GK大鼠(改良)袖状胃切除术模型的建立及其降糖作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:用GK大鼠建立袖状胃切除术手术模型,借助此模型来探讨袖状胃切除术(SG)对血糖的控制效果。方法:23只GK大鼠随机分为袖状胃切除组(SG)、假手术组(sham-SG)和饮食配对组(PF)。体重、进食量、空腹血糖、口服葡萄糖耐量试验(OGTT)、胰岛素耐量试验(ITT)和空腹胰岛素浓度在特定的时间内被检测。结果:SG手术模型的成功率为100%。自术后第4周起,SG和PF组与sham-SG组间的体重增量有着明显的统计学意义(P<0.01)。SG组空腹血糖水平较sham-SG和PF组明显改善。SG组较PF组和sham-SG组明显改善对葡萄糖耐量的水平,手术后第2周葡萄糖耐量曲线下面积(AUC)较术前减少约28.1%(P<0.01),较饮食配对组减少约21%(P<0.01)。SG组大鼠术后胰岛素耐量和胰岛素抵抗指数(HOMA-IR)较sham-SG和PF组明显改善。结论:SG能够直接控制2型糖尿病而不是继发于体重减轻的效果。SG是一种相对稳定的降糖手术模型。
     目的:探讨袖状胃切除术的降糖作用及其机制。方法:随机将GK大鼠分为袖状胃切除(SG)组、假手术(sham-SG)组、饮食配对(PF)组和空白对照(Control)组。动态观察手术前和手术后24周中各组大鼠体重、空腹血糖、口服葡萄糖耐量试验(OGTT)、胰岛素耐量试验(ITT)、胰岛素、Ghrelin及GLP-1浓度的变化。结果:自术后第4周起,SG和PF组与sham-SG和Control组之间的体重增量有明显统计学意义(P<0.01)。术后SG组空腹血糖浓度较其它3组明显降低(P<0.05),SG组术后第2周OGTT曲线下面积(AUC)较其术前减少约28.1%(P<0.01),相对于其它3组有显著性的差异(P<0.05)。术后第6周的ITT显示SG组胰岛素敏感性较sham-SG组明显改善,血糖水平变化明显降低。实验期间,与sham-SG组相比,SG组胰岛素浓度无明显变化(P>0.05), Ghrelin浓度明显下降(P<0.01), GLP-1浓度上升(P<0.01)。结论:SG降糖效果确切,能够独立于体重的变化而直接有效地降低血糖。术后Ghrelin浓度下降、GLP-1浓度升高可能是SG降糖的主要机制。
     目的:建立胃袖状切除附加改良空回肠旁路的GK大鼠模型并对其分析。方法:将27只GK大鼠随机分为改良胃袖状切术(MSG)组、假手术(sham-MSG)组、饮食配对组(PF)组和空白对照(Controls)组。动态观察手术前和手术后16周体重、空腹血糖、口服葡萄糖耐量试验(OGTT)、胰岛素浓度、胰岛素抵抗指数(HOMA-IR)及其体内血脂水平的变化。结果:从手术后第4周起MSG与sham-MSG和PF组的体重增量有明显统计学差异(P<0.01)。MSG组空腹血糖浓度较其它3组明显降低。术后第2周MSG组的OGTT曲线下面积(AUC)较术前减少约38.9%(P<0.01),而在sham-MSG和PF组却无以上明显变化。实验期间,MSG组胰岛素敏感性及其分泌量明显改善,而在sham-MSG组却无以上明显变化。与PF组和sham-MSG组相比,MSG组在术后的血脂浓度得到明显改善。这些结果显示后肠在血糖调节中可能起到了重要的作用。结论:MSG独立于体重和进食量的变化直接控制GK大鼠体内血糖水平,为2型糖尿病治疗机制的研究提供了一种稳定、持久的降糖手术模型。
     目的:研究改良袖状胃切除术的降糖作用,并对其降糖机制进行初步探讨。
     方法:54只GK大鼠和6只Wistar大鼠随机分为改良袖状胃切除(modified sleeve gastrectomy, MSG)组,延迟-改良袖状胃切除(delayed-modified sleeve gastrectomy,MSG)组,袖状胃切除(sleeve gastrectomy, SG)组,对应MSG组的假手术(sham-MSG)组,对应SG组的假手术(sham-SG)组,药物治疗(罗格列酮,rosiglitazone, RSG)组,限制饮食(food restriction, FR)组;空白对照(Controls)组;Wistar大鼠构建为(Wistar MSG, WMSG)组。动态观察手术前后16周中各组大鼠对应的检测项目:体重、空腹血糖、口服葡萄糖耐量试验(OGTT)、胰岛素耐量试验(ITT);胰岛素、Ghrelin、GLP-1和GIP浓度的变化。在术后第16周,组织中insulin、Ghrelin、GLP-1和GIP(胰腺、末端回肠、十二指肠和下丘脑)对应基因表达的变化水平及其手术后胰腺和末端回肠等组织的形态学变化。
     结果:手术后,MSG组对葡萄糖耐量较其它各组的GK大鼠明显改善。术后第2周,MSG组行OGTT后的曲线下面积较术前减少38.9%(P<0.001),较SG减少23.9%(P=0.007),而sham-MSG/SG、Controls和FR组都没有以上的变化发生。MSG组术后2周对葡萄糖耐量的改善程度较该组术前(SG术后8周)明显。MSG组行ITT后血糖水平变化较RSG改善明显。术后,MSG组空腹血浆Ghrelin水平较假手术组明显改善(P<0.001),MSG组进食葡萄糖后血浆GLP-1水平较SG和假手术组明显升高(P<0.001)。术后MSG组胰岛素水平较SG和假手术组明显改善(P<0.05)。术后16周,MSG组织中的胰岛素和GLP-1基因的表达水平明显上升,并且MSG组胰岛形态明显改善,阳性B细胞量和胰岛内成熟腺泡的电子密度都明显增加,胰岛细胞水肿现象明显缓解。这些结果显示后肠在血糖调节中起到了重要的作用。
     结论:MSG是一种相对稳定的、独立与体重和进食量的变化外直接改善血糖并改善胰岛素敏感性的一种手术方式;MSG进一步证实了2型糖尿病的病因可能与体内多种激素分泌的失衡有关,重新调节体内胰岛素内分泌轴的平衡可能是治疗糖尿病的有效方法。
PartⅠEstablishment of sleeve gastrectomy in Goto-Kakizaki rats
     Objective To establish sleeve gastrectomy (SG) model in the nonobese type 2 diabetic model-Goto Kakizaki (GK) rats, and to investigate that SG effects on blood glucose control.
