中华鳖部分免疫相关基因克隆及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华鳖属于古老的次生水生爬行动物,作为变温羊膜腔动物向恒温动物羊膜腔进化的联结点,不仅在生命科学研究、野生资源保护等方面具有重要的科研价值;而且中华鳖具有较高的食用和药用价值,已成为我国及东南亚某些地区的主要特种水产养殖品种之一。然而,由于品种退化、病害严重以及基础研究薄弱等问题,严重影响中华鳖研究和养殖业的可持续发展。本研究通过对中华鳖免疫相关基因的克隆和功能分析,旨在探明中华鳖天然免疫应答、应激反应的机制,为深入开展中华鳖免疫学、系统发育以及病原与机体互作研究等奠定了良好的基础。
     1.中华鳖tMyD88全长cDNA克隆及其组织表达差异分析
     MyD88是启动先天免疫的主要接头分子之一,本试验首次获得爬行动物属的中华鳖MyD88(tMyD88)全长cDNA。经序列分析,全长tMyD88cDNA ORF为894-bp,编码297个氨基酸,N-端和C-端分别具有典型的DD结构域(death domain,DD)和保守的TIR结构域(Toll/IL-IR domain)。荧光定量RT-PCR检测中华鳖经嗜水气单胞菌(Aeromonas hydrophila)攻毒后不同脏器中(MyD88mRNA相对转录水平由高到低为,脾脏>血液>肺脏>肝脏>肾脏>小肠>心脏>肌肉。RAW2647细胞经pcDNA-tMyD88转染后,NF-κB活性显著高于对照组(673.8vs410.7,P<0.05),转染细胞上清液中IL-1p和TNF-α含量显著高于对照组(P<0.01)。结果表明,获得的中华鳖tMyD88全长cDNA分子具有与哺乳动物类似的生物学活性,可能在中华鳖抗感染免疫中具有重要的作用。
     2.中华鳖热休克蛋白基因tHsc70、tGRP78和tHsp72鉴定及热应激对其表达的影响
     Hsp70s (70kDa heat shock proteins)作为分子伴侣,不仅参与机体的蛋白质折叠、运输,而且可能介导机体免疫。本试验克隆和鉴定了中华鳖热休克蛋白基因tHsc70、tGRP78和tHsp72。tHsc70全长cDNA ORF为1941-bp,编码647个氨基酸,与脊椎动物Hsc70(heat shock cognate protein70)分子在核苷酸和氨基酸同源性分别在80-87.7%和95.5-99.5%;tGRP78cDNA全长ORF为1980-bp,编码660个氨基酸,与脊椎动物的GRP78(glucose regulated protein78)分子在核苷酸和氨基酸同源性分别在79.3-80.3%和92.3-94%;tHsp72全长cDNA ORF为1908-bp,编码636个氨基酸,与脊椎动物的Hsp72(inducible heat shock protein70)分子在核苷酸和氨基酸同源性分别在72-76.5%和83.6-89.1%。三个中华鳖热休克蛋白70分子均具有ATPase结合结构域、底物结合结构域、ATP/GTP结合位点基序(AEAYLGRKK)、 Hsp70s家族的三个特征性的序列标签(IDLGTTYS, IFDLGGGTFDVSIL, IVLVGGSTRIPKIQ)以及胞质(EEVD)/内质网(KDEL)一致性序列。Western-blotting分析表明,原核表达纯化的tHsc70和tHsp72个热休克蛋白可与特异性的单/多克隆抗体反应。分子进化分析表明,三个中华鳖热休克蛋白70分子与美洲鳄(Alligator mississippiensis)和禽类(Gallus gallus)在同一群内,具有较近的亲缘关系。中华鳖热激(40-C)后,与对照组(25℃)相比,四个组织中的tHsc70、 tGRP78和tHsP72的mRNA转录水平呈现不同程度的变化。中华鳖在热激1-4hrs后肝脏、心脏、肺脏和肌肉四个组织的tHsc70mRNA相对转录水平出现0.25至20.35倍不等的上升,尤其经4hrs热激的中华鳖肝脏组织上升最显著,为对照组的20.35倍(P<0.01)。4hrs应激组中华鳖肝脏中tGRP78mRNA相对转录水平与对照组相比增加最明显,约为1.86倍(P<0.05)。但肝脏中tHsP72的mRNA相对转录水平在2hrs热激后到达峰值,约为对照组的4.66倍(尸<0.05),随后出现轻微下降。Western blotting分析,中华鳖2hrs和4hrs热激以及热激1h、2hrs和4hrs结合恢复1h时肝脏中tHsc70蛋白相对表达量比对照组显著升高(P<0.05);热激1h、2hrs和4hrs后肝脏中tGRP78蛋白相对表达比对照组均有显著升高(P<0.05)。上述结果显示,克隆的3个分子为中华鳖热休克蛋白70,具有较高的保守性;中华鳖热激后,不同组织的热休克蛋白70存在不同的表达模式,可能与细胞保护等有关。
     3.病原相关模式分子对中华鳖Toll样受体及其免疫相关基因表达的影响
     从中华鳖脾脏中PCR扩增出tlr2(1112bp)、tlr3(565bp)、tlr4(990bp)和il-1β(159bp)的cDNA部分序列。中华鳖TLR2测序后经序列比较和结构域分析显示,该序列与斑马鱼、鸡等脊椎动物的TLR2序列同源性和相似性分别为60.8-74.4%和58.6-76%,该片段包含富亮氨酸重复C端结构域(Leucine rich repeat C-terminal domain, LRRCT)(aa1-47),跨膜结构域(Transmembrane domain)(aa49-71)和TIR结构域(Toll-like/IL-1receptor domain)(aa101-244)。中华鳖TLR3与其他脊椎动物的TLR3序列同源性和相似性分别为58-81.2%和51.9-76.1%,包含跨膜结构域(aa10-32)和TIR结构域(aa62-188)。中华鳖TLR4与其他脊椎动物的相应分子的序列同源性和相似性分别为48.5-67.4%和38.2-63%,包含连续的3个LRR(aa23-46,47-70,71-94), LRRCT(aa107-157),跨膜结构域(aa171-193)和TIR结构域(aa206-330)。中华鳖IL-1p经BlastP分析显示其与鸡IL-1β(aa66-118)之间相似性达到60.4%,与其他脊椎动物的IL-1β序列同源性和相似性分别为49.7-61.4%和28.3-49.1%。用代表性病原相关模式分子(pathogen associated molecular pattern, PAMP)不同浓度对中华鳖外周血细胞TLRs等相关免疫分子表达影响的分析表明,中华鳖外周血细胞经4000ng/mL Zymosan刺激2hrs后tlr2mRNA的表达水平较高,il-1β mRNA的相对表达水平随着刺激浓度的提高而增加。Poly(I:C)浓度在40-8000ng/mL之间,tlr3mRNA的相对表达水平随着Poly(I:C)浓度的增加出现逐渐下降的趋势。28℃条件下,Poly(I:C)(?)低浓度(40ng/mL)和高浓度(4000ng/mL)刺激均能使tHsP72mRNA转录水平提高;LPS刺激后,tlr4、tMyD88和il-1β mRNA的相对转录水平随着浓度的提高而增加。37℃条件下,Poly(I:C)刺激组的tlr3基因表达比28℃组高1.46倍。上述结果初步表明,中华鳖Toll样受体、MyD88、Hsp70s和il-1β对部分PAMP分子刺激具有不同程度的响应性。
     综上所述,本研究首次克隆和鉴别了中华鳖tMyD88, tHsc70、 tGRP78和tHsp72全长cDNA分子以及tlr2、tlr3、tlr4和il-1βcDNA部分序列,8个克隆的中华鳖分子均与禽类和爬行类的相应分子位于同一个姐妹群,而与哺乳动物、两栖类和鱼类等其他物种处于不同的亚群,中华鳖或其细胞在受到PAMP分子和/或热激后,相关基因呈现不同的表达差异变化,提示它们具有一定的生物学功能。研究结果为进一步开展基因结构与功能分析、中华鳖的天然免疫机制和系统发育等研究提供了良好的基础资料。
Chinese soft-shell turtle Pelodiscus sinensis is an ancient ectothermic amniotes reptile with an evolutionary link between ectothermic anamniotic fishes and amphibians and endothermic amniotic birds and mammals. It is not only of great importance in life science research and protection of wildlife resources, but also of edible and medicinal values. It has become one of the major farmed species in China and southeastern Asian countries. However, deterioration of the breeding stock, severe infectious diseases and lack of basic research on its biology has greatly affected the sustainability of the turtle farming industry. This dissertation covers a series of experiments for cloning and functional studies of some immune-related genes in an attempt to explore the primary mechanisms of its innate immunity and responses to heat stress and pathogen associates molecular patterns (PAMP). The results could serve as good foundations for further research in immunobiological and phylogenetic aspects of turtles as well as in host-microbe interactions.
     1. Cloning and expression profiling of full-length tMyD88cDNA from Chinese soft-shelled turtle.
     Myeloid differentiation factor88(MyD88) is one of the key adaptor proteins to signal transduction that triggers downstream cascades involved in innate immunity. This study identified the MyD88gene from Chinese soft-shelled turtle (tMyD88), representing the first example from reptile species. The tMyD88has an894-bp ORF and encodes a polypeptide of297amino acids including a typical death domain (DD) at the N-terminus and a conservative Toll/IL-1R (TIR) domain at the C-terminus. Its mRNA expression in organs of turtles challenged with live cells of Aeromonas hydrophila were in the order from high to low levels as spleen, blood, lungs, liver, kidneys and intestines, as determined by real-time PCR. RAW264.7macrophage cells transfected with pcDNA-tMyD88showed higher NF-κB activity than the vector control (673.8vs410.7. P<0.05). Expression of proinflammatory cytokines IL-1(3and TNF-a was also significantly higher in RAW264.7cells expressing tMyD88than the cells containing control vector (P<0.01). These results indicate that tMyD88might possess an important role in defense against microbial infection in Chinese soft-shelled turtles similar to that in mammals.
