海鞘醇及其微球抗乙肝活性和药效与毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海鞘醇(SC)是我国自主知识产权的具有明显抗乙肝病毒活性的先导化合物,其长效肝靶向的微球制剂有望成为一个新型的抗乙肝制剂。通过本研究,揭示海鞘醇体外抗HBV活性、小鼠体内免疫调理作用及其微球制剂动物模型体内抗病毒效果以及毒性情况。
     一海鞘醇体外抗HBV活性及其对试验细胞毒性研究
     L2.2.15(又称HepG2.2.15)为HepG2细胞稳定转染HBV全基因组的细胞株,应用的是串联的HBV基因组,在很强的外源性启动子的控制下,这个系统可以用于病毒的产生,并且能长期、稳定地向培养上清液中分泌外膜蛋白,核壳蛋白和HBV颗粒,是目前广泛应用于筛选和评价体外抗HBV药物较好的细胞模型。
     本试验选用L2.2.15细胞系,利用rt-PCR、Southern-Blot以及ELISA等方法,通过对L2.2.15细胞培养过程中细胞内HBV定量、培养液中病毒定量及培养液中外膜蛋白,核壳蛋白定量的手段,进行海鞘醇体外抗HBV的活性研究;同时,又利用海鞘醇对正常人胚肝细胞(CCC-HEL-1)与HepG2以及L2.2.15细胞毒性的对比,来阐明其试验细胞毒性。
     首先,海鞘醇对细胞内HBV复制抑制率在试验所选的药物浓度范围(0.1~12.59g/ml)内没有量效依赖关系或量效关系复杂,非线性,但在试验药物浓度的最高与最低出现相对稳定且较高的抑制作用。在海鞘醇作用L2.2.15细胞的初期(4d),对HBV-DNA的复制抑制率相对较低且离散,可能是药物作用时间短、起效慢;在用药一段时间(8d)作用显现,达到抑制高峰(约85%以上);随时间推移(11d),抑制率降低,可能是由于L2.2.15细胞生长时间周期的延长,细胞呈几何级数增多,组内药物浓度不变所致;试验的最后,停药3天(14d),总体抑制水平变化不大,证明海鞘醇对L2.2.15细胞HBV-DNA复制的抑制不会随药物停用而马上消失或反跳。海鞘醇对L2.2.15细胞内部HBV-DNA的复制有抑制作用还表现在其对可以与cccDNA相互转化的RC-DNA的抑制(Southern-Blot试验),提示可能可以降低细胞内cccDNA-Pool的容量,以利于病毒DNA的清除。
     其次,海鞘醇对L2.2.15细胞分泌HBV的Dane颗粒的影响较为复杂,无药物剂量依赖。随着用药时间的延长,总体趋势为抑制→促进→回复;这个结果与Southern-Blot试验结果一致,Southern-Blot试验结果显示海鞘醇对SC-DNA的抑制作用在用药初期(4d)作用即很明显(抑制率可达70%以上),但中期(7d)时又表现为促进(最高可达200%以上),停药后期(10d)基本回复为无影响,由于L2.2.15细胞所分泌HBV的Dane颗粒中所携带的遗传物质即为SC-DNA。
     再次,海鞘醇对L2215细胞分泌HBsAg(试验抑制率40%)尤其是HBeAg(试验抑制率90%)具有较强的抑制作用,这个抑制作用基本上符合量效关系,即随着海鞘醇浓度加大,抑制率升高。从时间来看,用药4d至14d,不同剂量药物抑制作用皆为一个先升高后降低的过程,即抑制率8d>11d>4d,14d的抑制率基本同于4d,当海鞘醇浓度高时,14d>>4d。
     海鞘醇在不同浓度、作用不同时间对试验选择的三种细胞增殖都有不同程度的促进或抑制作用,低剂量促增殖,高剂量抑制,抑制作用基本随海鞘醇浓度增大而增强。海鞘醇在8ug/ml对HepG2、CCC-HEL-1及L2.2.15细胞都是一个骤变浓度,浓度低于8ug/ml以下时,对HepG2及CCC-HEL-1在不同时间内增殖抑制作用较不明显(低于30%)甚至偶有增殖促进,提示海鞘醇的安全用药剂量为低于8ug/ml;海鞘醇在16ug/ml以上时,对三种细胞皆有50%以上的增殖抑制率,对正常人胚肝细胞将有杀伤作用。不同浓度海鞘醇作用48hr时,对L2.2.15细胞增殖抑制为40~80%,而同样条件下对CCC-HEL-1细胞增殖促进,说明海鞘醇在一定条件下,对于感染HBV的肝肿瘤细胞具有选择性的毒性,而对人正常胚肝细胞损伤较小。这种作用在海鞘醇作用24与72hr时又有不同,很可能与三种细胞株的生长周期相关。
     综上,海鞘醇具有较强的体外抗HBV的活性,以L2.2.15细胞株为模型,在安全用药浓度范围内海鞘醇体外抗HBV活性有如下特点:活性随时间推移先升高后降低,然后稳定,停药后无反跳;对HBsAg与HBeAg的抑制随时间延长与剂量提高整体提高。
     二海鞘醇小鼠体内免疫调理试验研究
     结果表明,小鼠腹腔注射海鞘醇0.2mg/kg隔天,共7次,淋巴细胞对ConA诱导的增殖反应性增加(p<0.05),同时发现胸腺增重(p<0.05),提示海鞘醇该剂量不仅增强T淋巴细胞的增殖反应,还增加淋巴样器官重量。腹腔注射海鞘醇0.4、0.8mg/kg隔天,共7次,脾细胞对ConA的增殖反应性反而降低(p>0.05),胸腺指数与对照组相比稍有增大(p>0.05)。脾脏指数随海鞘醇剂量加大逐渐增大,在0.8mg/kg剂量组与对照组比较中有显著性差异(p<0.02)。
