康氏木霉的原生质体诱变及玉米秸秆发酵酒精工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以玉米秸秆和麦麸为原料,以康氏木霉为出发菌株,对该菌株进行了原生质体诱变,建立了康氏木霉原生质体诱变及选育的方法,测定了选育出的菌株的一些性质,改进了纤维素鉴别培养基和纤维素滤纸酶活的测定方法,建立了一种由玉米秸杆发酵生产酒精的简易方法。
     以本实验室保藏的康氏木霉为出发菌株,将该菌株接种至玉米秸杆:麦麸为1:4的固体培养基中28℃培养32h,测得滤纸酶活为13.40±1.58μg/min·mL。将溶壁酶制成酶液,该康氏木霉在酶液的作用下,3h后去壁形成原生质体,原生质体经过紫外线诱变后,选育出40株菌株,经过五代培养后,初筛得到七株菌,最后经过复筛得到纤维素酶活较高的两株菌ZHY1和ZHY2。ZHY1接种至秸杆:麦麸为1:4的固体培养基中28℃培养32h,测得ZHY1菌的滤纸酶活为36.76±1.54μg/min·mL。ZHY2接种至秸杆:麦麸为1:4的固体培养基中28℃培养32h,测得ZHY2菌的滤纸酶活为33.40±2.80μg/min·mL。经过多重比较差异显著性分析,ZHY1和ZHY2的酶活高于出发菌株的酶活并与出菌株的酶活有极显著(p<0.01)的差异。
     初筛培养基为(NH_4)_2SO_4 2g,MgSO_4 0.5g,K_2HPO_4 1g,NaCl 0.5g,纤维素粉2g,刚果红0.4g,琼脂22g,水1000mL,自然pH值(纤维素粉以0.1mol/l的盐酸处理24h,之后水洗至pH值中性,过滤、烘干。琼脂则经流水冲洗24h后烘干)。与两种对照培养基相比,此培养基水解圈效果更明显,根据水解圈沉淀大小,出现早迟便可粗略估计菌株产酶情况。
     在测定纤维素滤纸酶活的过程中的酶液浸提的方法为浸提时在摇床上30℃浸提1h,摇床转数为95r/min。这样可较充分的浸提出纤维素酶,与报道方法相比酶活测定结果可以更加准确。
     在玉米秸杆生产酒精工艺方面,通过正交实验,建立了一种直接将菌种用于分解纤维素再发酵产生酒精的方法,该法可用于实验室中秸杆发酵的试验。
     根据本实验结果每千克玉米秸杆和每4千克麦麸可生产158g酒精。
The material was stalk of maize and wheat bran, the starting bacterium was a kind of Trichoderma koningii in this experiment. The mutagenesis of protoplast of Trichoderma koningii was done by UV. The method of the mutagenesis of protoplast was established. The character of furguses after mutagenesis was determined. In addition, an differential medium which can conveniently segregate cellulose decomposing microorganisms was improved. The method which determine FP cellulose activity was improved. The simple way which produce alcohol from corn straw was established and the economy benefit analysis was done.
    The starting bacterium was a kind of Trichoderma koningii which was saved by our laboratory, the Trichoderma koningii was inoculated in the medium made of corn straw / wheat bran = 1 : 4 and foster 32h at 28
    ℃.The FP cellulose activity of starting bacterium was 13.40+1.58ug/min.mL. The enzyme liquid was made by the enzyme dissolved cell wall. The Trichoderma koningii was operated by the liquid. After 3 hours, the protoplast of Trichoderma koningii was formed. The mutagenesis of protoplast of Trichoderma koningii was done by UV and fourty furguses were gained. After fostering of five era and primary isolation, seven furguses were gained. After further isolation, two furguses were gained and were named ZHYl and ZHY2. ZHY1 was inoculated in the medium made of corn straw / wheat bran = 1:4 and foster 32h at 28
    ℃. The FP cellulose activity of ZHYl was 36.76+1.54ug/min.mL. ZHY2 was inoculated in the medium made of corn straw / wheat bran =1:4 and foster 32h at 28
    ℃. The FP cellulose activity of ZHY2 was 33.40+2.80Mg/min.mL. After mulriple compare and analysis of difference prominence.The FP cellulose activity of ZHYl and ZHY2 prominent difference than the starting bacterium.
