用于强化气固分离与传热的圆管旋流的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国能源结构以燃煤为主,燃煤锅炉及工业炉窑排放含尘烟气量大,随着环保要求的提高,高温含尘烟气处理需要采用高效的除尘净化设备,袋式除尘器以其高效的除尘性能成为钢铁、水泥、冶金、化工及垃圾焚烧等行业最主要的烟气净化设备。现有袋式除尘器在处理高温含尘烟气时滤袋易堵塞、烧穿。本文分析不仅是因为烟气温度过高或波动过大造成滤袋损坏,更主要是含尘烟气中的高温颗粒对滤袋造成的破坏。解决滤袋易损坏的问题,本文从整个除尘净化工艺角度出发,而不局限于袋式除尘器内气流组织优化和滤袋选用,提出配合袋式除尘器净化含尘烟气的预处理技术,以保护袋式除尘器稳定运行。
     含尘烟气预处理技术包括气固预分离及含尘烟气降温两个方面内容。现在工业应用中袋式除尘器常采用一级除尘,含尘烟气经风管均匀流直接输送进入袋式除尘器,多采用蛇形管等延长含尘烟气输送长度的方法通过风冷方法对烟气降温。本文提出通过改变管内输送含尘烟气的流场结构的方法把强化气固分离与传热相结合的理念。通过起旋器促使含尘烟气旋转运动,运动轨迹由轴向流变成螺旋流,延长含尘烟气的运动轨迹,有助于烟气的降温,烟气旋转运动引入较大的切向速度,加大对壁面的冲刷,减薄边界层厚度,强化了烟气通过管壁的传热,使烟气降温。同时旋流的离心力作用促使气固两相预分离去除粒径较大且温度较高的颗粒,保护滤袋,实现节能减排的目标。
     本文提出新型蜗向单进口及双进口圆管旋流起旋器,设计轴向旋流结构,并对起旋器的结构进行了初步优化。通过冷态圆管旋流试验,得出新型单进口及双进口蜗向起旋圆管旋流的流场及阻力特性,分析了三维流速分布的主要特点及对烟气预处理的强化特性,并分析了压力场分布特性。通过理论分析的方法,建立旋流流动流场分布模型及压力分布模型,采用数值模拟的方法,建立相应的物理模型,并采用雷诺应力模型(RSM), SIMPLEC耦合压力速度项,模拟新型蜗向起旋圆管旋流运动,模拟结果与试验及理论分析的变化规律较为吻合,表明数值模拟模型的有效性。
     在流场分析的基础上,本文理论分析了旋流流动中颗粒的运动特性,建立颗粒运动模型。采用边界层分离理论,确定了旋流气固分离的切割粒径,建立了气固分离的分级分离效率模型。通过数值模拟的方法,分析不同起旋方式的气固分离效率,模拟结果与理论分析基本一致。
     本文建立套管式换热试验模型,并通过光滑管的传热试验与经验数据的比较,验证了传热试验的有效性。在此基础上,研究了不同蜗向起旋圆管旋流的传热特性。根据试验结果得出Nu数拟合关系式,试验结果表明了双进口起旋方式比单进口起旋方式强化效果明显,增强25%左右。在对旋流传热试验的基础上,建立传热强化评价指标,并通过场协同理论探讨了旋流强化传热的机理及优化方法。在传热试验基础上,通过数值模拟的方法对不同起旋旋流强化的传热特性进行了分析。模拟结果与试验结果相比较基本一致。通过数值模拟,得出不同起旋圆管旋流的局部Nu数随轴向管长近似指数衰减,双进口起旋方式Nu数高于单进口起旋方式,设导流核后改变起始阶段旋流结构,局部Nu数增加。旋流越强,传热强化程度越高,且双进口起旋比单进口起旋的旋流衰减缓慢,设导流核后使初始切向速度较大,但相应衰减速度也较大,最终都趋向于充分发展湍流传热模式。
     本文分析了旋流中颗粒的受力运动,并采用分离变量法建立颗粒与气流的传热模型。一般高温烟气中尘粒的Bi≤0.1时,采用集总参数法简化颗粒降温模型,并初步分析颗粒降温与气流降温的动态平衡,引入时间常数σp,得出粒径越小的颗粒降温与气流降温达到动态平衡的时间越短,且与气流间的温差越小;反之粒径大的颗粒达到动态平衡时间越长,且与气流间的温差越大,这也为本文提出预处理烟气不仅需要降温而且要结合气固分离去除较大粒径颗粒提供理论依据。
     本文在试验研究、理论分析和数值模拟的基础上,针对马鞍山钢铁股份有限公司干熄焦炉用袋式除尘器运行存在的问题,根据本文提出的新的设计理念,应用新型蜗向起旋技术,对其进行配套改造,设计了烟气预处理系统,并对设计应用情况进行了归纳和总结以利于新技术的应用于推广。
     本文提出对烟气的预处理,可保护袋式除尘器稳定运行,保护滤袋。对新型蜗向起旋旋流强化气固分离与传热的特性进行了初步研究和分析,建立的分离效率模型还需通过试验分析进行进一步的验证,新技术与袋式除尘器的配合使用性能还需进一步试验验证。
Huge amounts of smoke dust that boilers and industrial furnaces generated have been released into the atmosphere. The main energy in China still depends on coal providing. With increase of requirements for environment protection standards on emissions is enacting. Now dust emission must not exceed 30mg/m3 in some sectors. The bag type dust remover has high efficiency for dust remover which applies to power, coal burning boiler, metallurgy and chemical engineering. The bag dust remover becomes the important decontaminating equipment in china. However, the bag dust is not very thorough in domestic such as bag chocking up or bag burned through. Filter bag's technology as the key technical of the bag type dust cleaning need to be further studied. It is pointed out that not only the high flue gas temperature or much volatility temperature fluctuant destroys the filter bag, but the particles of the high temperature is more importantly part of destroying the filter dust bag. The pretreatment of dusty gas is put forward.