     Methods Twenty three GK rats were randomly divided into the sleeve gastrectomy (SG), sham-sleeve gastrectomy (sham-SG) and pair food (PF) groups. Body weight, food intake, fasting glecmia, oral glucose tolerance test (OGTT), insulin tolerance test (ITT) and fasting plasma insulin concentration were measured in the special time of throughout the study.
     Results The succeeding rate of SG model is 100%. There were significant difference changes of body weight gain after the 4th operation (P< 0.01), but the fasting glycemia of SG rats was significantly improvance than PF and sham-SG groups. SG strikingly improved glucose tolerance, two weeks after surgery, the area under the blood glucose concentration curve (AUC) of SG decreased by about 28.1% compared to pre operation (P< 0.01), the AUC of SG reduced about 21% compared with PF (P< 0.01). Insulin tolerance test (ITT) and insulin resistance index (IRI) of SG rats were more significant improvement than sham-SG and PF animals.
     Conclusions SG is a relatively stable hypoglycemic surgical model and SG can directly controls type 2 diabetes and not secondarily to weight loss.
     PartⅡResearch hypoglycemic effect and mechanism of sleeve gastrectomy
     Objective Investigate hypoglycemic effect and its mechanism of sleeve gastrectomy (SG).
     Methods 30 GK rats were randomly divided into sleeve gastrectomy (SG), sham-sleeve gastrectomy (sham-SG), pair-fed (PF) and controls (Controls). Before and after surgery, we dynamically observed on changes of weight, fasting glucose, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), fasting plasma insulin, fasting plasma ghrelin and plasma GLP-1 in 24 weeks.
     Results From the 4th week of post-operation, the weight gain changes of SG and PF had significantly decreased compared with sham-SG and Controls group (P< 0.01). From the 2nd week post-operation, Fasting glucose concentration of SG were lower than sham-SG, PF and Controls group (P< 0.05), and the OGTT of SG rats was better improved than pre-operation and the other 3 groups. Two weeks after operation, SG was better improved glucose tolerance than pre-operation, the area under the blood glucose concentration curve (AUC) decreased by about 28.1%(P< 0.01), these effects were not seen in the sham-SG and PF animals despite similar change of weight changes and food intake. The 6th week after surgery, the results of ITT shows that insulin sensitivity of SG was obviously improvement and significantly lowered blood glucose levels compared with sham-SG group. Throughout the experiment period, we compared the hormone changes of SG and sham-SG animals, the results showed that there had no clear changes of insulin concentration (P> 0.05). Compared to sham-SG, SG significantly decreased the concentration of ghrelin (P< 0.01) and slightly raised the concentration of GLP-1 (P <0.01).
     Conclusions The hypoglycemic effects of SG are definite. Post-operation, SG can directly control blood glucose and not secondarily to weight loss and the decreased Ghrelin and slightly raised GLP-1 may be the major mechanism of hypoglycemic by SG.
     PartⅢEstablishment of modified sleeve gastrectomy in Goto-Kakizaki rats
     Objective Creation and analysis of the model of modified sleeve gastrectomy by non-obese diabetic Goto-kakizaki (GK) rats.
     Methods 27 GK rats were randomly divided into MSG, sham-MSG, pair-fed (PF) and controls (Controls) group. Before and after operation, the changes of weight, food intake, fasting glucose, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), fasting plasma Insulin concentration, HOMA-IR and blood lipids changes were dynamically observed in 16 weeks.
     Results From the 4th week of post-operation, the weight gain changes of MSG had significantly decreased compared with sham-MSG and PF group (P< 0.01). Fasting glucose concentration of MSG were lower than sham-MSG, PF and Controls group, and the OGTT of MSG rats was better improved than pre-operation and the other 3 groups. Two weeks after operation, compared to pre-operation, MSG was obviously improved glucose tolerance, the area under the blood glucose concentration curve (AUC) decreased by about 38.9%(P< 0.01), these effects were not seen in the sham-MSG and PF animals despite similar weight changes and food intake. In this experiment, the insulin sensitivity and secretion of MSG were obviously improvement; these effects were not seen in the sham-MSG animals. Compared to PF and sham-MSG, the blood lipids concentration levels of MSG were significantly improvement. These results show that hindgut maybe plays a key role in the hypoglycemic effect.
     Conclusions MSG provides a stable, long-lasting hypoglycemic surgery model to research the mechanism of treating type 2 diabetes and is directly and effectively linked to improve the metabolism of blood glucose and blood lipids in GK rats, independently of weight loss and caloric intake.
     PartⅣResearch hypoglycemic effect and mechanism of modified sleeve gastrectomy
     Objective To study the hypoglycemic effect and its mechanism of modified sleeve gastrectomy (MSG).
     Methods 54 GK rats and 6 Wistar rats were randomly divided into modified sleeve gastrectomy (MSG), delayed-modified sleeve gastrectomy (D-MSG), sleeve gastrectomy (SG), sham-modified sleeve gastrectomy (sham-MSG), sham-sleeve gastrectomy (sham-SG), rosiglitazone (RSG), food restriction (FR), controls (Controls) and Wistar MSG (WMSG). Before and after surgery, each group corresponding changes were dynamically observed in 16 weeks:weight, fasting blood glucose, oral glucose tolerance (OGTT), insulin tolerance test (ITT), plasma fasting insulin, Ghrelin, GIP and plasma GLP-1. At 16th week after surgery, the gene expression of Ghrelin, GLP-1, GIP and insulin were measured in the tissues (pancreatic islets, distal ileum, duodenum and hypothalamus), and the morphological characteristics of pancreatic islets and distal ileum were investigated.
     Results After operation, MSG had significantly improved glucose tolerance compared with the other groups. At the 2nd week after surgery, MSG was better improved glucose tolerance than pre-operation, the area under the blood glucose concentration curve (AUC) decreased by about 38.9%(P< 0.001), the AUC of MSG reduced about 23.9% compare with SG (P= 0.007). These effects were not seen in the sham-MSG/SG and FR animals despite similar change of weight changes and less food intake. At 2nd week post-operation, D-MSG had obviously improvement compared with the pre-operation (at the 8 weeks after SG). At the 4th week after surgery, the ITT of MSG was obviously improved compared with RSG. After surgery, MSG had significantly decreased Ghrelin level (P< 0.001), increased GLP-1 level (P< 0.001) and significantly enhanced gene expression of GLP-1 and insulin gene. Immunohistochemistry examination revealed distinctly improved expression of positiveβ-cell and electron microscopy presented a remarkable increasing numbers of secretary granules in pancreatic islets of MSG, the cell edema were clear relieved. While SG and sham surgery groups had no obvious changes which were mentioned above. These results suggesting that hindgut played a key role in the hypoglycemic effect.