    The component of primary isolation medium included (NH4)2SO42g, MgSO4 0.5g, K2HPO4 1g, NaCl 0.5g, cellulose powder 2g, Congo red 0.4g, agar 22g, water1000mL, nature pH(the cellulose powder was operated by 0. lmol/I hydrochloric acid. After 24 hours, the cellulose powder was washed by water to the pH equal to 7. The agar was washed by water.After 24 hours, the agar was dryed.). The effect of medium is obviouser than the medium which was reported by literature. The cellulose activity of furguses was simply estimated by the size of the red colonies and the time which the red colonies appear.
    During determining of cellulose activity, the way distilled enzyme liquid was in shaking bed 1 hours at 30
    ℃ and the revolution of shaking bed was 95 r/min. The distilling of the cellulase was more sufficient and the result of the cellulose activity was accurater by using this way.
    
    
    
    The way which made the Trichoderma koningii decompose the cellulose directly to produce alcohol was determined. This way is vary simple, and the way can produce alcohol from corn straw in laboratory.
    158g alcohol can be transformed by 1 kg corn straw and 4 kg wheat bran.
引文
[1] 高培基,曲音波,王祖农.纤维素酶解过程的分析和测定[J].生物工程学报1988,4(4):321-326.
    [2] Eda S, Ohnishi A, Kato K. Xylan isolated from the stalk of Nicotiana tabacum[J]. Agric Biol Chem, 1976, 40: 359-364.
    [3] 郭学阳.棉杆制备木糖的生产技术[J].河南化工.1990(8):17-28.
    [4] 杨斌.第六届全国生物化工论文集.化工出版社.1995.
    [5] 陆师义.侧耳纤维素酶的研究[J].中国食用菌.1988(2):13-16.
    [6] B. Gut'erres, A. P. Sinitsyn, O.F. Kastel'yanos. Enzymatic Saccharification of cellulose-based Materials by the cellulaseComplex of Penicillium verruculosum in Various Types of Stirred Reactors[J]. Applied biochemistry and microbiology, 1998, 34 (6):622-627.
    [7] Marie-Alice Rousselle, Phyllis S. Molecular Weight of cellulose: Effect of Treatment with a Total cellulase[J]. Textile Research Joumal, 1998, 68 (8): 606-610.
    [8] Fillingham IJ, Williamson G, Gilbert HJ. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equiacts synergistically with xylanase and is part of a multiprotein cellulose-bindingcellulase-hemicellulase compl-ex[J]. The Biochemical Journal, 1999, 343 (1): 215-224.
    [9] Andreaus. J, Azevedo. H. Effects of temperature on the cellulose binding ability of cellulase enzymes[J]. Journal of Molecular Catalysis, 1999, 517-518 (16): 233-239.
    [10] J. Andreaus, H. Azevedo, A. Cavaco-Paulo. Effects of temperature on the cellulose binding ability of cellulase enzymes[J]. Joumal of Molecular Catalysis, 1999, 7 (1-4): 233-239.
    [11] Shuichi MSTSUMURA, Hiroshi TSURUTA, Kazunobu TOSHIMA. One-pot synthesis of 1-octyl-β-D-Glucoside from cellulose and 1-octanolin combination ofcellulase and β-glucosidase[J].同本油化学会志,1999,48(1):15-19.
    [12] Chapon V., Morelli X., Brun E.. Alteration of a single tryptophan residue of the cellulose-binding domainblocks secretion of the Erwinia chrysanthemi Ce15 cellulase (ex-EGZ) via the type Ⅱ system[J]. Joumal of Molecular Biology, 2000, 303 (2):117-123.
    [13] Golias Helen, Dumsday Geoffrey J, Stanley Grant A. Characteristics of cellulase preparations affecting the simultaneoussaccharification and fermentation of
    
    cellulose toethanol[J]. Biotechnology Letters, 2000, 22 (7): 617-621.
    [14] Mitsuo Tanaka, Atsushi Fujimoto, Ryoji Mitsui. Efficient Continuous Productionof Cellobiose by Hydrolysis of Crystallinecellulose with cellulase[J].化学工学论文集,2000,26(3):413-417.
    [15] S,York-W; Hawkins,R. Preparation of oligomeric beta-glycosides from cellulose and hemicellulosicpolysaccharides via the glycosyl transferase activity of a trichoderma reeseicellulase[J]. Glycobiology, 2000, 10 (2): 193-201.
    [16] 吉海平,王风斌,陈金山.浅谈微生物在秸秆生物学转化中的应用[J].生物工程进展,1997,17(2):57.