     研究还发现,腹腔注射海鞘醇0.2、0.4、0.8mg/kg隔天,共7次,腹腔巨噬细胞的吞噬功能均明显增高(P<0.01),但随着剂量加大至0.8mg/kg,吞噬功能反而相对降低:而不同浓度的海鞘醇腹腔注射后NK细胞活性均增高,低剂量、高剂量组与对照组相比分别有显著及非常显著意义(P<0.05与P<0.01),海鞘醇增强非特异性细胞介导免疫性可能是其抗乙肝的机理之一。
     腹腔注射海鞘醇对小鼠碳廓清无明显影响(p>0.05)。
     综合以上结果,海鞘醇0.2、0.4mg/kg可能对小鼠免疫功能有正向调节作用,随着剂量加大,反而对免疫功能有抑制。值得注意的是,海鞘醇0.8mg/kg能使脾指数增加,其原因有待进一步研究(大鼠长毒靶器官为脾亦可能于海鞘醇的此性质有关)。
     三海鞘醇微球在鸭乙肝模型中对试验鸭DHBV-DNA的抑制作用
     试验采用三种注射给药方式:皮下注射(HYPO,SC)、腹腔注射(IP)与静脉注射(IV),比较给药方式对药效带来的影响。其中皮下与腹腔注射设3个剂量组,分别为25,50和100mg/kg,1天2次,给药10天(Bid×10),静脉注射设3个剂量组,分别为2.5,5.0和10.0mg/kg,每5天给药一次,共给2次;阳性对照药为拉米夫定(3TC),口服(PO)50mg/kg,1天2次,给药10天(Bid×10)。分别在给药前(T0),给药后第5天(T5),10天(T10)及停药后3天(P3)取血,斑点杂交,检测并统计结果进行药效比较。
     皮下注射海鞘醇微球药物治疗,100mg/kg组一天2次,给药10天,对感染鸭的血清DHBV-DNA水平的抑制效果显著,统计学处理结果有非常显著(P<0.01)和显著性差异(P<0.05),二批实验的抑制效果可重复。50mg/kg组,有一定的抑制作用。25rag/kg组抑制DHBV-DNA作用不明显。海鞘醇微球在DHBV鸭感染模型内的有效剂量为100mg/kg组,皮下注射,一天2次,给药10天。
     腹腔注射海鞘醇微球药物治疗,100mg/kg组一天2次,给药10天,对感染鸭的血清DHBV-DNA水平的抑制效果显著,统计学处理结果有非常显著(P3,P<0.01)和显著性差异(T5,T10,P<0.05)。50mg/kg组,有一定的抑制作用,统计学处理结果有非常显著(P3,P<0.01)和显著性差异(T10,P<0.05)。25mg/kg组抑制DHBV-DNA作用不明显。海鞘醇微球在DHBV鸭感染模型内的有效剂量为50及100mg/kg组,腹腔注射,一天2次,给药10天。
     静脉注射海鞘醇微球药物治疗,10mg/kg组,对感染鸭血清DHBV-DNA水平的抑制效果显著,统计学处理结果在给药10d(T10)与停药3天(P3)有显著性差异(P<0.05)。5mg/kg组,亦有一定的抑制作用,结果在给药10d(T10)与停药3天(P3)有显著性差异(P<0.05)。2.5mg/kg组抑制DHBV-DNA作用不明显。海鞘醇微球在DHBV鸭感染模型内的有效剂量为5与10mg/kg组,静脉注射,五天一次,给药10天。
     综上所述,以统计学疗效为评判指标则静脉注射是最佳给药方式,其用量少(是其它两种给药方式的1/10)而且疗效高(试验中、高剂量皆有效),可以达到增效减毒的作用,这与其直接进入血液迅速造成被动肝靶向有关;其次为腹腔注射给药,其与皮下给药方式在给药剂量不变的情况下中剂量组疗效亦可显现出统计学意义,这与腹腔内与皮下非特异性免疫应答的反应速度与强度相关。
     另外,试验中还发现,不论何种给药形式,海鞘醇微球在停药后一段时间内都没有出现明显的3TC等核苷类似物样的停药反跳现象,这与受试药物为长效制剂有很密切的关系,此外,海鞘醇体外抗乙肝活性我们也发现海鞘醇直接用药在抗病毒试验中亦没有核苷类似物样停药反跳现象,这可能说明,海鞘醇与核苷类似物有着截然不同的抗病毒机制,才没有像3TC等核苷类似物长时间用药导致HBV基因频繁突变而造成停药反跳和疗效减弱。
     四海鞘醇微球对四氯化碳引起的大鼠急性肝损伤的治疗作用
     对四氯化碳引起的大鼠急性肝损伤模型,海鞘醇微球腹腔注射高剂量组(相当于海鞘醇0.084mg/kg·d)可以同阳性药甘利欣注射液(13.5mg/kg·d)一样显著性降低急性实验性肝损伤大鼠谷丙转氨酶及谷草转氨酶(P<0.05)指标;优于甘利欣注射液的是,海鞘醇微球腹腔注射高、中剂量组(相当于海鞘醇0.042mg/kg·d)可显著降低(P<0.05)四氯化碳引起的大鼠肝肿大。
     综合以上结果,海鞘醇微球对四氯化碳引起的大鼠急性肝损伤的治疗作用以大剂量组效果最好,其次为中剂量组,再次为低剂量组(相当于海鞘醇0.021mg/kg·d)。