     2. Identification of tHsc70, tGRP78and tHsp72in Chinese soft-shelled turtle and their expression in response to heat stress
     The70kDa heat shock proteins (Hsp70s) are molecular chaperones that are not only involved in protein folding and transport, but also in initiating host immune responses. In this study, Hsp70s full-length cDNA molecules from P. sinensis were cloned and identified. The turtle Hsc70(heat shock cognate protein70. tHsc70) has a1941bp ORF encoding646amino acids and has identities to Hsc70of other vertebrates at80-87.7%(nucleotide) and95.5-99.5%(amino acid). Turtle GRP78(glucose regulated protein78, tGRP78) has an ORF of1980bp encoding660amino acids with nucleotide and amino acid identities at79.3-80.3%and92.3-94%respectively to that of other vertebrates. Turtle Hsp72(inducible heat shock protein70. tHsp72) has an ORF of1908bp coding for636amino acids and possess identities to Hscp72of other vertebrates at72-76.5%(nucleotide) and83.6-89.1%(amino acid). Two major domains for binding to ATPase (ABD) and to substrates (SBD), an ATP/GTP-binding motif (AEAYLGRKK), three signature regions characteristic of Hsp70s (IDLGTTYS, IFDLGGGTFDVSIL,1VLVGGSTRIPKIQ) and consensus plasmic(EEVD)/endoreticulum(KDEL) sequences are present in the deduced amino acids of these three molecules. The prokaryotic expression products of tHsc70and tHsp72reacted with mouse monoclonal (Hsc70) and polyclonal rabbit antibodies against human recombinant Hsp72. respectively, as shown by Western-blotting. Phylogenetically. these molecules fall into the same group to Alligator mississippiensis and Gallus gallus. There were differences of transcription of tHsc70, tGRP78and tHsp72mRNA of4tissues/organs from turtles stressed at40℃as compared to25℃. Heat stress for1to4hrs induced0.25to20.35-fold increase of tHsc70mRNA in live, hear, lung and muscles with its expression in liver significantly higher (20.35-fold, P<0.01) with4-hrs stress than control treatment at25℃. Heat stress for4hours also showed1.86-fold increase (P<0.05) in tGRP78expression as compared to the control. tHsp72showed the highest expression in liver.4.66-fold higher than control (P<0.05) at hour2after treatment and declined thereafter. Western blot analysis indicated that tHsc70expression was significantly higher (P<0.05) than the control treatment in liver of turtles heat stressed for1,2and4hrs with1-h adaptive recovery. Heat stress for1h,2hrs and4hrs induced higher expression of tGRP78in liver than the controls (P<0.05). In summary, we have successfully cloned three Hsp70family proteins from Chinese soft-shelled turtles. They are relatively conserved molecules as compared with those of other vertebrates and functional to heat stress though the expression profiles varied with tissues of turtles examined with highest response in liver.
     3. Effects of representative pathogen associated molecular patterns on expression of Toll-like receptors and immune-related genes.
     Partial cDNA fragments of tlr2(1112bp), tlr3(565bp), tlr4(990bp) and il-1β (159bp) were PCR-amplified and sequenced. Sequence comparison indicates that turtle TLR2has nucleotide identity of60.8-74.4%and amino acid similarity of58.6-76%to that of other vertebrates such as zebrafish and chicken. Domain analysis reveals that the deduced amino acid sequence of turtle TLR2contains a leucine rich repeat C-terminal domain, LRRCT)(aal-47), a transmembrane domain (aa49-71) and a Toll-like/IL-1receptor domain, TIR)(aa101-244). Turtle TLR3is homologous to the counterpart of other vertebrates including zebrafish and chicken between58-81.2%at the nucleotide level and51.9-76.1%at the amino acid level. It contains a transmembrane domain (aa10-32) and a TIR domain (aa62-188). The homology between turtle TLR4and those from other vertebrates is between48.5-67.4%and38.2-63%at the nucleotide and amino acid levels respectively. Deduced amino acid sequence of turtle tlr4contains three LRR (aa23-46,47-70and71-94), an LRRCT (aa107-157), a transmembrane domain (aal71-193) and a TIR domain (aa206-330). The putative turtle IL-1β has a high identity to the chicken counterpart (aa66-118)(60%at the amino acid level) and is homologous to those of other vertebrates between49.7-61.4%and28.3-49.1%at the nucleotide and amino acid levels respectively. Representative PAMPs were used to examine the response of turtle whole blood cells to stimulation. Turtle tlr2was found to have higher expression in the blood cells exposed to4000ng/ml of zymosan for2hrs. Expression of il-1β increased with increasing concentration of zymosan treatment. The mRNA expression of tlr3exhibited a tendency of decrease with increasing levels of Poly(I:C) between40-8000ng/ml). In whole blood incubated at28℃, tHsp72mRNA expression increased at both lower (40ng/ml) and higher (4000ng/ml) concentrations. mRNA expression of tlr4, tMyD88and il-1β increased with increasing concentrations. Expression of tlr3mRNA increased by1.46-fold in Poly(1:C) treated whole blood cells incubated at37℃, as compared with the same treatment but incubated at28℃. These results provide preliminary evidence that the TLRs, tMyD88, tHsp70s and il-1β in Chinese soft-shelled turtle could respond to PAMP molecules to some degree, though with varying intensity.
     In summary, this study has generated for the first time the full-length cDNA sequence data of tMyD88, tHsc70, tGRP78and tHsp72as well as partial cDNA of tlr2, tlr3, tlr4and il-1β from Chinese soft-shelled turtle. These molecules are clustered with those from avian species and reptiles as the sister group, but fall into a different subgroup with those of mammals, amphibians and fish. Majority of these molecules responded to stimulation with PAMPs or heat stress and the degree and profile of the responses vary with stimuli or their concentration, indicating that they possess biological functions similar to those from other vertebrates. Findings in the present study may provide good foundation for further research into the structure-function relationship of these molecules, mechanisms of innate immunity in turtles and its role from the evolutionary perspective.
引文
[1]. Somfai-Relle S, Schauss AG, Financsek I, Glavits R, Varga T, Szucs Z. Acute and subchronic toxicity studies of cryogenically-frozen, cryomilled, Pelodiscus sinensis (Japanese soft-shelled turtle--suppon) powder administered to the rat. Food Chem Toxicol.2005; 43(4):575-580.
    [2]. Huanling Y, Yong L, Junbo W, Liping Z, Weixing Y. Chinese soft-shelled turtle egg powder lowers serum cholesterol, increases faecal neutral steroids and bile acid excretion, and up-regulates liver cytochrome P450 mRNA level in rats. Br J Nutr.2005; 94(3):315-320.
    [3].邵庆均.中华鳖体内Vc合成及其对饲料Vc需求的研究.2007.学位论文.
    [4]. Shi Haitao, James F. Parham, Fan Zhiyong, Hong Meiling and Yin Feng. Evidence for the massive scale of turtle farming in China. Oryx.2008; 42(1):147-150.
    [5].范红结,黄国庆,郭爱珍,陆承平.雷氏普罗威登菌引致中华鳖脏器脓肿.南京农业大学学报.2001;24(4):71-74.
    [6].孙红祥,舒妙安.中华鳖几种常见疾病病原的分离鉴定及药敏试验.中国兽医学报.2002;22(2):140-142.
    [7].沈锦玉,潘晓艺,余旭平,尹文林,曹铮,吴颖.中华鳖白底板病病原的分析.中国水产科学.2007;14(5):815-822.
    [8]. Li XL, Zhang CL, Fang WH, Lin FC. White-spot disease of Chinese soft-shelled turtles (Trionyx sinens) caused by Paecilomyces lilacinus. J Zhejiang Univ Sci B.2008; 9(7):578-581.
    [9].张奇亚,孕正秋,江育林,梁绍昌,桂建芳.中华鳖病毒病原的发现.科学通报.1996;41(21):1987-1990.
    [10].张奇亚,李正秋.中华鳖病毒(TSV)对鱼类细胞的感染试验.中国兽医学报.2000;20(1):15-18.
    [11].张奇亚,李正秋,胡峻.中华鳖病毒的血清学检测.水生生物学报.2000;24(4):356-361.
    [12].张奇亚,袁秀平,李正秋.三种水生动物病毒感染鱼类细胞的扫描电镜观察.水产学报.2001;25(6):576-578.
    [13].Chen ZX, Zheng JC, Jiang YL. A new iridovirus isolated from soft-shelled turtle. Virus Res. 1999;63(1-2):147-151.
    [14].Huang Y, Huang X, Cai J, Ye F, Guan L, Liu H, Qin Q. Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication.Virus Res.2011; 160(1-2):221-229.
    [15]. Huang Y, Huang X, Cai J, Ye F, Qin Q. Involvement of the mitogen-activated protein kinase pathway in soft-shelled turtle iridovirus-induced apoptosis. Apoptosis.2011; 16(6):581-593.
    [16].Huang Y, Huang X, Liu H, Gong J, Ouyang Z, Cui H, Cao J, Zhao Y, Wang X, Jiang Y, et al.Complete sequence determination of a novel reptile iridovirus isolated from soft-shelled turtle and evolutionary analysis of Iridoviridae.BMC Genomics.2009; 10:224.
    [17].Zhang M, Yang JX, Lin XM, Zhu CH, He JQ, Liu H, Lin TL. A double antibody sandwich enzyme-linked immunosorbent assay for detection of soft-shelled turtle iridovirus antigens. J Virol Methods.2010; 167(2):193-198.
    [18].Xu Z, Wang GL, Nie P. IgM, IgD and IgY and their expression pattern in the Chinese soft-shelled turtle Pelodiscus sinensis. Mol Immunol.2009; 46(10):2124-32.
    [19]. Zhou X, Feng H, Guo Q, Dai H. Identification and characterization of the first reptilian CD9, and its expression analysis in response to bacterial infection. Dev Comp Immunol.2010; 4(2):150-157.
    [20].Zhou X, Wang L, Feng H, Guo Q, Dai H. Acute phase response in Chinese soft-shelled turtle (Trionyx sinensis) with Aeromonas hydrophila infection. Dev Comp Immunol.2011; 35(4):441-451.