     Conclusion MSG is directly linked to the reduction in glucose levels and improvement in insulin sensitivity in GK rats, independently of weight loss and caloric intake. MSG further confirmed that the etiology of type 2 diabetes may be related to gastrointestinal hormones imbalance, re-adjust the balance of insulin endocrine axis may be an effective way to treat diabetes.
引文
1. Pruessner JC, Kirschbaum C, Meinlschmid G, et al. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology,2003; 28(7):916-931.
    2. Kang ES, Yun YS, Park SW, et al. Limitation of the validity of the homeostasis model assessment as an index of insulin resistance in Korea. Metabolism.2005; 54(2):206-211.
    3. King H, Aubert R, Herman W. Global burden of diabetes,1995-2025:Prevalence, numerical estimates and projections. Diabetes Care,1998; 21 (9):1414-1431.
    4. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature,2001; 414(6865):782-787.
    5. Kopelman PG. Obesity as a medical problem. Nature,2000; 404(6778):635-643.
    6. Brolin RE. Update:NIH consensus conference. Gastrointestinal surgery for severe obesity. Nutrition,1996; 12(6):403-404.
    7. Williamson DF, Thompson TJ, Thun M, et al. Intentional weight loss and mortality among overweight individuals with diabetes. Diabetes Care.2000; 23(10):1499-1504.
    8. Pinkney JH, Sjostrom CD, Gale EA. Should surgeons treat diabetes in severely obese people? Lancet,2001; 357(9265):1357-1359.
    9. Hickey MS, Pories WJ, MacDonald KG, et al. A new paradigm for type 2 diabetes mellitus:could it be a disease of the foregut? Ann Surg,1998; 227(5):637-644.
    10. Ren CJ, Patterson E, Gagner M. Early results of laparoscopic biliopancreatic diversion with duodenal switch:a case series of 40 consecutive patients. Obes Surg,2000; 10(6):514-524.
    11. Moon Han S, Kim WW, Oh JH. Results of laparoscopic sleeve gastrectomy (LSG) at 1 year in morbidly obese Korean patients. Obes Surg,2005; 15(10):1469-75.
    12. de Bona Castelan J, Bettiol J, d'Acampora AJ, et al. Sleeve gastrectomy model in Wistar rats. Obes Surg,2007; 17(7):957-961.
    13. James PT, Rigby N, Leach R. The obesity epidemic, metabolic syndrome and future preventionstr ategies. Eur J Cardiovasc Prev Rehabil,2004; 11(1):3-8.
    14. Vetter ML, Cardillo S, Richael MR, et al. Narrative Review:Effect of Bariatric Surgery on Type 2 Diabetes Mellitus. Ann Intern Med,2009; 150(2):94-103.
    15. Rizzello M, Abbatini F, Casella G, et al. Early Postoperative Insulin-Resistance Changes after Sleeve Gastrectomy. Obes Surg,2010; 20(1):50-55.
    1. Gumbs AA, Gagner M, Dakin G, et al. Sleeve Gastrectomy for Morbid Obesity. Obes Surg 2007; 17(7):962-969.
    2. Sammour T, Hill AG, Singh P, et al. Laparoscopic sleeve gastrectomy as a single-stage bariatric procedure. Obes Surg.2010,20(3):271-275.
    3. Vidal J, Ibarzabal A, Romero F, et al. Type 2 Diabetes Mellitus and the Metabolic Syndrome Following Sleeve Gastrectomy in Severely Obese Subjects. Obes Surg,2008; 18(9):1077-1082.
    4. Lopez PP, Nicholson SE, Burkhardt GE, et al. Development of a Sleeve Gastrectomy Weight Loss Model in Obese Zucker Rats. JSR,2009; 157(2):243-250.
    5. Pereferrer FS, Gonzalez MH, Rovira AF, et al. Influence of sleeve gastrectomy on several experimental models of obesity:metabolic and hormonal implications. Obes Surg,2008; 18(9):97-108.
    6. Li F, Zhang G, Liang J, et al. Sleeve Gastrectomy Provides a Better Control of Diabetes by Decreasing Ghrelin in the Diabetic Goto-Kakizaki Rats. JSR,2009; 13(12):2302-2308.
    7. Patriti A, Facchiano E, Sanna A, et al. The Enteroinsular Axis and the Recovery from Type 2 Diabetes after Bariatric Surgery. Obes Surg,2004; 14(6):840-848.
    8. Purnell JQ, Flum DR. Bariatric Surgery and Diabetes. JAMA,2009; 301(15):1593-1595.
    9. Polyzogopouloul EV, Kalfarentzos F, Vagenakis AG, et al. Restoration of Euglycemia and Normal Acute Insulin Response to Glucose in Obese Subjects with Type 2 Diabetes Following Bariatric Surgery. Diabetes,2003; 52(5):1098-1103.
    10. Guldstrandl M, Ahren B, E. Nslund E, et al. Dissociated incretin response to oral glucose at 1 year after restrictive vs. malabsorptive bariatric surgery. Diabetes, Obesity and Metabolism,2009; 11(11):1027-1033.
    11. Diamant M, Blaak EE, de Vos WM. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obesity Review,2011; 12(4):272-281.
    12. Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest, 2007; 117(1):13-23.
    13. Cummings DE, Shannon MH. Roles for Ghrelin in the Regulation of Appetite and Body Weight. Arch Surg,2003; 138(4):389-396.
    14. Kageyama H, Funahashi H, Hirayama M, et al. Morphological analysis of ghrelin and its receptor distribution in the rat pancreas. Regul Pept,2005; 126(1-2):67-71.
    15. Dezaki K, Kakei M, Yada T. Ghrelin uses Galphai2 and activates voltage-dependent K+channels to attenuate glucose-induced Ca2+ signaling and insulin release in islet beta-cells:novel signal transduction of ghrelin. Diabetes,2007; 56(9):2319-2327.
