穿梭计算机分析系统的建立和开心散改善抑郁症认知功能障碍研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑郁症是一种严重的精神障碍疾病,以持久的心境低落、快感缺失为主要特征。认知功能障碍是抑郁症的一个主要共存症状。对于抑郁症及其导致的认知功能障碍的研究及其相关药物开发已经成为抑郁症治疗中面临的一个重要问题。为此,本课题的研究主要从两方面展开,即建立用于动物抑郁症及其认知功能障碍行为研究评价的穿梭计算机图像实时分析处理系统,同时研究传统古方KXS对于慢性应激引起的抑郁症及其所致认知功能障碍的治疗作用。
     集成视频跟踪、图像分析、计算机信息处理、数据挖掘所等多种技术实现对大鼠穿梭行为活动信息的实时采集。利用Microsoft Visual C++6.0集成开发环境编程,研制开发了动物穿梭行为分析处理系统。该套系统在获取所有6项(主动回避次数、被动逃避次数、间歇期穿梭次数、主动回避反应时间、被动逃避反应时间、建立条件反射的动物只数)传统穿梭行为评价指标的同时,新建立了主动回避速度、被动逃避速度、主动回避运动路程、被动逃避运动路程、安全区时间表、错误区时间、近口区时间、逃避失败次数、首次穿梭潜伏期等9项指标。自然衰老、脑缺血等引起的不同类型认知功能障碍动物模型研究表明,新建立的9项新指标与传统指标一起构成了从不同方面系统、敏感评价各种认知功能障碍动物的联想性学习记忆、理解、反应速度、决策能力的综合评价体系。同时,该套系统集信号采集、识别、分析处理一体化,并以实时视频采集方式显示动物穿梭行为。
     慢性不可预测性应激模型研究结果表明KXS水提物(0.3、0.9、2.7g/kg)、KXS方中君药人参的主要活性成份——Rg1(50、100mg/kg)可明显对抗慢性应激引起的糖水偏爱指数下降、新奇环境下首次摄食时间延长,从而显示出一定的抗抑郁效应。同时,在穿梭箱测试中,KXS(0.9、2.7g/kg)、Rg1(50mg/kg)可对慢性应激刺激可引起大鼠穿梭箱测试中主动回避次数、反应速度和运动路程的下降以及被动回避次数、反应速度和运动路程的增加,体现出对抑郁症所致认知功能障碍的改善作用。HPLC-ECD、ELISA法和免疫组织化学法等实验结果表明KXS、Rg1各剂量组可不同程度的拮抗慢性应激模可引起大鼠海马和前额叶皮层NE、DA、DOPAC和HVA含量显著下降;血清ACTH增加;海马CRF、AChE表达显著上调,BDNF表达下调;前额叶皮层CRF表达上调,BDNF和CREB表达显著下调,表明KXS、Rg1可能通过对单胺类神经递质、HPA轴、乙酰胆碱及神经营养因子通路的综合调节而发挥作用。另外,结果表明KXS与Rg1改善抑郁症及其所致认知功能障碍作用相似。
     总之,本研究为抑郁症及认知功能的研究提供了一套自动化程度高、具有自主知识产权的穿梭计算机图像实时分析处理装置及客观规范、多层面、敏感评价认知功能的指标评价体系;证明了KXS和Rg1对抑郁症及其所致认知功能障碍的改善作用,为寻找防治抑郁症及其所致认知功能障碍药物提供了实验依据。
Depression is a serious and highly prevalent disorder characterized by long-termbad mood and anhedonia.Apart from mood disorder,cognitive dysfunction is a mostimportant feature in depressive patient.It is important to research the mechanism ofcognitive deficits accompanying depression and seek effective antidepressant agentswith the capability of enhancing cognitive function.Thus,this thesis includes two parts:1)establishment of a new computer-aided controlling and image analysis system forshuttle box(CISB);2)research of preventative action of Kai-Xin-San(KXS)waterextract on depressive-like symptoms and cognition deficit induced by chronic mildstress(CMS).
     Firstly,by combining the advantage of video tracking,image analysis,computerinformation processing and data mining,the CISB was developed with MicrosoftVisual C++6.0 computer language,which can collect and analyze the behavioral dataof rats in real-time.9 new parameters(DPM,DAM,SAA,SPE,SAT,EAT,LFC,ECRand TND)were established to evaluate cognitive function except for 6 presentindicators(AA,PE,RTAA,RTPE,EF and ITC).Simultaneously,the system wasvalidated with young rats,mid-aged rats and cerebral ischemia rats.The resultsdemonstrate that CISB is highly reliable and accurate,and can more systematically andsensitively evaluate the cognitive behavior from multiple aspects including theassociative learning and memory,understanding,processing speed and decisionmaking compared with present parameters.Animal behavior activities can beautomatically recognized,collected and analyzed,the animal video image and itsmoving track in shuttle box also can be played on the computer screen.