    [21].Li X, Zhu B, Chen N, Hu H, Chen J, Zhang X, Li J, Fang W. Molecular characterization and functional analysis of MyD88 in Chinese soft-shelled turtle Trionyx sinensis. Fish Shellfish Immunol.2011; 30(1):33-38.
    [22].Zhou X, Guo Q, Dai H. Molecular characterization and expression profiles in response to bacterial infection of Chinese soft-shelled turtle interleukin-8 (IL-8), the first reptilian chemokine gene. Dev Comp Immunol.2009; 33(7):838-847.
    [23].Paust S, Senman B, von Andrian UH. Adaptive immune responses mediated by natural killer cells. Immunol Rev.2010; 235(1):286-296.
    [24].Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science.2010; 327(5963):291-295.
    [25].Takeda K, Akira S. Roles of Toll-like receptors in innate immune responses. Genes Cells. 2001;6(9):733-42.
    [26].Coico, R., Sunshine, G. and Benjamini, E. Immunology, A Short Course. Hoboken, NJ: Wiley-Liss Publications.2003.
    [27].Kvell, K., Cooper, E. L., Engelmann, P., Bovari, J. Nemeth, P. Blurring borders:innate immunity with adaptive features. Clin. Dev. Immunol.2007; 2007:83671.
    [28].Zapata, A. G., Varas, A. and Torroba, M. Seasonal variations in the immune system of lower vertebrates. Immunol. Today.1992; 13(4):142-147.
    [29].Bao HJ, Li MY, Wang J, Qin JH, Xu CS, Hei NN, Yang P, Gandahi JA, Chen QS. Architecture of the blood-spleen barrier in the soft-shelled turtle, Pelodiseus sinensis. Anat Rec (Hoboken).2009; 292(8):1079-1087.
    [30].Hussein, M. F., Badir, N., El Ridi, R. and Akef, M. Effect of seasonal variation on lymphoid tissues of the lizards, Mabuya Quinquetaeniata licht and Uromastyx aegyptia forsk. Dev. Comp. Immunol.1978; 2(3):469-478.
    [31].Sano-Martins IS, Dabrowski Z, Tabarowski Z, Witkowska-Pelc E, Spadacci Morena DD, Spodaryk K. Haematopoiesis and a new mechanism for the release of mature blood cells from the bone marrow into the circulation in snakes (Ophidia). Cell Tissue Res.2002; 310(1):67-75.
    [32].Zapata, A. G., Varas, A. and Torroba, M. Seasonal variations in the immune system of lower vertebrates. Immunol. Today 1992; 13(4):142-147.
    [33].Kurtz CC, Carey HV. Seasonal changes in the intestinal immune system of hibernating ground squirrels. Dev Comp Immunol.2007; 31(4):415-428.
    [34]. Dark J. Annual lipid cycles in hibernators:integration of physiology and behavior. Annu Rev Nutr.2005; 25:469-497.
    [35].Awong G, LaMotte-Mohs R, Zuniga-Pflucker JC. Key players for T-cell regeneration. Curr Opin Hematol.2010; 17(4):327-332.
    [36].Lai L, Cui C, Jin J, Hao Z, Zheng Q, Ying M, Boyd R, Zhao Y. Mouse embryonic stem cell-derived thymic epithelial cell progenitors enhance T-cell reconstitution after allogeneic bone marrow transplantation. Blood.2011; 118(12):3410-3418.
    [37].Lynch, H. E., Goldberg, G. L., Chidgey, A., Van den Brink, M. R. M., Boyd, R. Sempowski, G. D. Thymic involution and immune reconstitution. Trends Immunol.2009; 30(7):366-373.
    [38].Ponkham P, Daduang S, Kitimasak W, Krittanai C, Chokchaichamnankit D, Srisomsap C, Svasti J, Kawamura S, Araki T, Thammasirirak S. Complete amino acid sequence of three reptile lysozymes. Comp Biochem Physiol C Toxicol Pharmacol.2010; 151(1):75-83.
    [39].Thammasirirak, S., Ponkham, P., Preecharram, S., Khanchanuan, R., Phonyothee, P., Daduang, S., Srisomsap, C., Araki, T. Svasti, J. Purification, characterization and comparison of reptile lysozymes. Comp. Biochem. Physiol. C.2006; 143(2):209-217.
    [40].Gayen, S. K., Som, S., Sinha, N. K. Sen, A. Lysozyme in egg whites of tortoises and turtle: Purification and properties of egg white lysozyme of Trionyx gangeticus cuvier. Arch. Biochem. Biophys.1977; 183(2):432-442.
    [41].Lehrer RI, Lu W. a-Defensins in human innate immunity. Immunol Rev.2012; 245(1):84-112.
    [42].Chattopadhyay, S., Sinha, N. K., Banerjee, S., Roy, D., Chattopadhyay, D. D. Roy, S. Small cationic protein from a marine turtle has β-defensin-like fold and antibacterial and antiviral activity. Proteins.2006; 64(2):524-531.
    [43].Lakshminarayanan R, Chi-Jin EO, Loh XJ, Kini RM, Valiyaveettil S. Purification and characterization of a vaterite-inducing peptide, pelovaterin, from the eggshells of Pelodiseus sinensis (Chinese soft-shelled turtle). Biomacromolecules.2005; 6(3):1429.
    [44].Stegemann, C., Kolobov, A., Leonova, Y. F., Knappe, D., Shamova, O., Ovchinnikova, T. V., Kokryakov, V. N. Hoffmann, R. Isolation, purification and de novo sequencing of TBD-1, the first beta-defensin from leukocytes of reptiles. Proteomics.2009; 9(5):1364-1373.
    [45].Zhu S. Did cathelicidins, a family of multifunctional host-defense peptides, arise from a cysteine protease inhibitor? Trends Microbiol.2008; 16(8):353-360.
    [46]. Wang, Y., Hong, J., Liu, X., Yang, H., Liu, R., Wu, J., Wang, A., Lin, D. Lai, R. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotic. PLoS One.2008; 3(9):e3217.
    [47]. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol.2007; 171(3):715-27.
    [48].Horstman LL, Jy W, Ahn YS, Maghzi AH, Etemadifar M, Alexander JS, McGee JC, Minagar A. Complement in neurobiology. Front Biosci.2011; 17:2921-2960.
    [49].Zarkadis IK, Mastellos D, Lambris JD. Phylogenetic aspects of the complement system. Dev Comp Immunol.2001; 25(8-9):745-762.
    [50].Merchant, M., Thibodeaux, D., Lubser, K. and Elsey, R. M. Amoebacidal effects of serum from the American alligator (Alligator mississippiensis). J. Parasitol.2004; 90(6):1480-1483.
    [51].Merchant M, McFatter J, Mead S, McAdon C, Wasilewski J. Identification and characterization of serum complement activity in the American crocodile (Crocodylus acutus). Vet Immunol Immunopathol.2010; 133(2-4):165-169.
    [52].Merchant M, Britton A. Characterization of serum complement activity of saltwater (Crocodylus porosus) and freshwater (Crocodylus johnstoni) crocodiles. Comp Biochem Physiol A Mol Integr Physiol.2006;143(4):488-493.
    [53].Merchant, M., Pallansch, M., Paulman, R. L., Wells, J. B., Nalca, A. Ptak, R. Antiviral activity of serum from the American alligator (Alligator mississippiensis). Antiviral Res. 2005;66(1):35-38.
    [54].Delgado C, Valente A, Quaresma I, Costa M, Dellinger T. Blood biochemistry reference values for wild juvenile loggerhead sea turtles (Caretta caretta) from Madeira archipelago. J Wildl Dis.2011; 47(3):523-529.
    [55].Mondal, S. Rai, U. In vitro effect of temperature on phagocytic and cytotoxic activities of splenic phagocytes of the wall lizard, Hemidactylus flaviviridis. Comp. Biochem. Physiol. A. 2001; 129(2-3):391-398.
    [56].Montali, R. J. Comparative pathology of inflammation in the higher vertebrates (Reptiles, birds and mammals). J. Comp. Pathol.1988; 99(1):1-26.
    [57]. Du Buske LM. Introduction:basophil histamine release and the diagnosis of food allergy. Allergy Proc.1993; 14(4):243-249.
    [58].MacGlashan DW Jr. Releasability of human basophils:cellular sensitivity and maximal histamine release are independent variables. Dev Comp Immunol.1984; 8(2):359-66.
    [59].Leulier, F. and Lemaitre, B. Toll-like receptors-taking an evolutionary approach. Nature Rev. Genet.2008; 9(3):165-178.
    [60].Tucunduva, M., Borelli, P. Silva, M. C. Experimental study of induced inflammation in the Brazilian boa (Boa constrictor constrictor). J. Comp. Pathol.2001; 125(2-3):174-181.
    [61].Qiu, L., Zhang, H., Yang, K. Jiang, S. Molecular cloning and mRNA expression analysis of interleukin-8 gene in Japanese sea perch (Lateolabrax japonicus). Mol. Biol. Rep.2009; 36(5):1099-1105.
    [62]. Wu, Y. F., Shien, J. H., Yin, H. H., Chiow, S. H. Lee, L. H. Structural and functional homology among chicken, duck, goose, turkey and pigeon interleukin-8 proteins. Vet. Immunol. Immunopathol.2008; 125(3-4):205-215.
    [63].Laing, K. J., Zou, J. J., Wang, T., Bols, N., Hirono,I., Aoki, T. Secombes, C. J. Identification and analysis of an interleukin 8-like molecule in rainbow trout Oncorhynchus mykiss. Dev. Comp. Immunol.2002; 26(5):433-444.
    [64].Kluger, M. J., Ringler, D. H. Anver, M. R. Fever and survival. Science.1975; 188(4184): 166-168.
    [65].Merchant, M., Williams, S., Trosclair, P. L. III., Elsey, R. M. Mills, K. Febrile response to infection in the American alligator (Alligator mississippiensis). Comp. Biochem. Physiol. A. 2007; 148(4):921-925.
