielectric ceramic articles[P]. US Patent, 4304870, 1981.
    [49] W.F. Douglas, K.R. Kerry. BAS reinforced in-situ with silicon nitride[P]. US Patent, 5358912, 1994.
    [50] R.W. Rice, W.J. McDonough, S.W. Freiman, et al. Ablative-resistant dielectric ceramic articles[P]. US Patent, 4304870, 1981.
    [51] C.G. Dodds, R.A.Tanzilli. Silica, boron nitride, aluminum nitride, alumina composite, article and method of making same[P]. US Patent, 5891815, 1999.
    [52] J.R. Morris, R.A. Tanzilli. Aluminum nitride-boron nitride composite article and method of making same[P]. US patent, 4666873, 1987.
    [53] G. Wen, G.L. Wu, T.Q. Lei, et al. Co-enhanced SiO_2-BN ceramics for high-temperature dielectric applications[J]. Journal of the European Ceramic Society, 2000, 20(11): 1923-1928.
    [54]张伟儒,王重海,刘健,等.高性能透波Si_3N_4-BN基陶瓷复合材料的研究[J].硅酸盐通报, 2003, 22(3): 1-4.
    [55]姚俊杰,李包顺,黄校先,等. SiO_2-Si_3N_4天线窗材料的热学性能和抗热震性能研究[J].航空材料学报, 1996, 16(3): 57-62.
    [56]姚俊杰,李包顺,黄校先,等. SiO_2-Si_3N_4复合材料的力学性能及其增韧机理[J].无机材料学报, 1997, 12(1): 47-53.
    [57]姚俊杰,李包顺,黄校先,等. SiO_2-Si_3N_4天线窗材料的介电性能研究[J].功能材料与器件学报, 1996, 2(2): 65-70.
    [58]韩欢庆,葛启录,陈玉萍,等.晶须补强熔石英复合材料的热学性能[J].材料科学与工艺, 1999, 7(1): 30-32.
    [59]韩欢庆,葛启录,雷廷权,等.熔石英基复合材料性能的研究[J].粉末冶金技术, 1999, 17 (3): 201-204.
    [60]艾涛,王汝敏.航天透波材料最新研究进展[J].材料导报, 2004, 18(11): 12-15.
    [61] P. Miele, S. Bernard, D. Cornu, et al. Boron based nanostructured ceramics prepared by the preceramic polymer route[C]. The fifth China International Conference on High-Performance Ceramics, Changsha, 2007.
    [62]陈虹,胡利明,贾光耀,等.陶瓷天线罩材料的研究进展[J].硅酸盐通报, 2002, 21(4): 40-44.
    [63]李超,刘建超,陈青.航天透波复合材料的研究进展[J].高科技纤维及应用, 2003, 28(6): 34-39.
    [64] M. Favaloro, S. Starett, J. Bryanos. High temperature dielectric composites. Proceedings of the 6th DoD Electromagnetic Windows Symposium, Huntsville, AL, 1995.
    [65] L.M. Manocha, C.N. Panchal, S. Manocha. Silica/silica composites through electrophoretic infiltration. Ceramic Engineering and Science Proceedings, 2002, 23: 655-661.
    [66] L.M. Manocha, C.N. Panchal, S. Manocha. Silica/silica composites through electrophoretic infiltration-effect of processing conditions on densification of composites. Science and Engineering of Compite Materials, 2000, 9 (4): 219-230.
    [67]陈虹,张联盟,李勇,等.三维编织SiO_2基复合材料性能的研究[J].硅酸盐学报, 2003, 31(10): 918-922.
    [68]张立中.三向石英复合材料的断裂韧度KIC的测试与分析[J].宇航材料工艺, 1996, (4): 26-29.
    [69]贾光耀,陈虹,胡利明,等.三向石英复合材料的研制[J].硅酸盐通报, 2002, (1): 3-6.
    [70]贾德昌,周玉,雷廷权.热压工艺对SiO_(2f)/SiO_2复合材料结构与力学性能的影响[J].宇航材料工艺, 2001, 31(1): 29-31.