    [17] Son SJ., Im SS, Lee YM. Transcrystalline morphology and mechanical properties in polypropylenecomposites containing cellulose treated with sodium hydroxide and cellulase[J]. Journal of MaterialsScience, 2000, 35 (22): 5767-5778.
    [18] Shen Yong,Shen Jinsong;, Sun Kai. Adsorption equation and Adsorption Parameter of cellulase to celluloseFibres in Biofinishing[J]. Journal of China Textile University, 2001, 18 (1): 21-26.
    [19] Shigeyuki Nakano, Ryuji Hirase, Kazuhiko Komurasaki. An Universal Stoichiometric Relationship between Weight Loss and GlucoseFormation in the Enzymatic Treatment of cellulose Fibers with cellulase from FlarnentousFungi[J].纤维学会志,2001,57(10):279.284.
    [20] Lee SS, Ha JK, Cheng KJ. Effects of LCFA on the gas production, cellulose digestion and cellulaseactivities by the rumen anaerobic fungus, Neocallimastix frontalis RE1 [J]. Asian-Australasian Journal of Animal Sciences, 2001, 14 (8): 1110-1117.
    [21] Rincon MT, McCrae SI, Kirby J. EndB, a multidomain family 44 cellulase from Ruminococcus flavefaciens17,binds to cellulose via a novel cellulose-binding module and to anotherR-flavefaciens protein viaa dockerin domain[J]. Applied and Environmental Microbiology, 2001, 67 (10): 4426-4431.
    [22] Yoshihiko Amano, Kouichi Nozaki, Takashi Araki. Reactivities of cellulase from fungi towards ribbon-type bacterial celluloseand band-shaped bacterial cellulose[J]. Cellulose, 2001, 8 (4): 267-274.
    [23] Andrew J. Bowling;, Yoshihiko Amano, Robert Lindstrom. Rotation of cellulose ribbons during degradation with fungal cellulase[J]. Cellulose, 2001, 8 (1): 91-97.
    [24] Shengde Zhou. Simultaneous saccharification and fermentation of amorphous cellulose toethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase[J]. Biotechnology Letters, 2001, 28 (18): 1455-1462.
    [25] Cao Y. , Tan HM. Effects of cellulase on the modification of cellulose[J]. Carbohydrate Research, 2002, 337: 1291-1296.
    
    
    [26] Lynd LR, Zhang YH. QuanTITative determination of cellulase concentration as distinct from cellconcentration in studies of microbial cellulose utilization: Analytical framework and methodologicalapproach[J]. Biotechnology and Bioengineering, 2002, 77 (4): 467-475.
    [27] Markus Linder, Jadwiga Winiecka-Krusnell, Ewert Linder. Use of Recombinant cellulose-Biding Domains of Trichoderma reesei cellulaseas a Selective Immunocytochemical Marker for cellulose in Protozoa[J]. Applied and Environmental Microbiology, 2002, 68 (5): 2503-2508.
    [28] Pereira JAD, Correia M J, de Oliveira NT. cellulase activity of a Lentinula edodes (Berk.) Pegl. strain grown in mediacontaining carboximetilcellulose or microcrystalline cellulose[J]. Brazilian archives of biology and technology, 2003, 46: 333-337.
    [29] Arai T;, Araki R,Tanaka A. Characterization of a cellulase containing a family 30 carbohydrate-bindingmodule (CBM) derived from Clostridium thermocellum CelJ..Importance of the CBM to cellulosehydrolysis[J]. Journal of Bacteriology, 2003, 185: 504-512.
    [30] Takahisa Kanda. Mechanism of cellulase Action on cellulose Structure[J]. Journal of Applied Glycoscience. 2003, 50: 77-81.
    [31] Zhang YH., Lynd LR.. Quantification of cell and cellulase mass concentrations during anaerobiccellulose fermentation: Development of an enzyme-linked immunosorbent assay-based method withapplication to Clostridium thermocellum batch cultures[J]. Analytical Chemistry, 2003, 75: 219-227.
    [32] Masanao Imai, Kohei Ikari,Isao Suzuki. High-performance hydrolysis of cellulose using mixed cellulase species andultrasonication pretreatment[J]. Biochemical Engineering Journal, 2004, 17: 79-83
    [33] Nilesh Amritkar, Madhusudan Kamat, Arvind Lali. Expanded bed affinity purification of bacterial α-amylase and cellulase oncomposite substrate analogue—cellulose matrices[J]. Process Biochemistry, 2004, 39: 565-570.