     The pretreatment of dusty gas includes gas-solid separation and cooling. Now the dusty gas is conveyed straightly by duct and cooled by air extending transportation distance with snake-pipe. The change of straight flow to swirl flow is put forward. The tangential velocity of dusty gas is produced. The movement of dusty gas changes to spiral flow and the delivery distance of dusty gas increases. There is centrifugal force field for gas-solid separating. The movement has flushing function to wall surface to enhancing heat transfer in tangential direction.
     The new swirl generators of single helical inlet and double helical inlets are given. Swirl flow moves towards downstream. The devices mating bag filter are helpful to protect the bag and reduce the run cost。The operation mechanism and effect of the devices are carried out by using experimental, theoretical and simulated by using CFD method.
     Firstly, on the basis of reviewing the recent study in separation and heating transfer by swirl flow, new generating swirl devices by helices are presented which use the XCY-3.0's inlet configuration. Swirl flow generating models include single inlet by 180 degree helix without guide-core (Model SO) and with guide-core (Model S1), double inlets compositing of 90 and 270 degree helix without guide-core (Model DO) and with guide-core (Model D1).
     Secondly, the characteristics of swirl flow and pressure field are studied by theoretical analysis. Mathematical models of velocity profile, pressure drop and separation for four models are developed. According to the Newton motion law, the traces of particles in axial swirl are analyzed. The unsteady heat transfer between particles and gas is discussed. A model of particle's heat transfer was developed by using Lumped Para meter Method (LPM). It shows that the smaller particle will get to steady heating transfer between particles and gas more quickly and have smaller temperature difference. The heating enhancement of swirl flow is analyzed under the guidance of field coordination between velocity and heat flow fields.
     Thirdly, experiments of swirl flow by four kinds of swirl generators are carried on. It indicated the tangential velocity reaches a peak near the wall which divides the profile into central semi forced vortex and annular semi free vortex. Axial component differs from the developing or developed smooth pipe flow; flow is accelerated near the wall, despite being decelerated in the central region, and back flow appears in the core. Model S1 and D1 with guide-core can hold up more swirl intensity during axial initial sector, so better for gas-solid separation than SO and DO respectively. The flow resistance model with swirl generators is developed and the swirl flow intensity is described by swirl number S. The decaying swirl number decreases approximately in exponential with the axial distance. The experimental setup with a concentric tube heat exchanger has been demonstrated for studying the enhanced heat transfer performance of swirling flow. By comparing the smooth tube heating transfer test, it is proved that the experimental method is feasible. The relationship of Nusselt number, Reynolds number and swirl number is analyzed. The assessment index of enhancement efficiency and friction factor is used to evaluate heat transfer enhancement techniques. The results show that D1 model is better than other models for enhancing heat transfer.