    16. Poykko SM, Kellokoski E, Horkko S, et al. Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes,2003; 52(10):2546-2553.
    17. Naslund E and Kral JG Impact of Gastric Bypass Surgery on Gut Hormones and Glucose Homeostasis in Type 2 Diabetes. Diabetes,2006; 55(Supplement 2):S92-S97.
    18. D'Alessio DA, Vahl TP. Glucagon-like peptide 1:evolution of an incretin into a treatment for diabetes. Am J Physiol Endocrinol Metab,2004; 286(6):E882-890.
    19. Li Y, Cao X, Li L, et al. β-Cell Pdx1 Expression Is Essential for the Glucoregulatory, Proliferative, and Cytoprotective Actions of Glucagon-Like Peptide-1. Diabetes,2005; 54(2):482-491.
    20. Meier JJ, Gallwitz B, Salmen S, et al. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab,2003; 88(6): 2719-2725.
    21. Ahren B, Winzell MS, Wierup N, et al. DPP-4 inhibition improves glucose tolerance and increases insulinand GLP-1 responses to gastric glucose in association with normalized islet topography in mice with p-cell-specific overexpression of human islet amyloid polypeptide. Regulatory Peptides,2007; 143(1-3):97-103.
    22. Man CD, Micheletto F, Sathananthan A, et al. A model of GLP-1 action on insulin secretion in nondiabetic subjects. Am J Physiol Endocrinol Metab,2010; 298(6): E1115-E1121.
    1. Pories WJ. Diabetes the Evolution of a New Paradigm. Ann Surg,2004; 239(1):12-13.
    2. Pories WJ, Swanson MS, MacDonald KG, et al. Who would thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg, 1995;222(3):339-350.
    3. Pories WJ, MacDonald KG Jr, Flickinger EG, et al. Is type Ⅱ diabetes mellitus (NIDDM) a surgical disease? Ann Surg,1992; 215(6):633-643.
    4. Rubino F, Gagner M. Potential of Surgery for Curing Type 2 Diabetes Mellitus. Ann Surg,2002; 236(5):554-559.
    5. Vetter ML, Cardillo S, Rickels MR, et al. Narrative Review:Effect of Bariatric Surgery on Type 2 Diabetes Mellitus. Ann Intern Med,2009; 15(2):94-103.
    6. Rubino F, Kaplan LM, Schauer PR, et al. The Diabetes Surgery Summit Consensus Conference:Recommendations for the Evaluation and Use of Gastrointestinal Surgery to Treat Type 2 Diabetes Mellitus. Ann Surg.2010,251(3):399-405.
    7. Pruessner JC, Kirschbaum C, Meinlschmid G, et al. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology,2003; 28(7):916-931.
    8. Kang ES, Yun YS, Park SW, et al. Limitation of the validity of the homeostasis model assessment as an index of insulin resistance in Korea. Metabolism.2005; 54(2):206-211.
    9. Zimmet P, Alberti K G, Shaw J. Global and societal implications of the diabetes epidemic. Nature,2001; 414(6865):782-787.
    10. Detournay B, Cros S, Charbonnel B, et al. Managing type 2 diabetes in France:the ECODIA survey. Diabetes Metab.2000; 26(5):363-369.
    11. Bose M, Olivan B, Teixeira J, et al. Do Incretins Play a Role in the Remission of Type 2 Diabetes after Gastric Bypass Surgery:What are the Evidence? Obes Surg.2009, 19(2):217-229.
    12. Rubino F, R'bibo SL, del Genio F, et al. Metabolic surgery:the role of the gastrointestinal tract in diabetes mellitus. Nat Rev Endocrinol,2010; 6(2):102-109.
    13. Gill-Randall RJ, Adams D, Ollerton RL, et al. Is human Type 2 diabetes maternally inherited? Insights from an animal model. Diabet Med,2004; 21(7):759-762.
    14. Gill-Randall R, Adams D, Ollerton RL, et al. Type 2 diabetes mellitus—genes or intrauterine environment? An embryo transfer paradigm in rats. Diabetologia,2004; 47(8):1354-1359.
    15. Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000; 141(11):4255-4261.
    16. Kageyama H, Funahashi H, Hirayama M, et al. Morphological analysis of ghrelin and its receptor distribution in the rat pancreas. Regul Pept,2005; 126(1-2):67-71.
    17. Mason E E. The mechanism of surgical treatment of type 2 diabetes. Obes Surg,2005; 15(4):459-461.
    18. Reaven G M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes,1988; 37(12):1595-1607.
    19. Pyorala K, Laakso M, Uusitupa M. Diabetes and atherosclerosis:an epidemiologic view. Diabetes Metab Rev,1987; 3(2):463-524.
    20. Jarrett RJ, McCartney P, Keen H. The Bedford survey:ten year mortality rates in newly diagnosed diabetics, borderline diabetics and normoglycaemic controls and risk indices for coronary heart disease in borderline diabetics. Diabetologia 1982,22(2):79-84.
    21. Portha B, Serradas P, Bailbe D, et al. Beta-cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type Ⅱ diabetes. Diabetes,1991; 40(4):486-491.
    22. Bisbis S, Bailbe D, Tormo MA, et al. Insulin resistance in the GK rat:decreased receptor number but normal kinase activity in liver. Am J Physiol Endocrinol Metab, 1993;265(5):E807-E813.
    23.徐倍,吴国亭,韩玉麒,等.2型糖尿病GK大鼠病程进展与组织形态学改变.同济大学学报(医学版);2007;28(5):17-24,25.
    24. Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev,2002; 23(2):201-229.
    1. Hossain P, Kawar B, El Nahas M. Obesity and Diabetes in the Developing World-A Growing Challenge. N Engl J Med,2007; 356(3):213-215.
    2. Aucott L, Poobalan A, Smith WC, et al. Weight loss in obese diabetic and non-diabetic individuals and long-term diabetes outcomes-a systematic review. Diabetes Obes Metab,2004; 6(2):85-94.
    3. Scopinaro N, Adami GF, Marinari GM, et al. Biliopancreatic diversion. World J Surg, 1998; 22(9):936-946.
    4. Moo TA, Rubino F. Gastrointestinal surgery as treatment for type 2 diabetes. Curr Opin Endocrinol Diabetes Obes,2008; 15(2):153-158.
    5. Cummings DE, Overduin J, Foster-Schubert KE, et al. Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg Obes Relat Dis,2007; 3(2):109-115.