     Secondly,we explored the antidepressant-like and nootropic effects of a waterextract of KXS(at doses of 0.3,0.9,and 2.7g/kg/day)and ginsenoside Rgl(at doses of50,100mg/kg/day)(the effective ingredient of ginseng,which is the principal herb ofKXS)using chronic mild stress(CMS)as a well-validated model of depression.Theresults indicated that KXS and Rgl can significantly reversed the depressive symptomsin CMS model,such as decline in sucrose preference index and prolongation of latencyto feeding.Furthermore,KXS(0.9,2.7g/kg)and Rgl(50mg/kg)can also improve thecognitive impairment induced by CMS in the shuttle-box test such as increased numberof passive escapes and passive movement distance as well as decreased number of active avoidances,active movement distance and active response speed in CMS model.Biological investigation with HPLC-ECD,ELISA assay and immunohistochemicalmethods demonstrated that KXS and ginsenoside Rgl can inhibit increased AChEactivity of hippocampus;increase monoamine neurotransmitter concentration ofprefrontal cortex and hippocampus;upregulate the CREB and BDNF activities in thehippocampus and prefrontal cortex and reduce ACTH concentrations in the serum inCMS rats.Taken together,these results indicated that KXS and Rgl can exertantidepressant-like and nootropic effects in the CMS model by modulating multiplecentral nervous systems.Moreover,the effects of KXS were comparable to Rgl ondepression and cognitive dysfunction in CMS model.
     In conclusion,a highly automatic and intelligent CISB apparatus as well as a setof evaluation index were established,which can objectively,scientificly,systematically evaluate the behavior activities from multiple aspects in differentdementia animal models.Furthermore,antidepressive-like and nootropic effects ofKXS and Rgl were validated,and their mechanism were explored.It might be possibleto provide a potential drug for the treatment of depressive mood disorders andcognitive dysfunction induced by depression.
引文
[1]Greenberg PE,Leong SA,Birnbaum HG,Robinson RL.The economic burden of depression with painful symptoms [J].J Clin Psychiatry,2003,64:Suppl 7:17-23
    [2]Pincus HA,Pettit AR.The societal costs of chronic major depression [J].J ClinPsychiatry,2001,62 Suppl 6:5-9.
    [3]Katz R J,Schmaltz K.Dopaminergic involvement in attention.A novel animal model [J].Prog Neuropsychopharmacol,1980,4:585-90.
    [4]Willner P.Validity,reliability and utility of the chronic mild stress model of depression:a 10-year review and evaluation [J].Psychopharmacology,1997,134:319-329.
    [5]Willner P.Chronic mild stress (CMS) revisited:consistency and behavioral-neurobiological concordance in the effects of CMS [J].Neuropsychobiology,2005,52:90-110.
    [7]Muscat R,Towell A,Willner P.Changes in dopamine autoreceptor sensitivity in an animal model of depression [J].Psychopharmacology,1988,94:545-550.
    [8]Muscat R,Sampson D,Willner P.Dopaminergic mechanisms of imipramine action in an animal model of depression [J].Biol Psychiatry,1990,28:223-230.
    [9]Muscat R,Willner P.Suppression of sucrose drinking by chronic mild unpredictable stress:a methodological analysis [J].Neurosci Biobehav Rev,1992,16:507-517.
    [10]Sampson D,Willner P,Muscat R.Reversal of antidepressant action by dopamine antagonists in an animal model of depression [J].Psychopharmacology,1991,104:491-495
    [11]Hall CS.Emotional behaviour in the rat:I.Defecation and urination as measures of individual differences in emotionality [J].J Comp Psychol,1934,18:385-403.
    [12] Dalla C, Antoniou K, Drossopoulou G. Chronic mild stress impact: are females more vulnerable [J]? Neuroscience, 2005, 135: 703-714
    [13] Westenbroek C, Ter Horst GJ, Roos MH, Kuipers SD, Trentani A, den Boer JA. Gender-specific effects of social housing in rats after chronic mild stress exposure [J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2003, 27:21-30.
    [14] Olds J, Milner P. Positive reinforcement produced by electrical self-stimulation of septal area and other regions of rat brain [J]. J Comp Physiol Psychol, 1954,47:419-27.
    [15] Wise RA. Neuroleptics and operant behavior: the anhedonia hypothesis [J]. Behav Brain Sci, 1982, 5:39-48
    [16] Markou A, Koob GF. Postcocaine anhedonia. An animal model of cocaine withdrawal [J]. Neuropsychopharmacology, 1991, 4:17-26.
    [17] Willner P. The validity of animal models of depression [J]. Psychopharmacology, 1984, 83(1) :1-16.
    [18] Fibic HC, Phillips AG. Increased intracranial self- stimulation in rats after long-term administration of desipramine [J]. Science, 1981, 214: 683-685.
    [19] Kamata K, Yoshida S, Kameyama T. Antagonism of footshock stress-induced inhibition of intracranial self-stimulation by naloxone or methamphetamine [J]. Brain Res, 1986,371:197-200.