     Fourth, numerical simulation is an effective approach of investigating swirl flow. The swirl flow field and temperature field were simulated by means of Reynolds Stress Model (RSM). The SIMPLEC algorithm is used to handle the pressure-velocity coupling. The flow fields of gas-solid separation are simulated with Discrete Phase Model (DPM). Comparing with the experimental results, it shows that the data determined by numerical simulation is reasonable. Results show that the enhancements in Nu number are higher in compare with smooth pipe flow based on generating swirl flow and increase with Re number.
     After all, based on the theoretical analysis, experimental research and numerical simulation, the pre-processing device working with bag type collector is devised to cooling and cleaning gas discharged by Mashan steel's dry coke quenching (DCQ) furnaces. It has shell-tube construction, gas by swirl generator flows through the tube side, and cooled fluid flows through shell side with counter flow type cooling. It is provided clearly to avoiding to chocking up and burning through the filter bag. The design method and energy-economic analysis is provided.
     In general, the new type swirl structure with helices designs for gas-solid separating while simultaneously enhancing heat transfer. The pretreatment technology protects the filter bag and makes protection of bag filter and stable operation. The separation efficiency models are established by researching and analyzing on enhancing gas-solid separation and heating transfer by pipe swirl flow. It need go on with further study about the applications of pretreatment technology and the performances with the cooperation of bag filter.
引文
[1]第一次全国污染源普查公报[M].国家统计局,2010.02.06.
    [2]全国环境统计公报(2008年)[EB].环境保护部,http://zls.mep.gov.cn/hjtj/qghjtjgb/ 200909/t20090928_161740.htm,2009,9.
    [3]娄可兵,沈恒根,杜柳柳.燃煤锅炉用高温滤料研究与应用[J].工业安全与环保,2007,33(4):16-19.
    [4]左其武,张殿印.锅炉除尘技术[M].北京:化学工业出版社,2010,4.
    [5]解振华.扎实做好资源节约和环境保护工作加快经济发展方式转变[C].全国发展改革系统资源节约和环境保护工作会议,2011,3.
    [6]袋式除尘器技术要求(GB/T 6719-2009)[S].北京:中国标准出版社,2009,8.
    [7]肖宝恒.袋式除尘器的发展及其在燃煤电厂的应用前景[J].电力环境保护,2001,17(3):44-47.
    [8]张殿印,王纯,俞非漉等.袋式除尘器[M].北京:冶金工业出版社,2008.3.
    [9]中国环境保护产业协会袋式除尘委员会.我国袋式除尘行业2010年发展综述[J].中国环保产业,2011,5:21-28.
    [10]李美庆,曾慕成,单志峰,高温滤料在工业烟气净化中的应用[J],冶金安全,1983.4:49-54.
    [11]嵇敬文,陈安琪.锅炉烟气袋式除尘器(第二版)[M].北京:中国电力出版社,2008,11.
    [12]夏兴祥.高温除尘技术综述[J].化工机械,2000.27(1):47-52.
    [13]桑亮,孙体吕,杨景玲等.袋式除尘器的发展及其在高温条件下的应用[J].安徽化工2006,(2):61-63.
    [14]中国环境保护产业协会袋式除尘委员会.我国袋式除尘行业2006年发展综述[J].中国环保产业,2007,10:25-29.
    [15]中国环境保护产业协会袋式除尘委员会.我国袋式除尘行业2007年发展综述[J].中国环保产业,2008,7:7-10.
    [16]中国环境保护产业协会袋式除尘委员会.我国袋式除尘行业2008年发展综述[J].中国环保产业,2009,5:4-11.
    [17]中国环境保护产业协会袋式除尘委员会.我国袋式除尘行业2009年发展综述[J].中国环保产业,2010,8:11-17.