    [66].Amaral, J. P. S., Marvin, G. A. Hutchison, V. H. The influence of bacterial lipopolysaccharide on the thermoregulation of the box turtle Terrapen carolina. Physiol. Biochem. Zool.2002; 75(3):273-282.
    [67].Zhou X, Wang L, Feng H, Guo Q, Dai H. Acute phase response in Chinese soft-shelled turtle (Trionyx sinensis) with Aeromonas hydrophila infection. Dev Comp Immunol.2011; 35(4):441-451.
    [68].Burnham, D. K., Keall, S. N., Nelson, N. J. Daugherty, C. H. T cell function in tuatara (Sphenodon punctatus). Comp. Immunol. Microbiol. Infect. Dis.2005; 28(3):213-222.
    [69].Subramonia Pillai P, Muthukkaruppan VR. The role of T and B antigen-binding cells in the immune response to sheep erythrocytes in the lizard, Calotes versicolor. Immunology.1981; 42(4):541-548.
    [70].Farag MA, el Ridi R. Mixed leucocyte reaction (MLR) in the snake Psammophis sibilans. Immunology.1985; 55(1):173-181.
    [71].Munoz FJ, Galvan A, Lerma M, De la Fuente M. Seasonal changes in peripheral blood leukocyte functions of the turtle Mauremys caspica and their relationship with corticosterone, 17-beta-estradiol and testosterone serum levels. Vet Immunol Immunopathol.2000; 77(1-2):27-42.
    [72].Klein, S. L. Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol.2004; 26(6-7):247-264.
    [73]. Vance CK, Kennedy-Stoskopf S, Obringer AR, Roth TL. Comparative studies of mitogen-and antigen-induced lymphocyte proliferation in four captive rhinoceros species. J Zoo Wildl Med.2004; 35(4):435-446.
    [74].Saad, A. H. Sex-associated differences in the mitogenic responsiveness of snake blood lymphocytes. Dev. Comp. Immunol.1989; 13(3):225-229.
    [75].Li J, Barreda DR, Zhang YA, Boshra H, Gelman AE, Lapatra S, Tort L, Sunyer JO. B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nat Immunol.2006; 7(10):1116-1124.
    [76].Zimmerman LM, Vogel LA, Edwards KA, Bowden RM. Phagocytic B cells in a reptile. Biol Lett.2010; 6(2):270-273.
    [77].Das, S., Nikolaidis, N., Klein, J. Nei, M. Evolutionary redefinition of immunoglobulin light chain isotypes in tetrapods using molecular markers. PNAS.2008; 105(43):16647-16652.
    [78].Natarajan, K. Muthukkaruppan, V. R. Distribution and ontogeny of B cells in the garden lizard, Calotes versicolor. Dev. Comp. Immunol.1985; 9(2):301-310.
    [79]. Workenhe ST, Rise ML, Kibenge MJ, Kibenge FS. The fight between the teleost fish immune response and aquatic viruses. Mol Immunol.2010; 47(16):2525-2536.
    [80]. Wei, Z, Wu, Q., Ren, L., Hu, X., Guo, Y., Warr, G. W., Hammarstrom, L., Li, N. Zhao, Y. Expression of IgM, IgD, and lgY in a reptile, Anolis carolinensis. J. Immunol.2009; 183(6):3858-3864.
    [81].Iwata, A., Iwase, T., Ogura, Y., Takahashi, T., Matsumoto, N., Yoshida, T., Kamei, N., Kobayashi, K., Mestecky, J. Moro, I. Cloning and expression of the turtle (Trachemys scripta) immunoglobulin joining (J)-chain cDNA. Immunogenetics.2002; 54(7):513-519.
    [82].Ohta, Y. Flajnik, M. IgD, like IgM, is a primordial immunoglobulin class perpetuated in most jawed vertebrates. PNAS 2006; 103(28):10723-10728.
    [83].Deza, F. G. Espinel, C. S. IgD in the reptile leopard gecko. Mol. Immunol.2008; 45(12): 3470-3476.
    [84]. Work TM, Rameyer RA, Balazs GH, Cray C, Chang SP. Immune status of free-ranging green turtles with fibropapillomatosis from Hawaii. J Wildl Dis.2001; 37(3):574-81.
    [85]. Li Z, Nestor KE, Saif YM, Anderson JW. Antibody responses to sheep red blood cell and Brucella abortus antigens in a turkey line selected for increased body weight and its randombred control. Poult Sci.2000; 79(6):804-809.
    [86].Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis-Crosstalk between the liver and gut. J Physiol.2011 Nov 28. [Epub ahead of print]
    [87].Carvalho FA, Aitken JD, Vijay-Kumar M, Gewirtz AT. Toll-Like Receptor-Gut Microbiota Interactions:Perturb at Your Own Risk! Annu Rev Physiol.2011 Feb 15. [Epub ahead of print]
    [88].Lemaitre B, Reichhart JM, Hoffmann JA. Drosophila host defense:differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A.1997; 94(26):14614-14619.
    [89].Hoffmann J.The immune response of Drosophila. Nature.2003; 426 (6962):33-38.
    [90].Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature.1997; 388(6640):394-397.
    [91].Medzhitov R, Shevach EM, Trinchieri G, Mellor AL, Munn DH, Gordon S, Libby P, Hansson GK, Shortman K, Dong C, Gabrilovich D, Gabrysova L, Howes A, O'Garra A. Highlights of 10 years of immunology in Nature Reviews Immunology. Nat Rev Immunol. 2011;11(10):693-702.
    [92].Pifer R, Yarovinsky F. Innate responses to Toxoplasma gondii in mice and humans. Trends Parasitol.2011; 27(9):388-393.
    [93].Brownlie R, Allan B. Avian toll-like receptors. Cell Tissue Res.2011; 343(1):121-130.
    [94]. Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone Ml, Burgess DR, Burke RD. The genome of the sea urchin Strongylocentrotus purpuratus. Science.2006; 314(5801):941-952. Erratum in:Science.2007; 315(5813):766.
    [95].Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol.2006; 117(5):979-87.
    [96].Melchjorsen J. Sensing herpes:more than toll. Rev Med Virol.2011 Oct 21. [Epub ahead of print]
    [97].Mathur S, Walley KR, Wang Y, Indrambarya T, Boyd JH. Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circ J.2011; 75(10):2445-2452.
    [98].Kalyan S, Wesch D, Kabelitz D. Aminobisphosphonates and Toll-Like Receptor Ligands: Recruiting Vγ9Vδ2 T Cells for the Treatment of Hematologic Malignancy. Curr Med Chem. 2011 Nov 16. [Epub ahead of print]
    [99].Akashi-Takamura S, Miyake K. TLR accessory molecules. Curr Opin Immunol.2008; 20(4):420-425.
    [100]. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima NH, Yoo OJ, Lee JO. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell.2007; 130(5):906-917
    [101]. Hsu RY, Chan CH, Spicer JD, Rousseau MC, Giannias B, Rousseau S, Ferri LE. LPS-induced TLR4 signaling in human colorectal cancer cells increases betal integrin-mediated cell adhesion and liver metastasis. Cancer Res.2010; 71(5):1989-1998.
    [102]. Behzad H, Huckriede AL, Haynes L, Gentleman B, Coyle K, Wilschut JC, Kollmann TR, Reed SG, McElhaney JE. GLA-SE, a Synthetic Toll-like Receptor 4 Agonist, Enhances T-Cell Responses to Influenza Vaccine in Older Adults. J Infect Dis.2011 Dec 5. [Epub ahead of print]
    [103]. Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, Saint Girons I, Haake DA, Godowski PJ, Hayashi F, Ozinsky A, Underhill DM, Kirschning CJ, Wagner H, Aderem A, Tobias PS, Ulevitch RJ. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol.2001; 2(4):346-352.
    [104]. Yongvanit P, Thanan R, Pinlaor S, Sithithaworn P, Loilome W, Namwat N, Techasen A, Dechakhamphu S. Increased expression of TLR-2, COX-2, and SOD-2 genes in the peripheral blood leukocytes of opisthorchiasis patients induced by Opisthorchis viverrini antigen. Parasitol Res.2011 Dec 9. [Epub ahead of print]
    [105]. Takeuchi, O., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L. Akira, S. Role of TLR1 in mediating immune response to microbial lipoproteins. J. Immunol. 2001;169(1):10-14.
    [106]. Takeuchi, O., Kawai, T., Muhlradt, P. F., Radolf, J. D., Zychlinsky, A., Takeda, K. Akira, S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 2001; 13:933.
    [107]. Abe Y, Fujii K, Nagata N, Takeuchi O, Akira S, Oshiumi H, Matsumoto M, Seya T, Koike S. The Toll-Like Receptor 3-Mediated Antiviral Response Is Important for Protection against Poliovirus Infection in Poliovirus Receptor Transgenic Mice. J Virol.2012; 86(1):185-194.
    [108]. Le Negrate G. Viral interference with innate immunity by preventing NF-κB activity. Cell Microbiol.2011 Nov3.doi:10.1111/j.1462-5822.2011.01720.x. [Epub ahead of print]
    [109]. Eaves-Pyles T, Bu HF, Tan XD, Cong Y, Patel J, Davey RA, Strasser JE. Luminal-applied flagellin is internalized by polarized intestinal epithelial cells and elicits immune responses via the TLR5 dependent mechanism. PLoS One.2011; 6(9):e24869.
    [110]. Kojima K, Ueta M, Hamuro J, Hozono Y, Kawasaki S, Yokoi N, Kinoshita S. Human conjunctival epithelial cells express functional Toll-like receptor 5. Br J Ophthalmol.2008; 92(3):411-416.
    [111]. Hawn, T. R. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires'disease. J. Exp. Med.2003; 198:1563.
    [112]. David CV, Nguyen H, Goldenberg G. Imiquimod:a review of off-label clinical applications. J Drugs Dermatol.2011; 10(11):1300-1306.
    [113]. Lund, J. M., Alexopoulou, L., Sato, A., Karow, M., Adams, N.C., Gale, N. W., Iwasaki, A. Flavell, R. A. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA 2004; 101:5598.