    [34] 徐福建,陈洪章.纤维素酶气相双动态固态发酵[J].环境科学,2003,23(3):53-58.
    [35] 李信计,林贞.侧孢霉利用玉米秸秆固体发酵产生木质纤维素酶的研究[J].核农学报,2000,14(2):99-103.
    [36] 舒远才,张运强,周金燕..纤维素酶的液体发酵[J].纤维素科学与技术,1994,2(3-4):56.
    [37] Ghose T K. Symposium on Enzymatic Hydrolysis of Celulose(eds Bailley, Metal) [J]. Finland: Sitra Aulanko, 1975: 111.
    [38] 徐勇,勇强,单谷.汽喷玉米秸秆纤维素酶水解的研究[J].林产化工通讯,1999,33(6):15-18.
    
    
    [39] 段金柱,曹淡君.玉米秸粉作碳源固体发酵生产纤维素酶的研究[J].饲料博览,2000,2:4-6.
    [40] Qian Xiang, Jun Seok Kim, Y.Y. Lee. A Comprehensive Kinetic Model for Dilute-Acid Hydrolysis of cellulose[J]. Applied Biochemistry and Biotechnology, 2003, 105-108: 337-352.
    [41] Q. Gan, S.J. Allen, G. Taylor. Kinetic dynamics in heterogeneous enzymatic Hydrolysis of cellulose: anoverview, an experimental study and mathematical modelling[J]. Process Biochemistry, 2003, 38: 1003-1018.
    [42] 谷海先,李汛.耐热性纤维素酶的研究及在酒精生产中的应用[J].酿酒,1998,6(总129):16.19.
    [43] 李洪刚,段堂荣.纤维素酶在酒精生产中的应用[J].酿酒科技,1996,3:44-45
    [44] 刘娅.农作物秸秆治理与综合利用[J].辽宁农业科学,2003,1:18-23.
    [45] 张海,晋坤贞.秸秆类农业废弃物的生物利用[J].农牧产品开发,1995,5:29-32.
    [46] 徐坚平,刘均松,孔维.利用秸秆类物质进行微生物共发酵生产单细胞蛋白[J].微生物学通报,1995,22(4):222-225.
    [47] 伍世文.天然纤维素类物质的糖化及转化为酒精的研究[J].西部粮油科技,2003,25(3):46-48.
    [48] 汪维云,朱金华,吴守一.纤维素科学及纤维素酶的研究进展[J].江苏理工大学学报,1998,19(3):20-28.
    [49] Lawford H G. Applications of wireless communications in airline environments[J]. Appl. Biochem. Biotechnol, 1993, 39-40: 667-851.
    [50] 谌斌,梁宗琦,刘爱英.丝状真菌原生质体融合中亲本标记及融合子检出[J].贵州农业科学,1999,4:60-64.
    [51] 孙剑秋,周东坡.微生物原生质体技术[J].生物学通报,2000,37(7):9—11.
    [52] 周东坡,平文祥著,微生物原生质体融合[J],哈尔滨:黑龙江省科学技术出版社,1990.
    [53] 周东坡,郭德栋.提高枯草杆菌原生质体再生律的进一步研究[J].微生物学杂志,1985,5(4):51-54.
    [54] 周东坡.原生质体融合选育赖氨酸高产菌种的研究[J].微生物学报,1991,31(4).287—292.
    [55] M. Gallmetzeretal. An optimized method for the isolation of protoplasts from Penicillium simplicissimum to produce sealed plasmamem brane vesicles[J]. Mycologia, 1999, 91(1): 206-212.
    [56] 孙剑秋,于寒颖,张鹏.树状多节孢原生质体的制备和再生[J].应用与环境生物学报,2001,7(4):375-381.
    [57] 曹军卫,高春东,刘志坚.产氨基酰化酶米曲霉高产菌株的选育[J].氨基酸
    
    和生物资源,1999,21(3):20-22.
    [58] 张伟,袁耀武,檀建新等 原生质体紫外诱变筛选还原双乙酰能力强的啤酒酵母[J],酿酒,2003,30(2):63-65.
    [59] 单连菊,张双玲.浅谈啤酒酵母的研究与发展[J].酿酒,1999,4:56-57.