    [18]Wedding J.B., Weigand M.A. and Carney T.A. A 10 cutpoint inlet for the dichotomous sampler [J]. Environmental Science and Technology,1982,16:602~606.
    [19]Lim K.S., Kwon S.B. and Lee K.W. Characteristics of the collection efficiency for a double inlet cyclone with clean air [J]. Journal of Aerosol Science,2003,34:1085-1095.
    [20]沈恒根,刁永发,党义荣等.多进口旋风分离器单体性能的实验研究[J].环境工程,1998,16(4):33~34.
    [21]赵兵涛.进口回转通道对旋风器性能影响的研究[D].东华大学,硕士学位论文,2002.
    [22]赵兵涛.轴对称旋转流气固分离理论与技术[D].东华大学,博士学位论文,2005.
    [23]Narazhnyy E.G., Sudarev A. Local heat transfer in air flowing in tubes with a turbulence promoter at the inlet [J]. Heat Transfer-Soviet Res.,1971,3:62-66.
    [24]Yowakim F.M., Kind R.J. Mean flow and turbulence measurements of annular swirling flows [J]. Fluids Eng.,1988,110:257-263.
    [25]Yajnik, K.S., Subbaiah and M.V. Experiments on swirling turbulent flows, part 1:similarity in swirling flows [J]. Fluid Mech.1973,60 (4):665-687.
    [26]Clayton, B.R., Morsi, Y.S.M. Determination of principal characteristics of turbulent swirling flow along annuli [J]. Int. J. Heat Fluid Flow,1984,5 (4):195-203.
    [27]Yilmaz M., Comakli O. & Yapici S. Enhancement of heat transfer by turbulent decaying swirl flow [J]. Energy Conversion & Measurement,1999,40:1365-1376.
    [28]Guo B., Langrish T.A.G, Fletcher, D.F. CFD simulation of precession in sudden pipe expansion flows with low inlet swirl [J]. Appl. Math. Model.,2002,26:1-15.
    [29]Gyllenram W., Nilsson H., Davidson L. Large eddy simulation of turbulent swirling flow through a sudden expansion [J].23rd IAHR Symposium, Yokohama, Oct.2006.
    [30]Mak H., Balabani S. Near field characteristics of swirling flow past a sudden expansion [J]. Chem. Eng. Sci.,2007,62:6726-6746.
    [31]Vanierscho M., Van den Bulck E. The influence of swirl on the reattachment length in an abrupt axisymmetric expansion [J]. Int. J. Heat Fluid Flow,2008,29:75-82.
    [32]吴慧英,程惠尔,帅仁俊等.进口轴向叶片旋流器强化管内换热的研究[J].中国电机工程学报,1999,19(4):46-49,17.
    [33]高翔,骆仲泱,周劲松等.衰减性旋流强化传热性能的研究[J].中国电机工程学报,2003,23(5):184-188.
    [34]Baker D.W., Sayre C.L. Decay of swirling turbulent flow of incompressible fluids in long pipes [J]. R. B. Dowdell, ed., Indus. Soc of America,1974:301-312.
    [35]Chiu C. L., Seman J. J. Head loss in spiral solid-liquid flow in pipes [J]. In Advances in Solid-Liquid Flow in Pipes and Its Applications,1 edn, Zandi I., ed., Pergamon Press Inc, Oxford,1971:227-236.
    [36]Martemianov S., Okulov V. L. On heat transfer enhancement in swirl pipe flows [J]. International Journal of Heat and Mass Transfer,2004,47:2379-2393.
    [37]Gupta A. K., Lilley D.G. and Syred N. Flow field modeling and diagnostics [M]. Tunbridge Wells, Kent: Abacus Press,1985.
    [38]Algifri A. H., Bhardwaj R. K., and Rao Y. V. N. Turbulence measurements in decaying swirl flow in a pipe [J]. Applied Scientific Research (The Hague),1988,45, (3):233-250.
    [39]Backshall R. G, Landis F. The boundary-layer velocity distribution in turbulent swirling pipe flow [J]. Journal of Basic Engineering,1969:728-733.
    [40]Kitoh O. Experimental study of turbulent swirling flow in a straight pipe [J]. Journal of Fluid Mechanics,1991,225:445-479.