    6. Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care,2008; 31(Supplment 2):S290-S296.
    7. Unger RH, Eisentraut AM. Entero-insular axis. Arch Intern Med,1969; 123(3): 261-266.
    8. Stavros N K, Konstantinos V, Fotis K, et al. Weight Loss, Appetite Suppression, and Changes in Fasting and Postprandial Ghrelin and Peptide-YY Levels After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy:A Prospective, Double Blind Study. Ann Surg, 2008; 247(3):401-407.
    9. Strader AD, Clausen TR, Goodin SZ, et al. Heal Interposition Improves Glucose Tolerance in Low Dose Streptozotocin-treated Diabetic and Euglycemic Rats. Obes Surg,2009; 19(1):96-104.
    10. Vidal J, Ibarzabal A, Romero F, et al. Type 2 Diabetes Mellitus and the Metabolic Syndrome Following Sleeve Gastrectomy in Severely Obese Subjects. Obes surg,2008; 18(9):1077-1082.
    11. Patriti A, Aisa MC, Annetti C, et al. How the hindgut can cure type 2 diabetes. Heal transposition improves glucose metabolism and beta-cell function in Goto-kakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery,2007; 142(1):74-85.
    12. Patriti A, Facchiano E, Sanna A, et al. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery. Obes Surg,2004; 14(6):840-848.
    13. Bose M, Olivan B, Teixeira J, et al. Do Incretins Play a Role in the Remission of Type 2 Diabetes after Gastric Bypass Surgery:What are the Evidence? Obes Surg,2009; 19(2):217-299.
    14. Creutzfeldt W. The incretin concept today. Diabetologia,1979; 16(2):75-85.
    15. Creutzfeldt W. The entero-insular axis in type 2 diabetes-incretins as therapeutic agents. Exp Clin Endocrinol Diab,2001; 109 (Suppl 2):S288-S303.
    16. Lugari R, Dei Cas A, Ugolotti D, et al. Evidence for early impared of glucagon-like peptide 1-induced insulin secretin in human type 2 (non insulin-dependent) diabetes. Hormon Metab Res,2002; 34(3):150-154.
    17. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol, Metab 2001; 86(8):3717-3723.
    18. Tseng CC, Zhang XY. The cysteine of the cytoplasmatic tail of glucose-dependent insulinotropic peptide receptor mediates its chronic desensitisation and down-regulation. Moll Cell Endocrinol,1998; 139(1-2):179-86.
    19. Yip RGC, Wolfe MM. GIP Biology and fat metabolism. Life Sciences,2000; 66(2): 91-103.
    20. Creutzfeldt W. The entero-insular axis in type 2 diabetes-incretins as therapeutic agents. Exp Clin Endocrinol Diab,2001; 109(Suppl 2):S288-S303.
    21. Cummings BP, Strader AD, Stanhope KL, et al. Ileal Interposition Surgery Improves Glucose and Lipid Metabolism and Delays Diabetes Onset in the UCD-T2DM Rat. Gastroenterology,2010; 18(7):2437-2446.
    22. Naito H, Matsuno S. Surgical aspect of enteroinsular axis after gastrointestinal surgery with reference to incretin secretion. Pancreas,1998; 16(3):370-378.
    23. Laferrere B, Hart AB, Bowers CY. Obese subjects respond to the stimulatory effect of the ghrelin agonist growth hormone-releasing peptide-2 on food intake. Obesity (Silver Spring) 2006; 14(6):1056-1063.
    24. Kim MS, Namkoong C, Kim HS et al. Chronic central administration of ghrelin reverses the effects of leptin. Int J Obes,2004; 28(10):1264-1271.
    25. Ranganath L R. The entero-insular axis:implications for human metabolism. Clin Chem Lab Med,2008; 46(1):43-56.
    26. Micic D, Duntas L, Cvijovic G, et al. Ghrelin and the enteroinsular axis in healthy men. Hormones (Athens),2007; 6(4):321-326.
    1. Li F, Zhang G, Liang J, et al. Sleeve Gastrectomy Provides a Better Control of Diabetes by Decreasing Ghrelin in the Diabetic Goto-Kakizaki Rats. J Gastrointest Surg,2009; 13(12):2302-2308.
    2. Papadopoulos AA, Kontodimopoulos N, Frydas A, et al. Predictors of health-related quality of life in type II diabetic patients in Greece. BMC Public Health,2007; 7 (30):186.
    3. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract,2010; 87(1):4-14.
    4. Zimmet P. The burden of type 2 diabetes:are we doing enough? Diabetes Metab.2003; 29(4):6S9-6S18.
    5. Cockram CS. The epidemiology of diabetes mellirus in the Asia-Pacific region. Hong Kong Med J,2000; 6(1):43-52.
    6. Stratton IM, Adler Al, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS35):prospective observational study. BMJ,2000; 321(7258):405-412.
    7. Dluhy RG, McMahon GT. Intensive glycemic control in the ACCORD and ADVANCE trials. N Engl J Med,2008; 358(24):2630-2633.
    8. Reaven PD, Moritz TE, Schwenke DC, et al. Veterans Affairs Diabetes Trial. Intensive glucose-lowering therapy reduces cardiovascular disease events in veterans affairs diabetes trial participants with lower calcified coronary atherosclerosis. Diabetes,2009; 58(11):2642-2648.
    9. Charpentier G, Genes N, Vaur L, et al. Control of diabetes and cardiovascular risk factors in patients with type 2 diabetes:a nationwide French survey. Diabetes & Metabolism,2003; 29(2):152-158.
    10. Pories W. Diabetes The Evolution of a New Paradigm. Ann Surg,2004; 239(1):12-13.
    11. Schauer PR, Burguera B, Ikramuddin S, et.al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg,2003; 238(4):467-485.
    12. Ralph P, Bettina W, Thomas P, et al. Improvement in Glucose Metabolism After Bariatric Surgery:Comparison of Laparoscopic Roux-en-Y Gastric Bypass and Laparoscopic Sleeve Gastrectomy:A Prospective Randomized Trial. Annals of Surgery,2009; 250(2):234-241.
    13. Guidone C, Mancol M, Valera-Moral E, et al. Mechanisms of Recovery From Type 2 Diabetes After Malabsorptive Bariatric Surgery. Diabetes,2006; 55(7):2025-2031.