    [60] 朱知难,吴军,长梗木霉ANU3-958菌株原生质体诱变选育[J],广州食品工业科技,1997,13(1):15—17.
    [61] Teather R M,Wood PJ.Use of Congo Red-Polysaccharide Interactions in Enumeration and Characterization of Cellulolytic Bacteria from the Bovine Rumen[J].Applied and Environmental Microbiology,1982,43(4):777-780.
    [62] Hendrick C W,Dolye J D,Hugley B.A New Solid Medium for Enumerating Cellulose-Utilizing Bacteria in Soil[J].Applied and Environmental Microbiology,1995,61(5):2016-2019.
    [63] 叶姜瑜.一种纤维分解菌鉴别培养基[J].微生物通报,1997,24(4):251-252
    [64] 陈敏.一种改进的纤维素分解菌鉴别培养基[J].杭州师范学院学报(自然科学版),2001,18(5):11-12.
    [65] Ghose T K. Determination ofcellulase activity[J]. Pure & Appl. Chem, 1987, 59 (2): 257-268.
    [66] Mandels M. Measurement of saccharifying cellulose[J]. Bioeng.symp, 1976, 6: 22-23
    [67] MandelsM. cellulase. Ann Rep Ferment Processes[J]. 1982, 5: 35-43.
    [68] 王建.利用分光光度法测定纤维素酶的Cx酶活性[J].河南农业科学,2000,10:31-32.
    [69] 中国科学院上海植物生理研究所纤维素酶组.两株高活力纤维素分解菌N2-78和EA3-867的获得及其特性的比较[J].微生物学报,1978,18(1):27-38.
    [70] 邓良伟.纤维素类物质生产燃料酒精研究进展[J].食品与发酵工业,1995,5:69-72.
    [71] 王倩,张伟,王颉,等.生物质生产酒精的研究进展[J].酿酒科技,2003,3:56-58.
    [72] 张继泉,王瑞明,孙玉英.利用木质纤维素生产燃料酒精的研究进展[J].酿酒科技,2003,1:39-42.
    [73] 孔雷,赵鸣镝,吴永红.滤纸糖-DNS比色法测定纤维素酶活力[J].印染,1999,25(1):36-38.
    [74] 食品分析[M].北京:中国轻工业出版社,1996.
    [75] 王丽丽,仪宏.α-淀粉酶产生菌的平板筛选法的研究与改进[J].河北科技大学学报,1998,2.
    [76] 张继泉,郭利美,王瑞明.玉米秸秆发酵生产燃料酒精工艺探讨[J].广东食品工业科技,2003,19(2):24-25.
    [77] 陈飞,廖银章,刘晓风.一株能分解纤维素的高温耐碱放线菌[J].应用与环
    
    境生物学报,2003,9:322-325.
    [78] 张宇昊,王颉,张伟.一种改进的纤维素分解菌鉴别培养基[J].纤维素科学与技术,2004,12(1):33-36.
    [79] 王晓芳,徐旭士.一株纤维素分解菌的分离与筛选[J].生物技术,2001,11(2):27-30.
    [80] 曾文青,刘蓉.纤维素酶系高产菌株的选育[J].四川省卫生管理干部学院学报,2000,19(1):4-6.
    [81] 李振红,陆贻通.高效纤维素降解菌的筛选[J].环境污染与防治,2003,25(3):133-135.
    [82] 崔宗均 黄志勇.一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J].环境科学,2002,23(3):36-39.
    [83] 史玉英,沈其荣,娄无忌.纤维素分解菌群的分离和筛选[J].南京农业大学学报,1996,19(3):59-62.
    [84] 中科院微生物所.常见与常用真菌[M].北京:科学出版社.
    [85] 齐义鹏.纤维素酶及其应用[M].成都:四川人民出版社.1980.
    [86] 郭杰炎.微生物酶[M].北京:科学出版社,1986.
    [87] 管斌,丁友昉,谢来苏.还原糖测定方法的规范[J].无锡轻工大学学报,1999(3).20-76
    [88] Zanch G, Skoog K, Hahn-Hagerdal B. Evaluation of enzymatic hydrolysis of phenol[J], pretreatedwheatnol, 1987, 9: 714-740.
    [89] Hinman N D, Shell D J, Bergeron P W. Perlimiary estimate of the cost of ethanol productionfor SSF technology[J]. Appl. Biochem. Biotechnol,1992, 34/35, 639-649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700