    [41]Steenbergen W., Voskamp J. Rate of decay of swirl in turbulent pipe flow [J]. Flow Measurement and Instrumentation,1998,9(2):67-78.
    [42]Nishibori K., Koji K., Mitsukiyo M. and Takeshi M. Effect of inlet swirl on the turbulent flow in an axially rotating pipe [J]. Trans. JSME,1987.53:1150-1158.
    [43]Narezhnyi E. G, Sudarev B. V. Calculation of the temperature of flame tubes of gas turbine combustion chambers with three-tier swirlers [J]. Heat Transfer-Soviet Res.,1975,6:23-27.
    [44]Hay W., West P. D. Heat transfer in free swirling flow in a pipe [J]. Journal of Heat Transfer, Transactions ASME,1975,97(3):411-416.
    [45]Zaherzadeh N.H., Jagadish B. S. Heat transfer in decaying swirl flows [J]. International Journal of Heat and Mass Transfer.1975,8:941.
    [46]Algifri A. H., Bhardwaj R. K. Prediction of the heat transfer for decaying turbulent swirl flow in a tube[J]. Int.J.Heat Mass Transfer,1985,28(9):1637-1643.
    [47]Chang F., Dhir V. K. Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection [J]. International Journal of Heat and Fluid Flow,1995, 16(2):78-87.
    [48]Bali T. Modelling of heat transfer and fluid flow for decaying swirl flow in a circular pipe [J]. International Communications in Heat and Mass Transfer,1998,25(3):349-358.
    [49]Wolf J.R., Lavan Z and Fejer A.A. Measurement of the decay of swirl in turbulent flow [J]. AIAA,1969,7:971-973.
    [50]Murakami M, Osami Kitoh. An experimental study of swirling flow in pipes [J]. Bulletin of JSME,1976,128(19):118-126.
    [51]Senoo Yasutoshi, Nagata Tetuzou. Swirl flow in long pipes with different roughness [J]. Bulletin of JSME,1972,90(15):1514-1521.
    [52]Yu S. C. M. and Kitoh O. General formulation for the decay of swirling motion along a straight pipe [J]. International Communications in Heat and Mass Transfer,1994,21 (5): 719-728.
    [53]Kreith F., Sonju O. K. The decay of a turbulent swirl in a pipe [J]. Journal of Fluid Mechanics,1965,22:257-271.
    [54]吴慧英,程惠尔,周强泰.管内自由衰减旋流阻力与换热的衰减特性[J].上海交通大学学报,1999,33(3):323-325,330.
    [55]李会雄,周芳德,陈学俊.管内湍流旋流的数值计算[J].应用力学学报,1994,11(2):19-24.
    [56]杨泽亮,张少方,杨承.管内切向三维紊流旋流流动和传热数值研究[J].大连理工大学学报,2001,41(z1):72-75.
    [57]郭永辉,刘朝.圆管螺旋流的流动与传热数值模拟[J].工业加热,2007,36(3):27-31.
    [58]陈明绍,吴光兴,张大中等.除尘技术的基本理论与应用[M].北京:中国建筑出版社,1981:171-172.
    [59]付双成,孙国刚,高翠芝.导叶式直流旋风分离器的研究与应用现状[J].过滤与分离,2008,18(2):11-14.
    [60]王纯,张殿印,除尘设备手册[M].北京:化学工业出版社,2009,9.
    [61]时铭显.关于导叶式旋风子分离性能与压降计算的初步探讨[J].华东石油学院学报,1980,3:55-69.
    [62]罗文斌.立管式导流旋流叶轮净化装置的实验研究及数值分析[D].北京建筑工程学院,2005.
    [63]尚珍.关于旋风除尘器减阻措施的实验研究[D].辽宁工程技术大学,2003.
    [64]顾锦鸿,张志群,陈旭东等.旋转直流内循环式旋风分离器流场测定与分析[J].粉体技术,1997,3(3):8-12.
    [65]黄震.直流式旋风分离器内部流场的实验研究[J].华东工业大学学报,1997,113(19):26-30.
    [66]冷碧霞,吴学安.新型扩散式气固分离器PDA的实验研究[J].动力工程,2003,23(2).