    [20] Bowers WJ, Zacharko RM, Anisman H. Evaluation of stressor effects on intracranial self-stimulation from the nucleus accumbens and the substantia nigra in a current intensity paradigm [J]. Behav Brain Res, 1987, 23:85-93
    [21] Zacharko RM, Bowers WJ, Kelley MS, Anisman H. Prevention of stressor-induced disturbances of self-stimulation by desmethylimipramine [J]. Brain Res, 1984,321:175-179.
    [22] Zacharko RM, Bowers WJ, Kokkinidis L, Anisman H. Regionspecific reductions of intracranial self-stimulation after uncontrollable stress: possible effects on reward processes [J]. Behav Brain Res, 1983, 9:129-141.
    [23] Zacharko RM, Kasian M, MacNeil G, Anisman H. Stressor-induced behavioral alterations in intracranial self- stimulation from the ventral tegmental area: evidence for regional variations [J]. Brain Res Bull, 1990, 25:617-621.
    [24] Zacharko RM, Lalonde GT, Kasian M, Anisman H. Strain-specific effects of inescapable shock on intracranial self-stimulation from the nucleus accumbens [J]. Brain Res, 1987,426:164-168.
    [25] Moreau JL, Jenck F, Martin JR, Mortas P, Haefely WE. Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum selfstimulation behavior in rats [J]. Eur Neuropsychopharmacol, 1992,2:43-97.
    [26] Nielsen CK, Arnt J, Sanchez C. Intracranial self-stimulation and sucrose intake differ as hedonic measures following chronic mild stress: interstrain and interindividual differences [J]. Behavioural Brain Research, 2000, 107:21-33.
    [27] Porsolt RD , LePichon M, Jalfre M, et al.. Depression : A new animal model sensitive to antidepressant treatment [J]. Nature, 1977 ,266(5604) :730-732.
    [28] Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test [J]. Neuroscience and Biobehavioral Reviews,2005, 29, 547-569.
    [29] Lucki I, Singh A, Kreiss D. Behavioral studies of serotonin receptor agonists as antidepressant drugs [J]. Neurosci. Biobehav. Rev., 1994, 18: 85-95.
    [30] Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants [J]. Psychopharmacology (Berl.), 1995, 121: 66-72.
    [31] Lucki I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs [J]. Behav. Pharmacol, 1997, 8:523-532.
    [32] Kurtuncu M, Luka LJ, Dimitrijevic N, Uz T, Manev H, 2005.Reliability assessment of an automated forced swimming test device using two mouse strains [J].J Neurosci Methods, 2005, 149(1):26-30
    [33] Harro J, Haidkind R, Harro M, Modiri AR, Gillberg PG, Pahkla R, Matto V, Oreland L. Chronic mild unpredictable stress after noradrenergic denervation: attenuation of behavioural and biochemical effects of DSP-4 treatment [J]. Eur. Neuropsychopharmacol, 1999, 10: 5-16.
    [34] odnoff, SR, Suranyi-Cadotte B, Aitken DH, Quirion R, Meaney MJ. The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology (Berl.), 1988, 95: 298-302.
    [35] Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R. Serotonin 1A receptor acts during development to establish normal anxiety-like behaviour in the adult [J]. Nature, 2002, 416 : 396-400.
    [36] Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants [J]. Science, 2003, 301: 805-809.
    [37] Dulawa SC, Holick KA, Gundersen B, Hen R. Effects of chronic fluoxetine in animal models of anxiety, depression, and sensorimotor gating [J]. Neuropsychopharmacology, 2004, 29: 1321-30.
    [38] Merali Z, Levac C, Anisman H. Validation of a simple, ethologically relevant paradigm for assessing anxiety in mice [J]. Biol.Psychiatry, 2003, 54: 552-565.
    [39] Rex A, Voigt JP, Voits M, Fink H. Pharmacological evaluation of a modified open-field test sensitive to anxiolytic drugs [J]. Pharmacol. Biochem. Behav, 1998, 59:677-683.
    [40] Ducottet C, Griebel G, Belzung C.Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model.of depression in mice [J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2003, 27: 625- 631.
    [41] Alonso R, Griebel G, Pavone G, Stemmelin J.BIockade of CRF1 or V1b receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression [J]. Molecular Psychiatry, 2004, 9: 278-286.
    [42] Kopp C, Vogel E, Rettori MC, Delagrange P, Misslin R. The effects of melatonin on the behavioural disturbances induced by chronic mild stress in C3H/He mice [J]. Behav. Pharmacol, 1999, 10: 73-83.
    [43] D'Aquila PS, Brain P, Willner P. Effects of chronic mild stress on performance in behavioural tests relevant to anxiety and depression [J]. Physiol. Behav., 1994, 56: 861-867.
    [44] Griebel G, Simiand J, Steiberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Maffrand JP, Soubrie P. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(lS)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl) ethyl]5-methyl-N-(2-propynyl)-1,3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist: Ⅱ. Characterization in rodent models of stress-related disorders [J]. J. Pharmacol. Exp. Ther, 2002a, 301, 333-345.
    [45] Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P. Anxiolytic and antidepressant-like effects of the non-peptide vasopressin Vlb receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders [J]. Proc. Natl. Acad. Sci. U.S.A, 2002b, 99:6370-6375.