    [114]. Leng L, Jiang T, Zhang Y. TLR9 expression is associated with prognosis in patients with glioblastoma multiforme. J Clin Neurosci.2011 Dec 8. [Epub ahead of print]
    [115]. Chi J, Wang F, Li L, Feng D, Qin J, Xie F, Zhou F, Chen Y, Wang J, Yao K. The role of MAPK in CD4(+) T cells toll-like receptor 9-mediated signaling following HHV-6 infection. Virology.2012; 422(1):92-98.
    [116]. Miranda-Hernandez S, Gerlach N, Fletcher JM, Biros E, Mack M, Korner H, Baxter AG. Role for MyD88, TLR2 and TLR9 but not TLR1, TLR4 or TLR6 in experimental autoimmune encephalomyelitis. J Immunol.2011; 187(2):791-804.
    [117]. Zhang, D., Zhang, G., Hayden M. S., Greenblatt M. B., Bussey, C., Flavell, R. A. Ghosh, S.2004. A toll-like receptor that prevents infection by uropathogenic bacteria. Science.2004; 303:1522.
    [118]. Abreu MT. Toll-like receptor signalling in the intestinal epithelium:how bacterial recognition shapes intestinal function. Nat Rev Immunol.2010 Feb;10(2):131-44. Erratum in: Nat Rev Immunol.2010; 10(3):215.
    [119]. Luke A J, O'Neill LA, Bowie AG. The family of five:TIR-domaincontaining adaptors in Toll-like receptor signalling. Nat Rev Immunol.2007; 7(5):353-364.
    [120]. Kueper C, Beck FX, Neuhofer W. Toll-like receptor 4 activates NF-{kappa}B and MAP kinase pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells. Am J Physiol Renal Physiol.2011 Sep 21. [Epub ahead of print]
    [121]. Schnare, M., Holt, A. C., Takeda, K., Akira, S. Medzhitov, R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol. 2000; 10:1139.
    [122]. Yamamoto, M., Sato, S., Mori, K., Takeuchi, O., Hoshino, K., Takeda, K. Akira, S. A novel TIR domain-containing adaptor that preferentially activates the interferon-b promoter. J. Immunol.2002; 169:6668.
    [123]. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-b induction. Nat. Immunol.2003; 4:161.
    [124]. Kiyoshi Takeda, Shizuo Akira., Toll-like receptors in innate immunity. International Immunology.2005; 17(1):1-14.
    [125]. Mackern Oberti JP, Breser ML, Nunez N, Maccioni M, Rodriguez N, Wantia N, Ertl T, Miethke T, Rivero VE. Chemokine response induced by Chlamydia trachomatis in prostate derived CD45+ and CD45-cells. Reproduction.2011; 142(3):427-437.
    [126]. Lombardi V, Van Overtvelt L, Horiot S, Moussu H, Chabre H, Louise A, Balazuc AM, Mascarell L, Moingeon P. Toll-like receptor 2 agonist Pam3CSK4 enhances the induction of antigen-specific tolerance via the sublingual route. Clin Exp Allergy.2008; 38(11):1819-1829.
    [127]. Su SB, Silver PB, Grajewski RS, Agarwal RK, Tang J, Chan CC, Caspi RR. Essential role of the MyD88 pathway, but nonessential roles of TLRs 2,4, and 9, in the adjuvant effect promoting Thl-mediated autoimmunity. J Immunol.2005; 175(10):6303-6310.
    [128]. Jonuleit H, Schmitt E. The regulatory T cell family:distinct subsets and their interrelations. J Immunol 2003; 171:6323-6327.
    [129]. Nalubamba KS, Gossner AG, Dalziel RG, Hopkins J. Differential expression of pattern recognition receptors in sheep tissues and leukocyte subsets. Vet Immunol Immunopathol. 2007; 118:252-262.
    [130]. Lin L, Gerth AJ, Peng SL. CpG DNA redirects class-switching towards "Thl-like" Ig isotype production via TLR9 and MyD88. Eur J Immunol.2004; 34:1483-1487.
    [131]. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002a; 20:709-760.
    [132]. Bernasconi NL, Onai N, Lanzavecchia A. A role for Toll-like receptors in acquired immunity:up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood.2003; 101:4500-4504.
    [133]. Ittah M, Miceli-Richard C, Gottenberg JE, Sellam J, Eid P, Lebon P, Pallier C, Lepajolec C, Mariette X. Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR-and type-I IFN-dependent and-independent pathways. Eur J Immunol.2008; 38:1058-1064.
    [134]. Srivastava P.K. New jobs for ancient chaperones. Scientific American.2008; 283:50-55.
    [135]. Martinod S.R., Bernard B., Serrar M. Gutierrez G. Release of heat shock protein Hsp72 after exercise and supplementation with an Opuntia ficus indica extract Tex-OE. Proceedings of the American Association of Equine Practitioners.2007; 53:72-76.
    [136]. Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia.1962; 13:571-573.
    [137]. Tissieres A., Mitchell H.K. Tracy U.M. Protein synthesis in the salivary gland of Drosophila melanogaster - relation to chromosome puffs. Journal of Molecular Biology 1974; 84:389-398.
    [138]. Lindquist S. Craig E.A. The heat shock proteins. Annual Reviews in Genetics 1988; 22:631-677.
    [139]. Chiang H.L., Terlecky S.R. Plant C.P. A role for HSP70 in lysosomal degradation of intracellular proteins. Science.1989; 246:382-385.
    [140]. Pockley A.G. Heat shock proteins as regulators of the immune response. Lancet 2003; 362:469-476.
    [141]. Brocchieri L, Conway de Macario E, Macario AJ. hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol.2008; 8:19.
    [142]. Luan W, Li F, Zhang J, Wen R, Li Y, Xiang J. Identification of a novel inducible cytosolic Hsp70 gene in Chinese shrimp Fenneropenaeus chinensis and comparison of its expression with the cognate Hsc70 under different stresses. Cell Stress Chaperon.2010; 15:83-93
    [143]. Young JC. Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol.2010; 88(2):291-300.
    [144]. Zhang Y, Zuiderweg ER. The 70-kDa heat shock protein chaperone nucleotide-binding domain in solution unveiled as a molecular machine that can reorient its functional subdomains. Proc Natl Acad Sci U S A.2004; 101(28):10272-10277.
    [145]. Morimoto, R.I. Regulation of the heat shock transcriptional response:cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev.1998; 12:3788-3796.
    [146]. Nakai, A. New aspects in the vertebrate heat shock factor system:Hsf3 and Hsf4. Cell Stress Chap.1999; 4:86-93.
    [147]. Feder M.E. Hofmann G.E. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology. Annual Reviews of Physiology.1999; 61:243-282.
    [148]. Inouye S, Katsuki K, Izu H. Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol Cell Biol.2003; 23(16):5882-5895.
    [149]. Voellmy R, Boellmann F. Chaperone regulation of the heat shock protein response. Adv Exp Med Biol.2007;594:89-99.
    [150]. Zou, J., Guo, Y., Guettouche, T., Smith, D. F., Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stresssensitive complex with HSF1. Cell.1998; 94:471-480.
    [151]. Jurivich, D. A., Sistonen, L., Kroes, R. A., Morimoto, R. I. Effect of sodium salicylate on the human heat shock response. Science.1992; 255:1243-1245.
    [152]. Cotto, J. J., Kline, M., Morimoto, R.I. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. J. Biol. Chem.1996; 271:3355-3358
    [153]. Lin Z, Huang F, Ma ZF, Xu K, Liu AY. Redox-dependent changes in structure and function of hHSF1]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai).2003; 35(6):542-7. in Chinese.
    [154]. Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E. RNA-mediated response to heat shock in mammalian cells. Nature.2006; 440:556-560.
    [155]. Anckar J, Sistonen L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem.2011; 80:1089-1115.
    [156]. Maattanen P, Gehring K, Bergeron JJ, Thomas DY. Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol.2010; 21(5):500-511.
    [157]. Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun.2010; 2(3):238-247.
    [158]. Guo F, Sigua C, Bali P, George P, Fiskus W, Scuto A, Annavarapu S, Mouttaki A, Sondarva G, Wei S, Wu J, Djeu J, Bhalla K. Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood.2005; 105(3):1246-1255.
    [159]. Stangl S, Gehrmann M, Riegger J, Kuhs K, Riederer I, Sievert W, Hube K, Mocikat R, Dressel R, Kremmer E, Pockley AG, Friedrich L, Vigh L, Skerra A, Multhoff G. Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci U S A.2011; 108(2):733-738.
    [160]. Westerheide SD, Kawahara TL, Orton K, Morimoto RI. Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem.2006; 281(14):9616-9622.
    [161]. Phillips PA, Dudeja V, McCarroll JA, Borja-Cacho D, Dawra RK, Grizzle WE, Vickers SM, Saluja AK.. Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res.2007; 67(19):9407-9416.
    [162]. Yokota S, Kitahara M, Nagata K. Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer Res.2000; 60(11):2942-2948.
    [163]. Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jaattela M. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev. 2005;19(5):570-582.
    [164]. Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA, Schneider A, Gubbins EF, Solomon L, Chen Z, Lesniewski R, Henkin J. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res.2005; 65(11):4663-4672.
    [165]. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. Novel signal transduction pathway utilized by extracellular HSP70:role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem.2002; 277(17):15028-15034.
    [166]. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem.2002; 277(17):15107-15712.
    [167]. Yokota S, Minota S, Fujii N. Anti-HSP auto-antibodies enhance HSP-induced pro-inflammatory cytokine production in human monocytic cells via Toll-like receptors. Int Immunol.2006; 18(4):573-580.
    [168]. Dokladny K, Lobb R, Wharton W, Ma TY, Moseley PL. LPS-induced cytokine levels are repressed by elevated expression of HSP70 in rats:possible role of NF-kappaB. Cell Stress Chaperones.2010; 15(2):153-163.
    [169]. Ou DS, Lee SB, Chu CS, Chang LH, Chung BC, Juan LJ. Transcriptional activation of endoplasmic reticulum chaperone GRP78 by HCMV IE 1-72 protein. Cell Res.2011 Jan 11. [Epub ahead of print]
    [170]. Tsan MF, Gao B. Heat shock proteins and immune system. J Leukoc Biol.2009; 85(6):905-910.