    [67]徐方成,洪华生.导叶直流式旋流管分离性能的研究[J].厦门大学学报,2002,41(2):222-224.
    [68]宗润宽,田天,胡金榜等.直筒形导流式三相旋流器分离效率的研究[J].化工机械, 26(2):311-315.
    [69]邓兴勇,凌志光,周炳海.直流式旋风除尘器流动特性及性能的试验研究[J].工程热物理学报,1999,31(5):589-592.
    [70]邓兴勇,凌志光,姜小敏.固体粒子在直流式除尘器中湍流脉动的数值模拟[J].工程热物理学报,2000,21(5):279-283.
    [71]林玮.无上排气芯管旋风分离器的性能预测[J].热能动力工程,1997,12(6):462-465.
    [72]金小汉.多管直流式旋风除尘器的研究与应用[D].中国科学院上海冶金研究所,2003.
    [73]岑可法,倪明江,骆仲泱.方形下排气热交换分离器.ZL:94223276.3
    [74]裘烈钧,程林.利用自由旋流对管道入口段的强化换热分析[J].山东能源,1989,1:6-10.
    [75]程林,裘烈钧.湍流自由旋流在光滑管入口段的强化传热[J].山东工业大学学报,1990,20(3):18-24.
    [76]张先棹,高仲龙,吴懋林等.高效低阻管状旋流换热器[J].冶金能源,1992,11(4):4145.
    [77]蒋爱华.一种旋流除尘式热管空气预热器[J].长沙电力学院学报,1996,11(2):155-157.
    [78]郝晓文.烟气脱硫循环流化床旋直复合流化及均匀性研究[D].山东大学,2007:11-12.
    [79]吴慧英,程惠尔,帅仁俊等.进口轴向叶片旋流器强化管内换热的研究[J].中国电机工程学报,1999,19(4):46-49.
    [80]吴慧英,程惠尔,童均耕等.进口轴向叶片旋流器管内阻力和换热的研究[J].热能动力工程,1999,14(1):14-16.
    [81]刘伟,明廷臻.叶片旋流管内核心流强化传热分析与结构优化[J].中国电机工程学报,1999,29(5):72-77.
    [82]宋景郊.高温除尘技术发展和耐高温滤材的市场前景[J].化工装备技术,2002,23(5):19-21.
    [83]丁华.直流旋风分离器的剖析与进展[J].南化科技,1990,3:1-5.
    [84]Zaherzade N.H., Jagadish B.S. Heat transfer in decaying swirl flow [J]. Heat Mass Transfer, 1975,18:941-944.
    [85]Hay W. and West P. D. Heat transfer in free swirling flow in a pipe [J]. Journal of Heat Transfer, Transactions ASME,1975,97(3):411-416.
    [86]Blum F.A., Oliver L.R. Heat transfer in decaying vortex system [J]. ASME,1975,66:62.
    [87]Chang F, Dhir V.K. Turbulent flow field in tangenttislly injected swirl flows in tubes [J]. Intl. J. Heat and Fluid Flow,1994,15 (5).
    [88]Chang F, Dhir V.K. Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection [J]. Heat and Fluid Flow,1995,16(2):78-87.
    [89]Yilmaz M., Yapici S. and Comakli O. et al. Energy correlation of heat transfer and enhancement efficiency in decaying swirl flow [J]. Heat and Mass Transfer,2002,38: 351-358.
    [90]Martemianov S. and Okulov V. L. On heat transfer enhancement in swirl pipe flows [J]. International Journal of Heat and Mass Transfer,2004,47(10-11):2379-2393.
    [91]朱艳,肖美添,刘华信.水平管流和旋流流动特性的复合试验研究[J].实验室研究与探索,1999,6:80-83.
    [92]吴国江,王峻哗,郑文德等.旋风筒内旋转气流的测量及分析[J].上海交通大学学报,1998,32(7):67-69.
    [93]顾锦鸿,张志群,陈旭东等.旋转直流内循环式旋风分离器流场测定与分析[J].粉体技术,1997,3(3):8-12.
    [94]陈涛,罗纲,周力行.轴向切向进风强旋气离流动的PDPA研究[J].燃烧科学与技术,1997,3(4):340-343.