    [71] C.M. Xu, S.W. Wang, X.X. Huang, et al. Processing and properties of unidirectional SiO_(2f)/SiO_2 composites[J]. Ceramics International, 2007, 33(4): 669-673.
    [72] H. Chen, L.M. Zhang, G.Y. Jia, et al. The preparation and characterization of3D-silica fiber reinforced silica composites[J]. Key Engineering Materials, 2003, 249: 159-162.
    [73] H. Chen, L.M. Zhang, G.Y. Jia, et al. Flexural properties of 3D-SiO_2/SiO_2 composites[J]. Key Engineering Materials, 2003, 249: 163-166.
    [74]胡连成,于翘,刘连元,等.俄罗斯航天透波材料技术[J].航天出国考察技术报告, 1994, (1): 136-142.
    [75]田焕芳.石英增强磷酸盐复合材料制备和组织结构及力学性能[D].哈尔滨:哈尔滨工业大学, 2003.
    [76]肖永栋,刘红影,方晓敏.新型无机烧蚀材料的性能及潜在用途[J].玻璃钢/复合材料, 2002, (3): 46-47.
    [77] T.M. Place. Properties of BN-3DX, a 3-dimensional reinforced boron nitride composite[C]. Proceedings of the 13th Symposium on Electromagnetic Windows, Atlanta, GA, 1976.
    [78] T.M. Place. Low loss radar window for reentry vehicle[P]. US Patent, 4786548, 1988.
    [79]郭景坤,黄校先,庄汉锐,等.氮化硼纤维补强氮化硅防热天线窗材料[R].中国国防科技报告, GF-HY 863433, 1986.
    [80] G.J. Qi, C.R. Zhang, H.F. Hu, et al. Preparation of three-dimensional silica fiber reinforced silicon nitride composite using perhydropolysilazane as precursor[J]. Materials Letters, 2005, 59 (26): 3256-3258.
    [81] G.J. Qi, C.R. Zhang, H.F. Hu, et al. Crystallization behavior of three-dimensional silica fiber reinforced silicon nitride composite[J]. Journal of Crystal Growth. 2005, 284 (1): 293-296.
    [82] G.J. Qi, C.R. Zhang, H.F. Hu, et al. Three-dimensional silica fiber reinforced silicon nitride-based composites fabricated via different polysilazanes[J]. Adv. Eng. Mater., 2005, 7 (11): 1043-1046.
    [83] K.W. Kirby, M. Janney, C. Walls, et al. Gelcasting of GD-1 ceramic radomes[C]. Proceedings of the 8th Electromag. Windows Symposium, 2000. 287-295.
    [84] Martin Y. Hsieh. Low dielectric loss silicon nitride based materials[P]. US Patent 4654315. 1987.
    [85] K. Tajima, H. Uchimura, K. Tanaka, et al. Dielectric material having a low dielectric loss factor for high-frequency use[P]. US Patent, 5885916. 1999.
    [86]吴洁华,李包顺,李承恩,等.氮化物颗粒补强石英纂复合材料的制备和性能研究[J].应用基础与工程科学学报,2000, 8(1): 38-43.
    [87]肖钢,刘曙红.气压烧结——一种大有前途的氮化硅陶瓷制备方法[J].硬质合金,2001,18(3): 12-14.
    [88]张伟儒,王重海,刘子峰,等.氮化硅-氮化硼-二氧化硅陶瓷透波材料及其制备方法[P].专利号: 200410023952. 2004.
    [89]耿启亮,陈虹,陈达谦,等.注凝成型技术在制备石英纤维-石英复合陶瓷中的应用[J].陶瓷工程, 2001,(10): 3-6.
    [90]姜勇刚,张长瑞,曹峰,等.高超音速导弹天线罩透波材料研究进展[J].硅酸盐通报,2007, 26(3): 500-505.
    [91]张长瑞.陶瓷基复合材料――原理、工艺、性能与设计[M].国防科技大学出版社. 2001.