    [46] Grant MM, Thase ME, Sweeney JA.Cognitive disturbance in outpatient depressed younger adults: Evidence of modest impairment [J]. Bio Pschiatry, 2001, 50:35-43.
    [47] Austin MP, Mitchell P, Goodwin GM. Cognitive deficits in depression, possible implications for functional neuropathology [J]. Br J Psychiatry, 2001, 170:200-204.
    [48] Porter RJ, Gallacher P, Thompson JM, Young AH. Neurocognitive impairment in drug-free patients with major depressive disorder [J]. Am J Psychiatry, 2003,182:214-220.
    [49] Hasler G, Drevets WC, Manji HK, Charney DS. Discovering endophenotypes for major depression [J]. Neuropsychopharmacology, 2004, 29:1765-1781.
    [50] Alexopoulos GS, Kiosses DN, Heo M, Murphy CF, Shanmugham B, Gunning-Dixon F. Executive dysfunction and the course of geriatric depression [J]. Biol Psychiatry, 2005, 58: 204-210.
    [51] Morris RG. Spatial localization does not require the presence of local cues [J].Learn Motiv, 1981, 12: 239-260.
    [52] Morris R. Developments of a water-maze procedure for studying spatial learning in the rat [J]. J Neurosci Methods, 1984, 11: 47-60.
    [53] Lipp HP, Wolfer DP. Genetically modified mice and cognition [J]. Curr Opin Neurobiol, 1998, 8: 272-280.
    [54] Wolfer DP, Lipp HP. Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment? [J] Exp Physiol, 2000, 85:627-634.
    [55] Vyssotski AL, Dell'Omo G, Poletaeva Ⅱ, Vyssotsk DL, Minichiello L, Klein R, Wolfer DP, Lipp HP. Long-term monitoring of hippocampus-dependent behavior in naturalistic settings: mutant mice lacking neurotrophin receptor TrkB in the forebrain show spatial learning but impaired behavioral flexibility [J]. Hippocampus, 2002, 12:27-38.
    [1]Millan MJ.Multi-target strategies for the improved treatment of depressive states:Conceptual foundations and neuronal substrates,drug discovery and therapeutic application [J].Pharmacology & Therapeutics,2006,110:135-370.
    [2]Kim SH,Han J,Seog DH,et al..Antidepressant effect of Chaihu-Shugan-San extract and its constituents in rat models of depression [J].Life Sciences,2005,76(11):1297-1306.
    [3]郑高利,张信岳,孙丽文等.疏肝解郁颗粒抗抑郁作用的研究[J].中国中医药科技,2004,11(4):205-207.
    [4]马荣姚海燕库宝善等.解郁丸及其拆方对抑郁模型小鼠的抗抑郁作用差异比较[J].中国临床康复,2005,9(16):115-117.
    [5]柴纪严,单德红,王德山.定志小丸对抑郁模型大鼠海马神经干细胞Nestin表达的影响[J].中国中医药信息杂志,2005,12(4):29-30.
    [6]郑晓鹤,侯家玉,孙建宁等.七味开心颗粒对脑损伤-嗅球破坏模型大鼠行为及血浆中ACTH、COR含量的影响[J].中国药房,2005,16(5):340-342.
    [7]洪杰斐,李君良.郁星菖志汤对急性脑卒中后抑郁症患者血清去甲肾上腺素和5-羟色胺的影响[J].中国康复理论与实践,2004,10(5)297-298.
    [8]Muller WF.Hyperforin represents the neurotransmitter reuptake inhibiting constituent of Hypericum extract [J].Pharmacopsychiatry,1998,(31 ):16-21.
    [9]Nathan PJ.The experimental and clinical pharmacology of St John's Wort (Hyperium perforatum)[J].Mol.Psychiatry,1999,(4):333-338.
    [10]Yu PH.Effect of hypericum perforatum extract on serotonin tumover in the mouse brain[J].Pharmacopsychiatry,2000,33:60-65.
    [11]Chatterjee SS.Hyperforin as a possible antidepressant component of Hypericum extracts[J].Life Science,1998,6:499 -540.
    [12]张筱,卢定强,权静,等.贯叶连翘抗抑郁研究新进展[J].生物加工过程,2004,(2):11-15.
    [13]石永平,汪海.高度富集黄酮类成分的贯叶连翘提取物抗抑郁作用[J].中药新药药理与临床,2006,17(1):4-7.
    [14]司银楚,孙建宁.贯叶连翘提取物对慢性应激抑郁大鼠行为及脑内5-HT、NE表达的影响[J].中国药科大学学报,2003,34(1):70-73.
    [15]李明亚,陈红梅.石菖蒲对行为绝望动物抑郁模型的抗抑郁作用[J].中药材,2001,24(1):40-41.
    [16]李明亚,李娟好,季宁东.石菖蒲几种粗提取物的抗抑郁作用[J].广东药学院学报,2004,20(2):141-144.