    14. Goldfine AB, Mun EC, Devine E, et al. Patients with Neuroglycopenia after Gastric Bypass Surgery Have Exaggerated Incretin and Insulin Secretory Responses to a Mixed Meal. J Clin Endocrinol Metab,2007; 92(12):4678-4685.
    15. Morinigo R, Lacy AM, Casamitjana R. GLP-1 and Changes in Glucose Tolerance following Gastric Bypass Surgery in Morbidly Obese Subjects. Obes Surg,2006; 16(12):1594-1601.
    16. Rubino F. Is type 2 diabetes an operable intestinal disease? Diabetes Care,2008; 31(Supplement 2):S290-S296.
    17. Rubino F, Kaplan LM, Schauer PR, et al. The Diabetes Surgery Summit Consensus Conference:Recommendations for the Evaluation and Use of Gastrointestinal Surgery to Treat Type 2 Diabetes Mellitus. Ann Surg,2010; 251(3):399-405.
    18. Scopinaro N, Papadia F, Camerini G, et al. A Comparison of a Personal Series of Biliopancreatic Diversion and Literature Data on Gastric Bypass Help to Explain the Mechanisms of Resolution of Type 2 Diabetes by the Two Operations. Obes Surg, 2008; 18(8):1035-1038.
    19. Scopinaro N, Gianetta E, Adami GF, et al. Biliopancreatic diversion for obesity at eighteen years.1996; 119(3):261-268.
    20. Lagace M, Marceau P, Marceau S, et al. Biliopancreatic Diversion with a New Type of Gastrectomy:Some Previous Conclusions Revisited.1995; 5(4):411-418.
    21. Hess DS, Hess DW. Biliopancreatic Diversion with a Duodenal Switch. Obes Surg, 1998; 8(3):267-282.
    22. Fobi MA, Lee H, Holness R, et al. Gastric Bypass Operation for Obesity. World J Surg, 1998;22(9):925-935.
    23. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery:systematic review and meta-analysis. Am J Med,2009; 122(3):248-256.
    24. Laferrere B, Teixeira J, McGinty J, et al. Effect of Weight Loss by Gastric Bypass Surgery Versus Hypocaloric Diet on Glucose and Incretin Levels in Patients with Type 2 Diabetes. J Clin Endocrinol Metab,2008; 93(7):2479-2485.
    25. Wittgrove AC, Clark GW, Tremblay LJ. Laparoscopic Gastric Bypass, Roux-en-Y: Preliminary Report of Five Cases. Obes Surg,1994; 4(4):353-357.
    26. Huang CK. Single-incision laparoscopic bariatric surgery. J Minim Access Surg,2011; 7(1):99-103.
    27. Wittgrove AC, Clark GW. Laparoscopic gastric bypass, Roux-en-Y-500 patients: technique and results, with 3-60 month follow-up. Obes Surg,2000; 10(3):233-239.
    28. Roberts K, Duffy A, Kaufman J, et al. Size matters:gastric pouch size correlates with weight loss after laparoscopic Rouxen-Y gastric bypass. Surg Endosc,2007; 21(8):1397-1402.
    29. Papadia F. Effect of standard versus extended Roux limb length on weight loss outcomes after laparoscopic Roux-en-Y gastric bypass.2004; 18(11):1683.
    30. Inabnet WB, Quinn T, Gagner M, et al. Laparoscopic Roux-en-Y gastric bypass in patients with BMI< 50:a prospective randomized trial comparing short and long limb lengths. Obes Surg,2005; 15(1):51-57.
    31. Nelson WK, Fatima J, Houghton SG, et al. The malabsorptive very, very long limb Roux-en-Y gastric bypass for super obesity:results in 257 patients. Surgery,2006; 140(4):517-523.
    32. Demaria EJ, Jamal MK. Surgical options for obesity. Gastroenterol Clin North Am, 2005;34(1):127-142.
    33. Andrew CG, Hanna W, Look D, et al. Early results after laparoscopic Roux-en-Y gastric bypass:effect of the learning curve. Can J Surg,2006; 49(6):417-421.
    34. Flum DR, Dellinger EP. Impact of gastric bypass operation on survival:a population-based analysis. J Am Coll Surg,2004; 199(4):543-551.
    35. Puzziferri N, Austrheim-Smith IT, Wolfe BM, et al. Three-year follow-up of a prospective randomized trial comparing laparoscopic versus open gastric bypass. Ann Surg,2006; 243(2):181-188.
    36. Mognol P, Chosidow D, Marmuse JP. Laparoscopic Sleeve Gastrectomy as an Initial Bariatric Operation for High-Risk Patients:Initial Results in 10 Patients.Obes Surg, 2005; 15(7):1030-1033.
    37. Roa PE, Kaidar-Person O, Pinto D, et al. Laparoscopic Sleeve Gastrectomy as Treatment for Morbid Obesity:Technique and Short-Term Outcome.2006; 16(10):1323-1326.
    38. Baltasar A, Serra C, Perez N, et al. Laparoscopic Sleeve Gastrectomy:A Multi-purpose Bariatric Operation. Obes Surg,2005; 15(8):1124-1128.
    39. Silecchia G, Boru C, Pecchia A, et al. Effectiveness of Laparoscopic Sleeve Gastrectomy (First Stage of Biliopancreatic Diversion with Duodenal Switch) on Co-Morbidities in Super-Obese High-Risk Patients. Obes Surg,2006; 16(9):1138-1144.
    40. Silecchia G, Boru C, Pecchia A, et al. Effectiveness of Laparoscopic Sleeve Gastrectomy (First Stage of Biliopancreatic Diversion with Duodenal Switch) on Co-Morbidities in Super-Obese High-Risk Patients.2006; 16(9):1138-1144.
    41. Anthone GJ. The duodenal switch operation for morbid obesity. Surg Clin, North Am 2005;85(4):819-833.
    42. Anthone GJ, Lord RV, DeMeester TR, et al. The duodenal switch operation for the treatment of morbid obesity. Ann Surg 2003; 238(4):618-627.
    43. Marinari GM, Papadia FS, Briatore L, et al. Type 2 diabetes and weight loss following biliopancreatic diversion for obesity. Obes Surg,2006; 16(11):1440-1444.
    44. Kindel TL, Yoder SM, Seeley RJ, et al. Duodenal-Jejunal Exclusion Improves Glucose Tolerance in the Diabetic, Goto-Kakizaki Rat by a GLP-1 Receptor-Mediated Mechanism. J Gastrointest Surg,2009; 13(10):1762-1772.