    [171]. Chen T, Cao X. Stress for maintaining memory:HSP70 as a mobile messenger for innate and adaptive immunity. Eur J Immunol.2010; 40(6):1541-1544.
    [172]. Binder RJ. CD40-independent engagement of mammalian HSP70 by antigen-presenting cells. J Immunol.2009; 182:6844-6850.
    [173]. Sagstad A., Sanden M., Haugland 0., Hansen A.C., Olsvik P.A. Hemre G.-I. Evaluation of stress and immune-response biomarkers in Atlantic salmon, Salmo salar fed different levels of genetically modified maize (Bt maize), compared with its near-isogenic parental line and a commercial suprex maize. Journal of Fish Diseases.2007; 30:201-212.
    [174]. Yeyati P.L., Bancewicz R.M., Maule J. van Heyningen V.V. Hsp90 selectively modulates phenotype in vertebrate development. PLoS Genetics.2007; 3:431-447.
    [175]. Vijayan M.M., Pereira C., Forsyth R.B., Kennedy C.J. Iwama G.K. Handling stress does not affect the expression of hepatic heat shock protein and conjugation enzymes in rainbow trout treated with b-naphthoflavone. Life Sciences.1997; 61:117-127.
    [176]. Pan F., Zarate J.M., Tremblay G.M. Bradley T.M. Cloning and characterization of salmon hsp90 cDNA:upregulation by thermal and hyperosmotic stress. Journal of Experimental Zoology.2000; 287:199-212.
    [177]. Bakke-McKellep AM, Penn MH, Salas PM, Refstie S, Sperstad S, Landsverk T, Ring(?) E, Krogdahl A. Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Br J Nutr.2007; 97(4):699-713.
    [178]. Deane E.E. Woo N.Y.S. Evidence for the disruption of Na K and ATPase and HSP70 during vibriosis in sea bream, Sparus saraga Forsskal. Journal of Fish Diseases.2005; 28: 239-251.
    [179]. Sung YY, Pineda C, MacRae TH, Sorgeloos P, Bossier P. Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii. Cell Stress Chaperones.2008; 13(1):59-66.
    [180]. Sung YY, Dhaene T, Defoirdt T, Boon N, MacRae TH, Sorgeloos P, Bossier P. Ingestion of bacteria overproducing DnaK attenuates Vibrio infection of Artemia franciscana larvae. Cell Stress Chaperones.2009; 14(6):603-609.
    [181]. Yik Sung Y, Van Damme EJ, Sorgeloos P. Bossier P. Non-lethal heat shock protects gnotobiotic Artemia franciscana larvae against virulent Vibrios. Fish Shellfish Immunol. 2007; 22(4):318-326.
    [182]. Huang P.Y., Kang S.T., Chen W.Y., Hsu T.C., Lo C.F., Liu K.,F. Chen L.L. Identification of the small heat shock protein, HSP21, of shrimp Penaeus monodon and the gene expression of HSP21 is inactivated after white spot syndrome virus (WSSV) infection. Fish and Shellfish Immunology.2008; 25:250-257.
    [183]. Wilhelm V., Miquel A., Burzio L.O., Rosemblatt M., Engel E. Valenzuela P.D.T. A vaccine against the salmonid pathogen Piscirickettsi salmonis based on recombinant proteins. Vaccine.2006;24:5083-5091.
    [1]. Akira S, Uematsu S, Takeuchi O. Pathogen Recognition and Innate Immunity. Cell Rev 2006; 124:783-801.
    [2]. Akira S, Takeda K, Kaisho T. Toll-like receptors:critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2:675-680.
    [3]. Janeway CAJr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20: 197-216.
    [4]. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nat Immunol 2010; 11:373-384.
    [5]. Kenny EF, O'Neill LA. Signalling adaptors used by Toll-like receptors:an update. Cytokine 2008; 43:342-349.
    [6]. Yamamoto M, Takeda K, Akira S. TIR domain-containing adaptors define the specificity'of TLR signaling. Mol Immunol 2004; 40:861-868.
    [7]. O'Neill LA, Bowie AG. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007; 7:353-364.
    [8]. McGettrick AF. O'Neill LA. The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction. Mol Immunol 2004:41:577-582.
    [9]. Lord KA. Hoffman-Liebermann B. Liebermann DA. Nucleotide sequence and expression of a cDNA encoding MyD88. a novel myeloid differentiation primary response gene induced by IL6. Oncogene 1990; 5:1095-1097.
    [10]. Wesche H. Henzel WJ, Shillinglaw W, Li S. Cao Z. MyD88:an adapter that recruits IRAK to the IL-1 receptor complex. Immunity.1997:7:837-847.
    [11]. Hajishengallis G, Wang M, Liang S. Induction of distinct TLR2-mediated proinflammatory and proadhesive signaling pathways in response to Porphyromonas gingivalis fimbriae. J Immunol 2009; 182:6690-6696.
    [12]. Kagan JC. Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 2006:125:943-955.
    [13].Takano T, Kondo H, Hirono 1, Saito-Taki T, Endo M. Aoki T. Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA and gene in Japanese flounder, Paralichthys olivaceus. Dev Comp Immunol 2006; 30:807-816.
    [14]. Yu Y, Zhong QW, Zhang QQ, Wang ZG, Li CM, Yan FS. Jiang LM. Full-length sequence and expression analysis of a myeloid differentiation factor 88 (MyD88) in half-smooth tongue sole Cynoglossus semilaevis. lnt J Immunogenet 2009; 36:173-182.
    [15]. Yao CL, Kong P, Wang ZY, Ji PF, Liu XD, Cai MY, Han XZ. Molecular cloning and expression of MyD88 in large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol 2009; 26:249-255.
    [16]. Li XL, Zhang CL, Fang WH, Lin FC. White-spot disease of Chinese soft-shelled turtles (Trionyx sinensis) caused by Paecilomyces lilacinus. J Zhejiang Univ Sci B 2008; 9:578-81.
    [17]. Li, XL, Shuai JB, Fang WH. Protection of Carassius auratus Gibelio against infection by Aeromonas hydrophila using specific immunoglobulins from hen egg yolk. J Zhejiang Univ Sci B 2006; 7:922-928.
    [18]. Scotto-Lavino E, Du G. Frohman MA.3'end cDNA amplification using classic RACE. Nat Protoc 2006; 1:2742-2745.
    [19]. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402-408.
    [20]. Bonnert TP, Garka KE, Parnet P, Sonoda G., Testa JR, Sims JE. The cloning and characterization of human MyD88:a member of an IL-1 receptor related family. FEBS Let 1997; 402:81-84.
    [21]. Glaberman S, Du Pasquier L, Caccone A. Characterization of a Nonclassical Class I MHC Gene in a Reptile, the Galapagos Marine Iguana (Amblyrhynchus cristatus). PLoS One 2008; 3(8):e2859
    [22]. Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, Isobe T, Ando J, Fujiwara A, Hirao Y. Nishimura O, Ishijima J, Hayashi A, Saito T, Murakami T, Murakami Y, Kuratani S, Agata K. Highly conserved linkage homology between birds and turtles:bird and turtle chromosomes are precise counterparts of each other. Chromosome Res 2005; 13:601-615.
    [23]. Chapus C, Edwards SV. Genome evolution in Reptilia:in silico chicken mapping BAC-end sequences from two reptiles and a basal bird. BMC Genomics 2009;10(Suppl 2):S8.
    [24]. Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di Marco F, French L, Tschopp J. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 1998; 15:12203-12209.
    [25]. Janssens S, Burns K, Tschopp J, Beyaert R. Regulation of interleukin-1- and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88. Curr Biol 2002; 12:467-471.
    [26]. Ohnishi H, Tochio H, Kato Z, Orii KE, Li A, Kimura T, Hiroaki H. Kondo N, Shirakawa M. Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. Proc Natl Acad Sci USA 2009;106:10260-10265.
    [27]. Slack JL, Schooley K, Bonnert TP, Mitcham JL, Qwarnstrom EE. Sims JE, Dower SK. Identification oftwomajor sites in the type Ⅰ interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways. J Biol Chem 2000;275: 4670-4678.
    [28]. Kim HY, Rikihisa Y. Roles of p38 mitogen-activated protein kinase. NF-kappaB, and protein kinase C in proinflammatorv cytokine mRNA expression by human peripheral blood leukocytes, monocytes, and neutrophils in response to Anaplasma phagocytophila. Infect lmmun 2002:70:4132-4141.
    [29]. Skjaeveland I. Iliev DB, Strandskog G, J(?)rgensen JB. Identification and characterization of TLR8 and MyD88 homologs in Atlantic salmon (Salmo salar). Dev Comp Immunol 2009:33: 1011-1017.
    [1]. Ritossa FA. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia.1962; 18:571-573.
    [2]. Tissieres A, Mitchell HK, Tracy U. Protein synthesis in salvary glands of Drosophila melanpgaster:relation to chromosome puffs. J Mol Biol.1974; 84:389-398.
    [3]. Lindquist S, Craig EA. The heat shock protein. Annu Rev Genet.1988; 22:631-677.
    [4]. Pockley AG, Muthana M, Calderwood SK. The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 2008; 33(2):71-79.
    [5]. Tsan MF, Gao B. Heat shock proteins and immune system. J Leuk Biol.2009; 85(6):905-910.
    [6]. De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System:A form of communication during injury, infection, and cell damage:It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones.2010; [Epub ahead of print].
    [7]. Brocchieri L, Conway de Macario E, Macario AJ. hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol.2008; 8:19.
    [8]. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, et al.Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009; 14(1):105-111
    [9]. Wang H, Dong SZ, Li K, Hu C, Ye GY. A heat shock cognate 70 gene in the endoparasitoid, Pteromalus puparum, and its expression in relation to thermal stress. BMB reports 2008; 41(5):388-393.
    [10].Luan W, Li F, Zhang J, Wen R, Li Y, Xiang J. Identification of a novel inducible cytosolic Hsp70 gene in Chinese shrimp Fenneropenaeus chinensis and comparison of its expression with the cognate Hsc70 under different stresses. Cell Stress Chaperon 2010; 15(1):83-93.