    [17]Cho J,Kim YH,Kong JY,et al.Protection of cultured rat cortical neurons from excitotoxicity by asarone,a major essential oil component in the rhizomes of Acorus gramineus[J].Life Science,2007,71(5):591-599.
    [18]Tao G,Irie Y,Li DJ,et al.Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity[J].Bioorg Med Chem,2005,13(15):4777-4788.
    [19]Shin D,Oh JW,Cho C,et al.The anti-depressant effect of Nelumbinis semen on rats under chronic mild stress induced depression-like symptoms[J].American Journal of Chinese Medicine,2005,33(2):205-213.
    [20]Jiang CG,Kang M,Cho JH,et al.Nelumbinis Semen reverses a decrease in 5-HT1A receptor binding induced by chronic mild stress,a depression-like symptom [J].Arch Pharm Res,2004,27(10):1065-1072.
    [21]Kang M,Pyun KH,Jang CG,et al.Nelumbinis Semen reverses a decrease in hippocampal 5-HT release induced by chronic mild stress in rats[J].Pharm Pharmacol,2005,57(5):651-656.
    [22]Shim I,Bae H,Kang Met al.Development of better antidepressant usingNe lumbinis Semen in an animal model of depression[J].International Congress Series,2006,1287:345-349.
    [23]郭克锋,郭珊,闫凯麟.银杏叶片合并帕罗西汀对抑郁症的疗效观察[J].中国临床康复,2006,10(2)43-45.
    [24]张林娜,陈振强.银杏叶片治疗老年抑郁症的疗效观察[J].辽宁中医杂志,1999,26(12):560.
    [25]张洪新.银杏叶提取物合用经典抗抑郁药控制抑郁发作对比研究[J].中华现代医学与临床,2005,2(2):42-43.
    [26]秦晓松,金魁如,丁宝坤.银杏叶提取物联合盐酸文拉法辛对抑郁大鼠海马nNOS蛋白表达及N0水平的影响[J].中国心理卫生杂志,2003,17(12):828-831.
    [27]Lingaerde O,Foreland AR,Magnusson A.Can winter depression be prevented by Ginkgo biloba extract? A placebo-controlled trial [J].Acta Psychiatr Scand,1999,100(1):62-66.
    [28]Shah ZA,Sharma P,Vohora SB.Ginkgo biloba normalises stress-elevated alterationsin brain catecholamines,serotonin and plasma corticosterone levels[J].Eur Neuropsychopharmacol,2003,13(5):321-325.
    [29]Hemmeter U,Annen B,Bischof R,et ai.Polysomnographic effects of adjuvant ginkgo biloba therapy in patients with major depression medicated with trimipramine[J].Pharmacopsychiatry,2001,34(2):50-59.
    [30]张起中,袁莉,赵楠等.巴戟天醇提物的抗抑郁作用[J].中国药学杂志,2000,35(11)739-741.
    [31]蔡兵,崔承彬,陈玉华.中药巴戟天抗抑郁作用的大小鼠模型三级组合测试评价[J].解放军药学学报,2005,21(5):321-325.
    [32]张有志,李云峰,刘刚.巴戟天寡糖对获得性无助抑郁模型大鼠行为的影响[J].中国行为医学科学,2005,14(4):309-311.
    [33]蔡兵,崔承彬,陈玉华等.巴戟天中菊淀粉型低聚糖类单体成分对小鼠的抗抑郁作用[J].中国药理学与毒理学杂志,1996,10(2):109-112.
    [34]李云峰,罗质璞.巴戟天寡糖的抗应激、抗抑郁效应研究[J].中国药理学会通讯,2000,17(2):54-55.
    [35]刘艳芹,王永安,王伊文.巴戟天六聚寡糖对N~甲基-D-天冬氨酸损伤的大鼠大脑皮层细胞的保护作用[J].中国新医药,2004,3(5):19-21.
    [36]Li YF,Gong ZH,Yang M,et al.Inhibition of the oligosaccharides extracted from Morinda officinalis,a Chinese traditional herbal medicine,on the corticosterone induced apoptosis in PC12 cells[J].Life Sciences,2003,72(8):933-942.
    [37]粱建辉,舒良,罗质璞.巴戟天水提物治疗抑郁症临床疗效初探[J].中国中药杂志,2002,27(1):75-78.
    [38]Xu C,Luo L,Tan RX.Antidepressant effect of three traditional Chinese medicines in the learned helplessness model[J].Ethnopharmacol,2004,91(2-3): 345-349.
    [39]陈瑶,韩婷,秦路平等.积雪草总苷对小鼠抑郁行为和脑内氨基酸含量的影响[J].中药材,2003,26(12):870-872.
    [40]Yan B,Wang DY,Xing DM.The antidepressant effect of ethanol extract of radix puerariae in mice exposed to cerebral ischemia reperfusion[J].Pharmacology,Biochemistry & Behavior,2004,78(2):319-325.
    [41]Yu ZF,Kong LD.Chen Y.Antidepressant activity of aqueous extracts of Curcuma longa in mice[J].Ethnopharmacology,2002,83(1-2):161-165.