    45. Ramos AC, Galvao Neto MP, de Souza YM, et al. Laparoscopic Duodenal-Jejunal Exclusion in the Treatment of Type 2 Diabetes Mellitus in Patients with BMI< 30 kg/m2 (LBMI). Obes Surg,2009; 19(3):307-312.
    46. Strader AD. Ileal transposition provides insight into the effectiveness of gastric bypass surgery. Physiology & Behavior,2006; 88(3):277-282.
    47. Maljaars PWJ, Peters HPF, Mela DJ, et al. Ileal brake:A sensible food target for appetite control. A review. Physiology & Behavior,2008; 95(3):271-281.
    48. American Diabetes Association. Standards of medical care in diabetes--2010. Diabetes Care,2010; 33 (Supplement 1):S11-S61.
    49. Miguel GPS, Azevedo JMLC, Neto CG, et al. Glucose homeostasis and weight loss in morbidly obese patients undergoing banded sleeve gastrectomy:a prospective clinical study. Clinics,2009; 64(11):1093-1098.
    50. Cummings DE, Flum DR. Gastrointestinal Surgery as a Treatment for Diabetes. JAMA, 2008;299(3):341-343.
    51. Saad MF, Knowler WC, Pettitt DJ, et al. Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. Lancet,1989; 333(8651):1356-1359.
    52. Nandagopal R, Brown RJ, Rother KI. Resolution of type 2 diabetes following bariatric surgery:implications for adults and adolescents. Diabetes Technol Ther,2010; 12(8):671-677.
    53. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery:a systematic review and meta-analysis. JAMA,2004; 292(14):1724-1737.
    54. Vidal J, Ibarzabal A, Romero F, et al. Type 2 diabetes mellitus and the metabolic syndrome following sleeve gastrectomy in severely obese subjects. Obes Surg,2008; 18(9):1077-1082.
    55. Cohen RV, Schiavon CA, Pinheiro JS, et al. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with BMI 22-34:a report of two cases. Surg Obes Relat Dis,2007;3(2):195-197.
    56. Wong SK, Kong AP, Mui WL, et al. Laparoscopic bariatric surgery:a five-year review. Hong Kong Med J,2009; 15(2):100-109.
    57. Colquitt JL, Picot J, Loveman E, et al. Surgery for obesity. Cochrane Database Syst Rev,2009;15(2):CD003641.
    58. WHOE Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet,2004; 363(9403):157-163.
    59. Schernthaner G, Morton JM. Bariatric Surgery in Patients With Morbid Obesity and Type 2 Diabetes. Diabetes,2008; 31 (Supplement 2):S297-S302.
    60. Iannelli A, Dainese R, Piche T, et al. Laparoscopic sleeve gastrectomy for morbid obesity. World J Gastroenterol.2008; 14(6):821-827.
    61. Alexandrides TK, Skroubis G, Kalfarentzos F, et al. Resolution of Diabetes Mellitus and Metabolic Syndrome following Roux-en-Y Gastric Bypass and a Variant of Biliopancreatic Diversion in Patients with Morbid Obesity. Obes Surg,2007; 17(2):176-184.
    62. Fuks D, Verhaeghe P, Brehant O, et al. Results of laparoscopic sleeve gastrectomy:A prospective study in 135 patients with morbid obesity. Surgery,2009; 145(1):106-113.
    63. Fried M, Ribaric G, Buchwald JN, et al. Metabolic surgery for the treatment of type 2 diabetes in patients with BMI<35 kg/m2:an integrative review of early studies. Obes Surg,2010;20(6):776-790.
    64.陈木青,王云,李治军等。胃旁路手术在2型糖尿病治疗中的临床应用价值.中华临床医师杂志,2009;3(12):2055-2058.
    65.王瑜,王燕婷,王烈.胃转流术对非肥胖型2型糖尿病的治疗作用.中国普通外科杂志,2008;17(10):1003-1006.
    66.张学利,陈宗祐,黄文海等.胃旁路术对2型糖尿病的临床治疗作用.中国临床医学,2009;16(3):480-482.
    67. Flum DR, Salem L, Elrod J A B, et al. Early mortality among Medicare beneficiaries undergoing bariatric surgical procedures. JAMA,2005; 294 (14):1903-1908.
    68. Behrns KE, Smith CD, Sarr MG. Prospective evaluation of gastric acid secretion and cobalamin absorption following gastric bypass for clinically severe obesity. Dig Dis Sci,1994; 39(2):315-320.
    69. Chapin BL, LeMar HJ, Knodel DH, et al. Secondary hyperparathyroidism following biliopancreatic diversion. Arch Surg,1996; 131(10):1048-1052.
    70. Johnson JM, Maher JW, Samuel L, et al. Effects of gastric bypass procedures on bone mineral density, calcium, parathyroid hormone, and vitamin D. J Gastrointest Surg, 2005; 9 (8):1106-1110.
    71. Kalfarentzos F, Dimakopoulos A, Aehagias I, et al. Vertical banded gastroplasty versus standard or distal Roux-en-Y gastric bypass based on specific selection criteria in the morbidly obese:preliminary results. Obes Surg,1999; 9(5):433-442.
    72. Adams TD, Gress RE, Smith SC, et al. Long-Term Mortality after Gastric Bypass Surgery. N Engl J Med,2007; 357(8):753-761.
    73. Schauer PR, Ikramuddin S, Gourash W, et al. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg,2000; 232(4):515-529.
    74. Bose M, Olivan B, Teixeira J, et al. Do Incretins Play a Role in the Remission of Type 2 Diabetes after Gastric Bypass Surgery:What are the Evidence? Obes Surg,2009; 19(2):217-229.
    75. Wilson PW, D'Agostino RB, Fox CS, et al. Type 2 diabetes risk in persons with dysglycemia:The Framingham Offspring Study. Diabetes Res Clin Pract,2011; 92(1):124-127.
    76. Briatore L, Salani B, Andraghetti G, et al. Restoration of acute insulin response in T2DM subjects 1 month after biliopancreatic diversion. Obesity (Silver Spring), 2008;16(1):77-81.
    77. Pories WJ, Swanson MS, MacDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg,1995; 222(3):339-350.
    78. Herron DM, Tong W. Role of surgery in management of type 2 diabetes mellitus. Mt Sinai J Med,2009;76(3):281-293.
    79. Isbell JM, Tamboli RA, Hansen EN, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care,2010; 33(7):1438-1442.
    80. Tice JA, Karliner L, Walsh J, et al. Gastric banding or bypass? A systematic review comparing the two most popular bariatric procedures. Am J Med,2008; 121(10):885-893.