    [92] D.L Purinton, Louis R Semff.Method of making a broadband composite structure fabricated from an inorganic polymer matrix reinforced with ceramic woven cloth[P]. US Patent, 5738750, 1998.
    [93]王静. PIP法制备SiO_2/BN复相陶瓷工艺与性能研究[D].哈尔滨:哈尔滨工业大学, 2002.
    [94]胡海峰.陶瓷先驱体的分子设计与合成及其在CMCs制备中的应用[D].长沙:国防科技大学, 1998.
    [95]马青松.聚硅氧烷先驱体转化制备陶瓷基复合材料[D].长沙:国防科技大学, 2003.
    [96]王松. PIP工艺中碳纤维损伤控制及C/SiC复合材料推力室制备技术研究[D].长沙:国防科技大学, 2005.
    [97] A.V. Goncharenko, V.Z. Lozovski, E.F. Venger. Lichtenecker’s equation: applicability and limitations[J]. Optics Communication. 2000, 174: 19-32.
    [98] C.M. Regalado. A physical interpretation of logarithmic TDR calibration equations of volcanic soils and their solid fraction permittivity based on Lichtenecker’s mixing formulae[C]. Geoderma, 2004, 123: 41-50.
    [99]韩桂芳,张立同,成来飞,等.二维石英纤维增强多孔Si_3N_4-SiO_2基复合材料的制备及其力学性能[J].复合材料学报. 2007, 24(1): 91-96.
    [100] C. Ayranci, J. Carey. 2D braided composites: A review for stiffness critical applications[J]. Composite Structures. 2008, 85: 43-58.
    [101] K. Goto, Y. Furukawa, H. Hatta, et al. Fatigue behavior of 2D laminate C/C composites at room temperature[J]. Composites Science and Technology. 2005, 65: 1044-1051.
    [102] N.E. Prasad, S. Kumari, S.V. Kamat, et al. Fracture behaviour of 2D-weaved, silica silica continuous fibre-reinforced, ceramic matrix composites (CFCCs)[J]. Engineering Fracture Mechanics. 2004, 71: 2589-2605.
    [103] G.N. Morscher. Modeling the elastic modulus of 2D woven CVI SiC composites[J]. Composites Science and Technology. 2006, 66: 2804-2814.
    [104] S.G. Shore, R.W. Parry. The crystalline compound ammonia borane, H3B·NH3[J]. Journal of the American Chemical Society. 1955, 77: 6084-6085.
    [105] W.V. Hough, C.R. Guibert, G.T. Hefferan. Method for the synthesis of borazine[P]. US Patent, 4150097, 1979.
    [106] K. Su, E.E. Remsen, G.A. Zank, et al. Synthesis, characterization, and ceramic conversion reactions of borazine-modified hydridopolysilazanes: new polymeric precursors to SiNCB ceramic composites[J]. Chemistry of Materials, 1993, 5: 547-556.
    [107] T. Isoda, H. Kaya, H. Nishii, et al. Perhydropolysilazane precursors to silicon nitride ceramics[J]. Journal of Inorganic Organometallic Polymers, 1992, 2 (1): 151-160.
    [108]李兴华.密度、浓度测量[M].北京:中国计量出版社, 1991.
    [109] GB 6569-1986.工程陶瓷弯曲强度试验方法[S]. 1986.
    [110] ASTM D 2344M–00. Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates[S]. 2000.
    [111] GB/T 4339-1999.金属材料热膨胀特征参数的测定[S]. 1999.
    [112] GB/T 10295-1988.绝热材料稳态热阻及有关特性的测定[S]. 1988.
    [113]殷馨,戴媛静.硅溶胶的性质、制法及应用[J].化学推进剂与高分子材料, 2005, 3(6): 27-32.
    [114]王从曾.材料性能学[M].北京:北京工业大学出版社, 2001.
    [115]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社, 2006.
    [116] D.Seyferth. In: Transformation of organometallics into common and exotic materials: Design and Activation[C]. Laine R M, Ed.; Netherlands: M.Nijhoff Publishers, ordrecht, Netherlands, 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700