    [42]Takeda H,Tsuji M,Matsumiya T.Identification of rosmarinic acid as a novel antidepressive substance in the leaves of Perilla frutescens Britton var.acuta Kudo (Perillae Herba)[J].Nihon Shinkei Seishin Yakurigaku Zasshi,2002,22(1):15-22.
    [43]Noorbala AA,Akhondzadeh S,Tahmacebi-Pour N,et al.Hydro-alcoholic extract of Crocus sativus L.versus fluoxetine in the treatment of mild to moderate depression:a double-blind,randomized pilot trial[J].Ethnopharmacology,2005,97(28):281-284.
    [44]Oshima Y,Matsuoka S,Ohizumi Y.Antidepressant principles of Valeriana fauriei roots[J].Chem Pharm Bull,1995,43(1 ):169-170.
    [45]Dar A,Khatoon S.Behavioral and biochemical studies of dichloromethane fraction from the Areca catechu nut[J].Pharmacol Biochem Behav,2000,65(1):1-6.
    [46]Ali B H,Bashir A K,Tanira MO.The effect of Rhazya stricta Decne,a traditional medicinal plant,on the forced swimming test in rats[J].Pharmacol Biochem Behav,2003,59(2):547-550.
    [47]Singh RK,Nath G,Goel RK,et al.Pharmacological actions of Abies pindrow Royle leaf[J].Indian J Exp Bio 1,1998,36(2):187-191.
    [48]Akhondzadeh S,Kashani L,Fotouhi A,et al.Comparison of Lavandula angustifolia Mill.tincture and imipramine in the treatment of mild to moderate depression:a double-blind,randomized trial[J].Progress in Neuro-Psychopharmacology and Biological Psychiatry,2003,27( 1 ):123-127.
    [49]Zanoli P ,Zavatti M,Rivasi M,Brusiani F,et al.Evidence that the β-acids fraction of hops reduces central GABAergic neurotransmission[J].Ethnopharmacol,2007,109(1):87-92.
    [1] Tecott LH, Nestler E. Neurobehaviroal assessment in the information age[J].Nature neuroscience, 2004, 7: 462-66.
    [2] Austin MP, Mitchell P, Goodwin GM. Cognitive deficits in depression, possible implications for functional neuropathology[J]. Br J Psychiatry, 2001, 170:200-204.
    [3] Porter RJ, Gallacher P, Thompson JM, Young AH. Neurocognitive impairment in drug-free patients with major depressive disorder[J]. Am J Psychiatry, 2003, 182:214-220.
    [4] Hasler G, Drevets WC, Manji HK, Charney DS. Discovering endophenotypes for major depression[J]. Neuropsychopharmacology, 2004, 29:1765-1781.
    [5] Alexopoulos GS, Kiosses DN, Heo M, Murphy CF, Shanmugham B, Gunning-Dixon F. Executive dysfunction and the course of geriatric depression[J]. Biol Psychiatry, 2005, 58: 204-210.
    [6] Meritxell Torras-Garcia, David Costa-Miserachs, Ignacio Morgado-Bemal, Isabel Portell-Cort(?)s. Improvement of shuttle-box performance by anterodorsal medial septal lesions in rats[J]. Behavioural Brain Research, 2003, 141: 147-58.
    [7] Ra(?)l Aguilar, Luis Gil, Alberto Fern(?)ndez-Teruel, Adolf Tobe(?)a. Genetically-based behavioral traits influence the effects of Shuttle Box avoidance overtraining and extinction upon intertrial responding: a study with the Roman rat strains[J]. Behavioural Processes, 2004, 66: 63-72.
    [8] Gerald H. Jacobs, Gary A. Williams, John A. Fenwick, 2004. Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse [J]. Vision Research, 44: 1615-22.
    [9] Anagnostaras SG, Josselyn SA, Frankland PW, Silva AJ Computer-assisted behavioral assessment of Pavlovian fear conditioning in mice[J]. Learning and memory, 2000., 7:58-72.
    [10] Landfield PW, Thibault O, Mazzanti ML, Porter NM, Kerr DSMechanisms of neuronal death in brain aging and Alzheimer's disease: role of endocrine-mediated calcium dyshomeostasis[J]. J Neurobiol., 1992., 23: 1247-60.
    [11]Frick KM,Burlingame LA,Arters JA,Berger-Sweeney J.Reference memory,anxiety and estrous cyclicity in C57BL/6NIA mice are affected by age and sex[J].Neuroscience,2000,95:293-307.
    [12]Spencer RM,Gouw AM,Ivry RB.Age-related decline of sleep-dependent consolidation[J].Learning and Memory,2007,14:480-84.
    [13]Furchtgott E,Wechkin S,Dees JW.Open-field exploration as a function of age[J].J.Comp.Physiol.Psychol.,1961,54:386-88.
    [14]Geoffroy M,Christensen AV.Psychomotor stimulants versusantidepressants in the learned helplessness model of depression [J].Drug Dev.Res.,1993,29:48-55.