    81. Rebecchi F, Rocchietto S, Giaccone C, et al. Gastroesophageal reflux disease and esophageal motility in morbidly obese patients submitted to laparoscopic adjustable silicone gastric banding or laparoscopic vertical banded gastroplasty. Surg Endosc, 2011;25(3):795-803.
    82. Vincent RP, le Roux CW. Changes in gut hormones after bariatric surgery. Clin Endocrinol (Oxf),2008; 69(2):173-179.
    83. Cummings DE, Overduin J, Foster-Schubert KE, et al. Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg Obes Relat Dis,2007; 3(2):109-115.
    84. Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes (Lond),2009; 33 (Suppl 1):S33-40.
    85. Bode S, Hartmann B, Holst JJ, et al, Glucagon-like peptide-2 in umbilical cord blood from mature infants. Neonatology,2007; 91(1):49-53.
    86. Drucker DJ. Glucagon-like peptide-1 and the islet beta-cell:augmentation of cell proliferation and inhibition of apoptosis. Endocrinology,2003; 144(12):5145-5148.
    87. Ballantyne GH. Peptide YY (1-36) and peptide YY (3-36):Part Ⅰ. Distribution, release and actions. Obes Surg.2006; 16(5):651-658.
    88. van den Hoek AM, Heijboer AC, Voshol PJ, et al. Chronic PYY3-36 treatment promotes fat oxidation and ameliorates insulin resistance in C57BL6 mice. Am J Physiol Endocrinol Metab,2007; 292(1):E238-E245.
    89. Rodieux F, Giusti V, D'Alessio DA, et al. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity,2008; 16(2):298-305.
    90. Pournaras DJ, Osborne A, Hawkins SC, et al. The gut hormone response following Roux-en-Y gastric bypass:cross-sectional and prospective study. Obes Surg,2010; 20(1):56-60.
    91. Morinigo R, Moize V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab,2006; 91(5):1735-1740.
    92. Morinigo R, Vidal J, Lacy AM, et al. Circulating peptide YY, weight loss, and glucose homeostasis after gastric bypass surgery in morbidly obese subjects. Ann Surg,2008; 247(2):270-275.
    93. le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg,2007; 246(5):780-785.
    94. Morinigo R, Moize V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab.2006; 91(5):1735-1740.
    95. Shin AC, Zheng H, Townsend RL, et al. Meal-induced hormone responses in a rat model of Roux-en-Y gastric bypass surgery. Endocrinology,2010; 151(4):1588-1597.
    96. Morinigo R, Vidal J, Lacy AM, et al. Circulating peptide YY, weight loss, and glucose homeostasis after gastric bypass surgery in morbidly obese subjects. Ann Surg.2008; 247(2):270-275.
    97. Chelikani PK, Shah IH, Taqi E, et al. Comparison of the effects of Roux-en-Y gastric bypass and ileal transposition surgeries on food intake, body weight, and circulating peptide YY concentrations in rats.Obes Surg,2010; 20(9):1281-1288.
    98. Thaler JP, Cummings DE. Minireview:Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology,2009. 150(6):2518-2525.
    99. Wang TT, Hu SY, Gao HD, et al. Ileal Transposition Controls Diabetes as Well as Modified Duodenal Jejunal Bypass With Better Lipid Lowering in a Nonobese Rat Model of Type II Diabetes by Increasing GLP-1. Ann Surg,2008; 247(6):968-975.
    100.Salinari S, Bertuzzi A, Asnaghi S, et al. First-phase insulin secretion restoration and differential response to glucose load depending on the route of administration in type 2 diabetic subjects after bariatric surgery. Diabetes Care,2009; 32(3):375-380.
    101.Strader AD, Vahl TP, Jandacek RJ, et al. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab,2005; 288(2):E447-E453.
    102.Mason EE. The mechanism of surgical treatment of type 2 diabetes. Obes Surg,2005; 15(4):459-461.
    103.de Paula AL, Macedo AL, Prudente AS, et al. Laparoscopic sleeve gastrectomy with ileal interposition ("neuroendocrine brake"):pilot study of a new operation. Surg Obes Relat Dis,2006; 2(4):464-467.
    104.Hickey, M.S., et al., A new paradigm for type 2 diabetes mellitus:could it be a disease of the foregut? Ann Surg,1998; 227(5):637-644.
    105.Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care,2003; 26(10):2929-2940.
    106.Holscher C, Li L. New roles for insulin-like hormones in neuronal signalling and protection:New hopes for novel treatments of Alzheimer's disease? Neurobiol Aging, 2010; 31(9):1495-1502.
    107.Meier JJ, Nauck MA. Clinical endocrinology and metabolism. Glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide. Best Pract Res Clin Endocrinol Metab,2004; 18(4):587-606.
    108.Gallwitz B. Glucagon-like peptide-1-based therapies for the treatment of type 2 diabetes mellitus. Treat Endocrinol,2005; 4(6):361-370.
    109.Yip RG, Wolfe MM. GIP biology and fat metabolism. Life Sci,2000; 66(2):91-103.
    110.Laferrere B, Heshka S, Wang K, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care 2007; 30(7):1709-1716.
    111.Sirinek KR, O'Dorisio TM, Hill D, et al. Hyperinsulinism, glucose-dependent insulinotropic polypeptide, and the enteroinsular axis in morbidly obese patients before and after gastric bypass. Surgery 1986; 100(4):781-787.
    112.Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 2006; 244(5):741-749.
    113.Rodriguez-Grunert, L., et al., First human experience with endoscopically delivered and retrieved duodenal-jejunal bypass sleeve. Surg Obes Relat Dis,2008; 4(1):55-59.
    114.Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000; 141(11):4255-4261
    115.Kageyama H, Funahashi H, Hirayama M, et al. Morphological analysis of ghrelin and its receptor distribution in the rat pancreas. Regul Pept,2005; 126(1-2):67-71.
    116.Tong J, Prigeon R L, Davis HW, et al. Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy. Diabetes,2010; 59(9):2145-2151.
    117.Na"slund E, Kral JG. Impact of gastric bypass surgery on gut hormones and glucose homeostasis in type 2 diabetes. Diabetes 2006; 55(Supplement 2):S92-S97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700