    [11]. Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health:a review.J Fish Dis.2010; 33(10):789-801.
    [12].Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol:from nascent chain to folded protein. Science.2002; 295:1852-1858.
    [13].Maattanen P, Gehring K, Bergeron JJ, Thomas DY. Protein quality control in the ER:the recognition of misfolded proteins. Semin Cell Dev Biol.2010; 21(5):500-11.
    [14].Ou DS, Lee SB, Chu CS, Chang LH, Chung BC, Juan LJ. Transcriptional activation of endoplasmic reticulum chaperone GRP78 by HCMV IE1-72 protein. Cell Res.2011 Jan 11. [Epub ahead of print].
    [15].Zhang LH, Zhang X. Roles of GRP78 in physiology and cancer. J Cell Biochem.2010; 110(6):1299-305.
    [16].Su X, Sykes JB, Ao L, Raeburn CD, Fullerton DA, Meng X. Extracellular heat shock cognate protein 70 induces cardiac functional tolerance to endotoxin:differential effect on TNF-alpha and ICAM-1 levels in heart tissue. Cytokine.2010; 51(1):60-66.
    [17].Teng LS, Jin KT, Han N, Cao J. Radiofrequency ablation, heat shock protein 70 and potential anti-tumor immunity in hepatic and pancreatic cancers:a minireview. Hepatobiliary Pancreat Dis Int.2010; 9(4):361-5.
    [18].Santacruz H, Vriz S, Angelier N. Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts. Dev Genet.1997; 21(3):223-233.
    [19].Hunt CR, Parsian AJ, Goswami PC, Kozak CA. Characterization and expression of the mouse Hsc70 gene. Biochim Biophys Acta.1999; 1444(3):315-325.
    [20].Lo WY, Liu KF, Liao IC, Song YL. Cloning and molecular characterization of heat shock cognate 70 from tiger shrimp (Penaeus monodon). Cell Stress Chaperones.2004; 9(4):332-343.
    [21].Shim JK, Jung DO, Park JW, Kim DW, Ha DM, Lee KY. Molecular cloning of the heat-shock cognate 70 (Hsc70) gene from the two-spotted spider mite, Tetranychus urticae, and its expression in response to heat shock and starvation. Comp Biochem Physiol B Biochem Mol Biol.2006; 145(3-4):288-295.
    [22].Watowich SS, Morimoto RI. Complex regulation of heat shock-and glucose-responsive genes in human cells. Mol Cell Biol.1988;8(1):393-405.
    [23].Ting J, Lee AS. Human gene encoding the 78,000-dalton glucose-regulated protein and its pseudogene:structure, conservation, and regulation. DNA.1988; 7(4):275-86.
    [24].Stoeckle MY, Sugano S, Hampe A, Vashistha A, Pellman D, Hanafusa H.78-kilodalton glucose-regulated protein is induced in Rous sarcoma virus-transformed cells independently of glucose deprivation. Mol Cell Biol.1988; 8(7):2675-80.
    [25].Klein SL, Strausberg RL, Wagner L, Pontius J, Clifton SW, Richardson P. Genetic and genomic tools for Xenopus research:The NIH Xenopus initiative. Dev Dyn.2002; 225(4):384-91.
    [26]. Crosier PS, Bardsley A, Horsfield JA, Krassowska AK, Lavallie ER, Collins-Racie LA, Postlethwait JH, Yan YL, McCoy JM, Crosier KE. In situ hybridization screen in zebrafish for the selection of genes encoding secreted proteins. Dev Dyn.2001; 222(4):637-44.
    [27]. Li XL, Zhang CL, Fang WH, Lin FC. White-spot disease of Chinese soft-shelled turtles (Trionyx sinensis) caused by Paecilomyces lilacinus. J Zhejiang Univ Sci B.2008; 9(7): 578-81.
    [28].Scotto-Lavino E, Du G. Frohman MA.3'end cDNA amplification using classic RACE. Nat Protoc.2006; 1(6):2742-5.
    [29].Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001; 25(4):402-408.
    [30]. Gupta RS, Golding GB. Evolution of hsp70 gene and its implications regarding relationships between archaebacteria, eubacteria, eukaryotes. J Mol Evol.1993; 37(6):573-582.
    [31].Tabeta K, Yamazaki K. Analysis of immune responses to purified recombinant antigens of periodontal pathogens. Methods Mol Biol.2010; 666:345-357.
    [32].Luan W, Li F, Zhang J, Wang B, Xiang J. Cloning and expression of glucose regulated protein 78 (GRP78) in Fenneropenaeus chinensis. Mol Biol Rep.2009; 36(2):289-98.
    [33].Ming J, Xie J, Xu P, Liu W, Ge X, Liu B, He Y, Cheng Y, Zhou Q, Pan L. Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish Shellfish Immunol.2010; 28(3):407-18.
    [34].Wisniewska M, Karlberg T, Lehtio L, Johansson I, Kotenyova T, Moche M, Schiller H. Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden. Crystal structures of the ATPase domains of four human Hsp70 isoforms:HSPAlL/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78. PLoS One.2010; 5(1):e8625.
    [35].Gething MJ. Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol.1999; 10(5):465-72.
    [36].Young JC. Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol.2010; 88(2):291-300.
    [37].Moreno-del Alamo M, Sanchez-Gorostiaga A, Serrano AM, Prieto A, Cu611ar J, Martin-Benito J, Valpuesta JM, Giraldo R. Structural analysis of the interactions between hsp70 chaperones and the yeast DNA replication protein Orc4p. J Mol Biol.2010; 403(1):24-39.
    [38]. Mayer MP, Bukau B. Hsp70 chaperones:cellular functions and molecular mechanism. Cell Mol Life Sci.2005; 62(6):670-84.
    [39].Demand J, Luders J, Hohfeld J.The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol.1998; 18(4):2023-2028.
    [40].Saxena V, Lienesch DW, Zhou M, Bommireddy R, Azhar M, Doetschman T, et al. Dual roles of immunoregulatory cytokine TGF-beta in the pathogenesis of autoimmunity-mediated organ damage. J Immunol.2008; 180(3):1903-1912.
    [41]. Freeman BC, Myers MP, Schumacher R, Morimoto RI. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 1995; 14(10):2281-2292.
    [42].Shows TB, McAlpine PJ, Boucheix C, Collins FS, Conneally PM, Frezal J, et al. Guidelines for human gene nomenclature. An international system for human gene nomenclature (ISGN, 1987). Cytogenet Cell Genet.1987; 46(1-4):11-28.
    [43].Watanabe K, Fuse T, Asano I, Tsukahara F, Maru Y, Nagata K,et al. Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS Lett.2006; 580(24):5785-5790.
    [44].Watanabe K, Tachibana M, Kim S, Watarai M. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells. J Biomed Sci.2009; 16:113.
    [45].Munro S, Pelham HR. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987;48(5):899-907.
    [46].Glaberman S, Du Pasquier L, Caccone A. Characterization of a nonclassical class I MHC gene in a reptile, the Galapagos marine iguana (Amblyrhynchus cristatus). PLoS One.2008; 3(8):e2859.
    [47]. Li X, Zhu B, Chen N, Hu H, Chen J, Zhang X, et al. Molecular characterization and functional analysis of MyD88 in Chinese soft-shelled turtle Trionyx sinensis. Fish Shellfish Immunol.2011; 30(1):33-38.
    [48].Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, Isobe T, et al. Highly conserved linkage homology between birds and turtles:bird and turtle chromosomes are precise counterparts of each other. Chromosome Res.2005; 13(6):601-615.
    [49].Bolt, G., The measles virus (MV) glycoproteins interact with cellular chaperones in the endoplasmic reticulum and MV infection upregulates chaperone expression. Arch. Virol. 2001; 146,2055-2068.
    [50].Hammerer-Lercher A, Mair J, Bonatti J, Watzka SB, Puschendorf B, Dirnhofer S. Hypoxia induces heat shock protein expression in human coronary artery bypass grafts. Cardiovasc Res.2001; 50(1):115-124.
    [51].Hernando R, Manso R. Muscle fibre stress in response to exercise:synthesis, accumulation and isoform transitions of 70-kDa heat-shock proteins. Eur J Biochem.1997; 243(1-2):460-467.
    [52]. De Maio, A., Beck, S.C., Buchman, T.G., Induction of translational thermotolerance in liver of thermally stressed rats. Eur. J. Biochem.1993; 218(1),413-420.
    [53].De Maio, A., Beck, S.C., Buchman, T.G.,. Heat shock gene expression and development of translational thermotolerance in human hepatoblastoma cells. Circ. Shock.1993b; 40: 177-186.
    [54].Zimmerman LM, Vogel LA, Bowden RM. Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol.2010; 213(5):661-671.
    [55].Graser RT, Malnar-Dragojevic D, Vincek V.Cloning and characterization of a 70 kd heat shock cognate (hsc70) gene from the zebrafish (Danio rerio). Genetica 1996-1997; 98(3):273-276.
    [56].Xiang LX, He D, Dong WR, Zhang YW, Shao JZ. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics.2010; 11:472.
    [57].Hori TS, Gamperl AK, Afonso LO, Johnson SC, Hubert S, Kimball J, Bowman S, Rise ML. Heat-shock responsive genes identified and validated in Atlantic cod (Gadus morhua) liver, head kidney and skeletal muscle using genomic techniques. BMC Genomics.2010; 11:72.
    [58].Franzellitti S, Fabbri E. Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochem Biophys Res Commun.2005; 336(4):1157e63.
    [59].Molina A, Biemar F, Muller F, Iyengar A, Prunet P, Maclean N, et al. Cloning and expression analysis of an inducible HSP70 gene from tilapia fish. FEBS Lett.2000; 474:5e10.
    [60]. Sun PM, Liu YT, Zhao YG, Bao ED, Wang ZL. Relationship between heart damages and HSPs mRNA in persistent heat stressed broilers. Agric Sci China.2007; 6(2):227e33.