    [95]张娟娟.高效旋风除尘器压力损失的研究[D].西安冶金建筑学院,1991,4.
    [96]许宏庆.旋风分离器的实验研究(下)[J].实验技术与管理,1984,2:35.
    [97]王连泽.自动检测系统的研制及旋风器径向速度和减阻杆的实验研究[D].西安冶金建筑学院,1989,5.
    [98]严丽.旋风除尘器压力损失的研究[D].西安冶金建筑学院,1989,12.
    [99]沈恒根.旋风分离器流场五孔探针测试研究[J].通风除尘,1995,3:14-17.
    [100]Webb R L. Principle of Enhanced Heat Transfer [M]. New York: John Wiley and Sons, 1994.
    [101]郑洽馀,鲁仲琪.流体力学[M].北京:机械工业出版社(1979).
    [102]庞学诗.水流旋流器工艺计算[M].北京:中国石化出版社,1997.
    [103]Barth W. Design and layout of the cyclone separator on the basis of new investigations [M]. Brennst Waerme Kraft,1956,8:1-9.
    [104]庄礼贤,尹协远,马晖扬.流体力学(第二版)[M].合肥:中国科技大学出版社,2009,7.
    [105]Alexander RMck. Fundamentals of cyclone design and operation [J]. Proceedings Aus. I. M. M.,1949.
    [106]赵兵涛,沈恒根,张吉光.旋风器进口结构的优化及其性能的试验研究[J].化工机械,2003,30(4):195-197.
    [107]Stairmad CJ. Pressure drop in cyclone separators [J]. Engineer October issue,1949: 609-618.
    [108]Iozia DL and Leith D. Effecct of cyclone dimensions on gas flow pattern and collection efficiency [J]. Aerosol Sci. and Technol.1989,10:491-500.
    [109]霍夫曼A.C.,斯坦因L.E.旋风分离器——原理、设计和工程应用[M].北京:化学工业出版社,2004,9.
    [110]Rocklage-Marliani G., Schmidts M., and Ram V.I.V. Three-dimensional Laser-Doppler Velocimeter Measurements in Swirling Turbulent Pipe Flow [J]. Flow Turbulence and Combustion,2003,70:43-67.
    [111]沈一平.轴向叶片旋流器强化传热研究[D].南京工学院,1988.
    [112]Parchen R.R., Steenbergen W. An experimental and numerical study of turbulent swirling pipe flows [J]. Journal of Fluids Engineering,1998,120:54-61.
    [113]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [114]李进良,李承曦,胡仁喜.Fluent 6.3流场分析[M].北京,化学工业出版社,2010,6.
    [115]朱红钧,林元华,谢龙汉.Fluent 12流体分析及工程仿真[M].北京,清华大学出版社,2011,1.
    [116]王福军.计算流体动力学分析[M].北京,清华大学出版社,2004,9.
    [117]Patanker S.V.传热与流体流动的数值计算[M].张政译,北京:科学出版社,1984.
    [118]Vandoormaal J. P., Raithby G D. Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows [J]. Numer. Heat Transfer,1984,7:147-163.
    [119]Issa R.I. Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting [J]. Comput. Phys.,1986,62:40-65. 0] Fluent Inc. Fluent user's guide [M]. Fluent Inc.,2006.
    [121]Anderson D.A., Tannehill J.C., Pletcher R.H. Computational fluid mechanics and heat transfer[M], Washington DC:Hemisphere,1984:199-201.
    [122]Chen C J., Jaw S Y. Fundamentals of turbulence modeling [M]. Washington DC:Taylor & Francis,1998.
    [123]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [124]李万平.计算流体力学[M].华中科技大学出版社,2004,10.
    [125]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [126]Lien F. S., Leschziner M. A. Assessment of Turbulent Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure [J]. Computers and Fluids,1994,23(8):983-1004.
    [127]Gibson M. M., Launder B. E. Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer [J]. Fluid Mech.,1978,86:491-511.
    [128]Launder B.E. and Spalding D.B. The numerical computation of turbulent flows [J]. Computer Methods in Applied Mechanics and Engineering,1974,3:269-289.
    [129]赵兵涛,沈恒根.单双进口旋风器阻力特性的试验研究[J].东华大学学报(自然科学版),2002,28(6):111-113.