    [15]Mac Sweeney CP,Lesourd M,Gandon JM.Antidepressant-like effects of alnespirone (S20499) in the learned helplessness test in rats [J].European Journal of Pharmacology,1998,345:133-137.
    [16]李巍,张世仪.小鼠脑缺血性学习记忆障碍模型的建立[J].基础医学与临床,1995,15(6):46-49.
    [17]刘汇波,叶翠飞,李斌,等.双侧颈总动脉结扎对大鼠学习记忆功能和海马组织形态学的影响[J].基础医学与临床,1998,18(4):54-57.
    [1]刘屏,江进良,王燕等.开心散类方配伍及抗抑郁作用研究[J].中华中医药杂志,2005,20:279-283.
    [2]Willner P.Validity,reliability and utility of the chronic mild stress model of depression:a 10-year review and evaluation[J].Psychopharmacology,1997,134:319-329.
    [3]Lin YH,Liu AH,Xu Y,Tie L,Yu HM,Li XJ.Effect of chronic unpredictable mild stress on brain-pancreas relative protein in rat brain and pancreas[J].Behavioural Brain Research,2005,165:63-71.
    [4]Bodnoff SR,Suranyi-Cadotte B,Quirion R,Meaney MJ.A comparison of the effects of diazepam versus several typical and atypical anti-depressant drugs in an animal model of anxiety[J].Psychopharmacology,1989,97:277-279.
    [5]Santarelli L,Saxe M,Gross C,Surqet A,Battaqlia F,Dulawa S,Weisstaub N,Lee J,Duman R,Arancio O,Belzung C,Hen R.Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants[J].Science,2003,301:805-809.
    [6]Epp JR,Spritzer MD,Galea LA.Hippocampus-dependent learning promotes survival of new neurons in the dentate gyrus at a specific time during cell maturation[J].Neuroscience,2007,149:273-285.
    [7]Ma WP,Cao J,Tian M,Cui MH.,Han HL,Yang YX,Xu L.Exposure to chronic constant light impairs spatial memory and influences long-term depression in rats[J].Neurosci.Res,2007,59:224-230.
    [8]Solomon PR,Vander Schaaf ER,Thompson RF,Weisz D J,Hippocampus and trace conditioning of the rabbit's classically conditioned nictitating membrane response[J].Behav.Neurosci,1986,100:729-744.
    [9]Song L,Che,W Min-Wei W,Murakami Y,Matsumoto K.Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress[J].Pharmacol.Biochem.Behav,2006,83:186-193.
    [10]Wallenstein GV,Eichenbaum H,Hasselmo ME.The hippocampus as an associator ofdiscontiguous events[J].Trends.Neurosci,1998,21:317-323.
    [11] Bowman RE, Zrull MC, Luine VN. Chronic restraint stress enhances radial arm maze performance in female rats[J]. Brain Res, 2001, 904:279-289.
    [12] Bowman RE, Beck KD, Luine VN. Chronic stress effects on memory: sex differences in performance and monoaminergic activity [J]. Horm Behav, 2003, 43:48-59.
    [13] Conrad CD, LeDoux JE, Magarinos AM. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy[J]. Behav Neurosci, 1999, 113:902-913.
    [14] Anagnostaras SG, Gale GD, Fanselow MS. Hippocampus and contextual fear conditioning: recent controversies and advances[J]. Hippocampus, 2001, 11:828-831.
    [15] Mann JJ. Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior[J]. Neuropsychopharmacology, 1999, 21, 99S-105S.
    [16] Elhwuegi.Central monoamines and their role in major depression[J]. Progress in Neuro-Psychopharmacology and biological psychiatry, 2003, 28: 435-451.
    [17] Gold PE.Coordination of multiple memory systems.Neurobiology of learning and memory, 2004, 82:230-242.
    [18] Strohle A, Holsboer F. Stress responsive neurohormones in depression and anxiety[J]. Pharmacopsychiatry, 2003, 36:207-214.
    [19] Heuser IJ, Schweiger U, Gotthardt U, SchmiderJ, Lammers CH, Dettling M, et al. Pituitary-adrenal-system regulation and psychopathology during amitriptyline treatment in elderly depressed patients and in normal comparison subjects[J]. Am J Psychiatry, 1996, 153:93-99.
    [20] Ising M, K(?)nzel HE, Binder EB, Nickel T, Modell S, Holsboer F. The combined dexamethasone/CRH test as a potential surrogate marker in depression[J]. Progress in Neuro-Psychopharmacol Biol Psychiatry, 2005,29:1085-1093.
    [21] Zobel AW, Yassouridis A, Frieboes RM, Holsboer F. Prediction of medium-term outcome by cortisol response to the combined dexamethasone-CRH test in patients with remitted depression [J]. AmJ Psychiarty, 1999, 156:949-951.
    [22] Appelhof BC, Huyser J, Verweij M, Brouwer JP, van Dyck R, Fliers E. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression)[J]. Biol Psychiatry, 2006, 59:696-701
    [23] Austin MP, Mitchell P, Goodwin GM. Cognitive deficits in depression, possible implications for functional neuropathology [J]. Br J Psychiatry, 2001, 170:200-204.