    [61]. Scott MA, Locke M, Buck LT. Tissue-specific expression of inducible and constitutive Hsp70 isoforms in the western painted turtle. J Exp Biol.2003; 206(Pt 2):303-311.
    [62].Thayyullathil F, Chathoth S, Hago A, Wernery U, Patel M, Galadari S. Investigation of heat stress response in the camel fibroblast cell line dubca. Ann N Y Acad Sci.2008; 1138:376-384.
    [1]. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nat Immunol.2010; 11(5):373-84.
    [2]. Li M, Zhou Y, Feng G, Su SB. TLRs and chronic inflammation. Int J Biochem Cell Biol. 2010;42(4):495-505.
    [3]. Hoffmann J.The immune response of Drosophila. Nature,2003,426 (6962):33-38.
    [4]. Medzhitov R, Shevach EM, Trinchieri G, Mellor AL, Munn DH, Gordon S, Libby P, Hansson GK, Shortman K, Dong C, Gabrilovich D, Gabrysova L, Howes A, O'Garra A. Highlights of 10 years of immunology in Nature Reviews Immunology. Nat Rev Immunol.2011; 11(10):693-702.
    [5]. Akira, S., Uematsu, S.& Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006; 124:783-801.
    [6]. Sherman M, Multhoff G. Heat shock proteins in cancer. Ann N Y Acad Sci.2007; 1113:192-201.
    [7]. Jin, M.S. and Lee, J.O. Structures of the Toll-like receptor family and its ligand complexes Immunity.2008; 29:182-191.
    [8]. Huang XN, Wang ZY, Yao CL. Characterization of Toll-like receptor 3 gene in large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol.2011; 31(1):98-106.
    [9]. Li XL, Zhang CL, Fang WH, Lin FC. White-spot disease of Chinese soft-shelled turtles (Trionyx sinens) caused by Paecilomyces lilacinus. J Zhejiang Univ Sci B,2008; 9(7):578-581.
    [10].Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001; 25:402-408.
    [11].Carvalho FA, Aitken JD, Vijay-Kumar M, Gewirtz AT. Toll-Like Receptor-Gut Microbiota Interactions:Perturb at Your Own Riskl Annu Rev Physiol.2011 Feb 15. [Epub ahead of print]
    [12]. Yang C, Su J. Molecular identification and expression analysis of Toll-like receptor 3 in common carp Cyprinus carpio. J Fish Biol.2010; 76(8):1926-1939.
    [13].Li YW, Luo XC, Dan XM, Huang XZ, Qiao W, Zhong ZP, Li AX. Orange-spotted grouper (Epinephelus coioides) TLR2, MyD88 and IL-1β involved in anti-Cryptocaryon irritans response. Fish Shellfish Immunol.2011; 30(6):1230-1240.
    [14].Glaberman S, Du Pasquier L, Caccone A. Characterization of a Nonclassical Class I MHC Gene in a Reptile, the Galapagos Marine Iguana (Amblyrhynchus cristatus). PLoS One 2008; 3(8):e2859.
    [15].Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, Isobe T, Ando J, Fujiwara A, Hirao Y, Nishimura O, Ishijima J, Hayashi A, Saito T, Murakami T, Murakami Y, Kuratani S, Agata K. Highly conserved linkage homology between birds and turtles:bird and turtle chromosomes are precise counterparts of each other. Chromosome Res.2005; 13:601-615.
    [16].Chapus C, Edwards SV. Genome evolution in Reptilia:in silico chicken mapping BAC-end sequences from two reptiles and a basal bird. BMC Genomics 2009; 10(Suppl 2):S8.
    [17].Melchjorsen J. Sensing herpes:more than toll. Rev Med Virol.2011 Oct 21. [Epub ahead of print]
    [18]. Alvarez B, Revilla C, Domenech N, Perez C, Martinez P, Alonso F, Ezquerra A, Domiguez J. Expression of toll-like receptor 2 (TLR2) in porcine leukocyte subsets and tissues. Vet Res. 2008; 39(2):13.
    [19]. Sandor F, Buc M. Toll-like receptors. Ⅱ. Distribution and pathways involved in TLR signalling. Folia Biol (Praha).2005; 51(6):188-197.
    [20]. Hayashi, F., Means, T. K., Luster, A. D. () Toll-like receptors stimulate human neutrophil function. Blood.2003; 102:2660-2669.
    [21].Nagase, H., Okugawa, S., Ota, Y., Yamaguchi, M., Tomizawa,H., Matsushima, K., Ohta, K., Yamamoto, K., Hirai, K. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J. Immunol.2003; 171:3977-3982.
    [22].Sabroe, I., Jones, E. C., Usher, L. R., Whyte, M. K., Dower, S. K. () Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes:a critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol.2002; 168:4701-4710.
    [23].Hornung, V., Rothenfusser, S., Britsch, S., Krug, A., Jahrsdorfer, B., Giese, T., Endres, S., Hartmann, G. () Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol.2002; 168:4531-4537.
    [24].Muzio, M., Bosisio, D., Polentarutti, N., D'amico, G., Stoppacciaro, A., Mancinelli, R., van't Veer, C., Penton-Rol, G., Ruco, L. P., Allavena, P., Mantovani, A. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes:selective expression of TLR3 in dendritic cells. J. Immunol.2000; 164:5998-6004.
    [25].Casal AB, Camacho M, Lopez-Jurado LF, Juste C, Oros J. Comparative study of hematologic and plasma biochemical variables in Eastern Atlantic juvenile and adult nesting loggerhead sea turtles (Caretta caretta). Vet Clin Pathol.2009; 38(2):213-218.
    [26].朱炳林,李俊,方维焕,李肖梁.中华鳖MyD88部分序列克隆及其在组织中的表达差异分析.水产学报.2010;34(7):1018-1024.
    [27].Flynn MG, McFarlin BK, Phillips MD, Stewart LK, Timmerman KL. Toll-like receptor 4 and CD 14 mRNA expression are lower in resistive exercise-trained elderly women. J Appl Physiol.2003; 95(5):1833-1842.
    [28].Sepulcre MP, Alcaraz-Perez F, Lopez-Munoz A, Roca FJ, Meseguer J, Cayuela ML, Mulero V. Evolution of lipopolysaccharide (LPS) recognition and signaling:fish TLR4 does not recognize LPS and negatively regulates NF-kappaB activation. J Immunol.2009; 182(4):1836-1845.
    [29].Grigoleit JS, Kullmann JS, Wolf OT, Hammes F, Wegner A, Jablonowski S, Engler H, Gizewski E, Oberbeck R, Schedlowski M. Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One.2011; 6(12):e28330.
    [30].Kumar A, Zhang J, Yu FS. Toll-like receptor 3 agonist poly(I:C)-induced antiviral response in human corneal epithelial cells. Immunology.2006; 117(1):11-21.
    [31]. Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, Takahashi T, Imaizumi H, Asai Y, Kuroki Y. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol.2003; 171 (1):417-425.
    [32].Thurm, C.W., Manna, S., Halsey. J.F. Development of a whole blood stimulation assay to assess TLR-dependent innate immune responses. The Journal of Allergy and Clinical Immunology.2004; 113(2), S50, Supplement.
    [33].Deiters U, Gumenscheimer M, Galanos C, Muhlradt PF. Toll-like receptor 2-and 6-mediated stimulation by macrophage-activating lipopeptide 2 induces lipopolysaccharide (LPS) cross tolerance in mice, which results in protection from tumor necrosis factor alpha but in only partial protection from lethal LPS doses. Infect Immun.2003; 71:4456-4462.
    [34].Zhong B, Ma HY, Yang Q, Gu FR, Yin GQ, Xia CM. Decrease in toll-like receptors 2 and 4 in the spleen of mouse with endotoxic tolerance. Inflamm Res.2008; 57(6):252-259.
    [35].Kueper C, Beck FX, Neuhofer W. Toll-like receptor 4 activates NF-{kappa}B and MAP kinase pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells. Am J Physiol Renal Physiol.2011 Sep 21. [Epub ahead of print]
    [36].Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Mu'hlradt, P. F., Sato, S., Hoshino, K. and Akira, S. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IRF-3 and the expression of a subset of LPS-inducible genes. J. Immunol.2001; 167:5887.
    [37].Karpala AJ, Lowenthal JW, Bean AG. Activation of the TLR3 pathway regulates IFNbeta production in chickens. Dev Comp Immunol.2008; 32(4):435-444.
    [38].Samanta M, Swain B, Basu M, Panda P, Mohapatra GB, Sahoo BR, Maiti NK. Molecular characterization of toll-like receptor 2 (TLR2), analysis of its inductive expression and associated down-stream signaling molecules following ligands exposure and bacterial infection in the Indian major carp, rohu (Labeo rohita). Fish Shellfish Immunol.2011 Dec 7. [Epub ahead of print]
    [39].Zimmerman LM, Paitz RT, Vogel LA, Bowden RM. Variation in the seasonal patterns of innate and adaptive immunity in the red-eared slider (Trachemys scripta). J Exp Biol.2010; 213(Pt 9):1477-1483.
    [40].Mondal, S. and Rai, U. In vitro effect of temperature on phagocytic and cytotoxic activities of splenic phagocytes of the wall lizard, Hemidactylus flaviviridis. Comp. Biochem. Physiol. A.2001; 129:391-398.
    [41].Du Buske LM. Introduction:basophil histamine release and the diagnosis of food allergy. Allergy Proc.1993;14(4):243-249.
    [42].Merchant, M, Thibodeaux, D., Lubser, K. and Elsey, R. M. Amoebacidal effects of serum from the American alligator (Alligator mississippiensis). J. Parasitol.2004; 90:1480-1483.
    [43].Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun.2010;2(3):238-247.
    [44].Qin Y, Naito Y, Handa O, Hayashi N, Kuki A, Mizushima K, Omatsu T, Tanimura Y, Morita M, Adachi S, Fukui A, Hirata I, Kishimoto E, Nishikawa T, Uchiyama K, Ishikawa T, Takagi T, Yagi N, Kokura S, Yoshikawa T.Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells. J Clin Biochem Nutr.2011; 49(3):174-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700