    [130]Rasin P., Rammler E., Intelmann. Grundlagen and Grenzen der Zyklonentstaubung [M]. Z. Vwe. Dtsch. Ing,1932,76(16):433-438.
    [131]Lapple C. E. Gravity and Centrifugal Separation [J]. Industrial Hygiene Quaterly,1950, 11(1):40-48.
    [132]Rietema K. Het mechanisme van de afscheiding van fijnverdeelde stiffen in cyclonen [M]. German:Zeit. Ver. Deutscher Ing.1959,39:59-65.
    [133]Zenz FA. Cyclone design [M]. In: Wen-Ching Yang (Ed) Flundization solids handling and processing industrial applications. Noyes Publ., New Jersey,1999.
    [134]Stairmand C.J. The Design and Performance of Cyclone Separators [J]. Trans. Instn Chem. Engrs.,1951,29:356-383.
    [135]Muschelknautz E. Aerocynamische Beiwerte des zyklonabscheiders aufgrund neuer und verbesserter Messungen [J]. Chemie. Ing. Techn.1970,42(5):247-255.
    [136]向晓东.计算旋风器分离效率的一种新方法[J].通风除尘,1996,9(2):14.
    [137]张吉光.高效旋风除尘器分级效率理论计算的研究[D].西安冶金建筑学院,1988,12.
    [138]张从智,叶龙,沈恒根等.高效旋风分离器分级效率理论计算的新方法[J].通风除尘,1996,15(1):14-19.
    [139]沈恒根,刁永发,许晋源.平衡尘粒模型用于旋风除尘效率的计算[J].环境工程,1998,16(6):29-31.
    [140]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
    [141]Carnahan N. F. and Starling K. E. Equations of State for Non-Attracting Rigid Spheres [J]. Chem. Phys.,196951:635-636,1969.
    [142]Abanades S., Flament G, Gauthier D. Modeling of heavy metal vaporization from a mineral matrix [J]. Journal of hazarodous materials,2001,88:75-94.
    [143]Ho T.C., Lee H.T. Shiao C.C., et al. Metal behavior during fluidized bed thermal treatment of soil [J]. Waste Management,1995,15(5/6):325-334.
    [144]Clift R., Grace J.R. and M.E., Bubbles, Drops and Particles [J]. Academic Press Inc., London,1978.
    [145]Ranz W. and Marshall R. Evaporation from drops. Parts I [J]. Chem. Eng. Prog.1952, 48:141-146.
    [146]孔火良.流化床气化炉内煤颗粒的升温过程及影响[J].燃料与化工,2009,40(2):15-18.
    [147]章熙民,任泽霈,梅飞鸣.传热学(第四版)[M].北京:中国建筑工业出版社,2001,12.
    [148]董承康,陶正文,王新等.扭转带强化传热实验研究和应用评价[J].工程热物理学报,2002,23(Z):77-80.
    [149]陈礼,向东.旋流器与旗形插入件的联合强化传热[J].重庆大学学报,1996,19(1):64-67.
    [150]Morsi S. A. and Alexander A. J. An investigation of particle trajectories in two-phase flow fystems [J]. Fluid Mech.,1949,55(2):193-208.
    [151]Bergles A.E. Advanced enhancement-third generation heat transfer technology or "the final frontier" [J]. Trans. IChemE.,2001,79(A):437-444.
    [152]过增元.换热器中的场协调原则及其应用[J].机械工程学报,2003,39(12):1-9.
    [153]李志信,过增元.对流传热优化的场协同理论[M].北京,科学出版社,2010,1.
    [154]法正皓,沈恒根,晏维华等.煤焦化厂干熄焦环境除尘系统用袋式除尘器改造[J].建筑热能通风空调,2010,(29):100-103.
    [155]胡学毅,薄以匀.焦炉炼焦除尘[M].北京,化学工业出版社,2010,5.
    [156]潘立慧,魏松波.干熄焦技术[M].北京,冶金工业出版社,2005,1.
    [157]凌志军,陈燎原,李欢峰.基于VB和Matlab的五孔探针校正曲线的拟合及数据处理[J].风机技术,2008,1:61-62,80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700