    [24] McAllister-Williams RH, Ferrier IN, Young AH. Mood and neuropsychological function in depression: The role of corticosteroids and serotonin[J]. Psychological Med, 1998,28:573-584.
    [25] Murphy FC, Sahakian BJ, O'Carroll RE. Cognitive impairment in depression: Psychological models and clinical issues. In: Ebert D, Ebmeier KP, editors. New Models for Depression. Basel: Karger, 1998, pp 1-33.
    [26] BelanoffJK, Kalehzan M, Sund B, Fleming Ficek SK, Schatzberg AF. Cortisol activity and cognitive changes in psychotic major depression[J]. AmJPsychiatry, 2001, 158:1612-1616.
    [27] Bremner JD, Vythilingam M, Vermetten E, Anderson Q, Newcomer JW, Charney DS. Effects of glucocorticoids on declarative memory function in major depression[J]. Biol Psychiatry, 2004, 55:811-815.
    [28] Egeland J, Lund A, Landr(?) NI, Rund BR, Sundet K, Asbjornsen A, et al. Cortisol level predicts executive and memory function in depression, symptom level predicts psychomotor speed[J]. Acta Psychiatrica Scandinavica, 2005, 112: 434-441.
    [29] Wauthy J, Ansseau M, von Frenckell R, Mormont C, Legros J-J. Memory disturbances and dexamethasone supression test in major depression[J]. Biol Psychiatry, 1991, 30:736-738.
    [30] Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NPV, et al.Cortisol levels during human aging predict hippocampal atrophy and memory deficits [J]. Nat Neurosci, 1998, 1:69-73.
    [31] Hickie I, Naismith S, Ward PB, Turner K, Scott E, Mitchell P, et al. Reduced hippocampal volumes and memory loss in patients with early- and late-onset depression[J]. Br J Psychiatry, 2005, 186: 197-202.
    [32] Lupien SJ, Gillin CJ, Hauger RL. Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: A dose-response study in humans[J]. Behav Neurosci, 1999, 113:420-430.
    [33] Thoenen H, 1995.Neurotrophins and neuronal plasticity[J]. Science, 270:593-8.
    [34] Schmidt-Kastner R, Wetmore C, Olson L.Comparative study of brain-derived neurotrophic factor messenger RNA and protein at the cellular level suggests multiple roles in hippocampus, striatum and cortex[J].Neuroscience, 1996, 74:161-83.
    [35] Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport[J]. J Neurosci, 1997, 17: 2295-313.
    [36] Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression[J]. Arch Gen Psychiatr, 1997, 54:597-606.
    [37] Altar CA. Neurotrophins and depression[J]. Trends Pharmacol Sci, 1999, 20:59-61.
    [38] Angelucci F, Aloe L, Vasquez PJ, Mathe AA. Mapping the differences in the brain concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in an animal model of depression. Neuroreport, 2000, 11: 1369-1373.
    [39] Fumagalli F, Di Pasquale L, Caffino L, Racagni G, Riva MA. Repeated exposure to cocaine differently modulates BDNF mRNA and protein levels in rat striatum and prefrontal cortex[J]. Eur J Neurosci, 2007, 26:2756-63.
    [40] Smith MA, Makino S, Kvetnansky R, Post RM. Effects of stress on neurotrophic factor expression in the rat brain [J]. Ann. NY Acad. Sci., 1995, 771:234-239.
    [41] Egan MF, Weinberger DR, Lu B.Schizophrenia, Ⅲ: brain-derived neurotropic factor and genetic risk[J]. Am J Psychiatry, 2003, 160:1242.
    [42] Vaidya VA, Duman RS. Depression-emerging insights from neurobiology[J]. Br. Med. Bull, 2001, 57: 61-79.
    [43] Gold PE. Acetylcholine modulation of neural systems involved in learning and memory[J]. Neurobiology of learning and memory, 2003, 80:194-210.
    [44] Finkelstein Y, Koffler B, Rabey JM, Gilad GM. Dynamics of cholinergic synaptic mechanisms in rat hippocampus after stress[J]. Brain Research, 1985, 343:314-319.
    [45] Newhouse P, Singh A, Potter A. Nicotine and nicotinic receptor involvement in neuropsychiatric disorders[J]. Curr Top Med Chem, 2004, 4:267-82.
    [46] Christensen H, Griffiths K, Mackinson A, Jacomb P. A quantitative review of cognitive deficits in depression and Alzheimer-type dementia[J]. J Int Neuropsychol Soc, 1997, 3: 631-651
    [47] Drevets WC. Neuroimaging studies of mood disorders [J]. Biol Psychol, 2000,48:813-829.
    [48] Drevets WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders [J]. Curr Opin Neurobiol, 2001, 11: 240-249.
    [49] Fossati P, Ergis AM, Allilaire JF. Problem-solving abilities in unipolar depressed patients: comparison of performance on the modified version of the Wisconsin and the California sorting tests[J]. Psychiatry Res, 2001, 104:145-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700