     五海鞘醇微球试验动物体内毒性研究
     急性毒性试验,以相同体积、不同浓度,静脉注射海鞘醇微球,给药一次,给药后即刻观察动物反应和死亡情况,并连续观察1~2周。测得海鞘醇微球小鼠静脉注射LD_(50)为580.93mg/kg,95%的置信区间为483.07-704.44mg/kg;大鼠静脉注射LD_(50)为578.59mg/kg,95%的置信区间为489.79-694.26mg/kg。
     就目前试验进程及现阶段结果(13周),海鞘醇微球静脉注射给药,对大鼠体重、摄食无影响。
     对雄性大鼠部分血液学及血液生化指标影响为:小剂量组Hb与PLT与对照组相比极显著(P<0.01)升高,MO显著(P<0.05)升高,GR显著下降;血生化指标除BUN与对照组相比显著降低外,基本无影响。
     对雌性大鼠部分血液及血液生化学指标影响为:大、中、小剂量Hb与PLT与对照组相比极显著降低,大剂量组WBC极显著增高(有炎症反应趋势),MO显著下降,GR显著升高;血生化指标ALB(大、中剂量)与对照组相比显著降低,小剂量组ALT显著降低(大、中剂量组也有一定降低),提示有降酶作用。
     脏器指数方面,海鞘醇微球静脉注射13周,雌、雄大鼠在用药大、中、小三个剂量后,与对照组相比脾脏分别有极显著与显著增大;肺脏亦极显著增大(雌性小剂量显著);海鞘醇微球静脉注射13周,雌性动物肝脏系数在给药微球的大、中剂量组增大,并与对照组有显著差异,雄性动物肝脏增大不显著。
     病理半定量观察结果显示,海鞘醇微球静脉注射给药13周,肝、脾、肺脏不同程度出现病理变化,以脾脏最严重,其次为肝脏与肺脏。
     综上所述,海鞘醇微球静脉注射给药13周时,毒性已经显现,主要靶器官为脾脏,其次为肺,再次为肝脏,而且显现出性别差异。
     随着试验的继续,当用药26周以及停药恢复4周实验结果测定并统计结束后,将得到更为准确的用药毒性信息。
5α, 8α-cyclicobioxygen-24-bimethyl-6-vinyl-313-cholesterol(SC) is a lead compound withindependence intellectual property rights, its microsphere preparation could be a veryprospective new anti-HBV drug. These researches are to reveal SC activities of anti-HBV,immunity opsonization in mouse, the effects of anti-HBV and toxicity for its microspherepreparation.
     1 Anti-HBV activities and toxicity to cell of SC
     1.1 Anti-HBV activities
     cell lines: L2.2.15; method: rt-PCR, Southern Blot and Elisa to test HBV quantitation,HBsAg and HBeAg.
     SC has no dose-effect relationship for inhibiting HBV replication at dose 0.1-12.5μg/ml, ithas stable and higher inhibit ratio especially at dose 0.1 and 12.5μg/ml. At 4d, inhibit ratio ofdoses are relative lower and straggling, maybe because of short action time; At 8d, it shows thehighest inhibit ratio(>85%) during the whole experiment time; At 11d, inhibit ratio decreased,maybe cell exponent proliferation cycle comes; At 14d, no significant change for inhibit ratio, it isan evidence the effect of SC acting L2.2.15 cell line dose not disappear immediately. SouthernBlot test shows SC can inhibit rcDNA replication, this may be a cue in vivo to inhibit cccDNA.
     Action of SC inhibiting secretion Dane partical of L2.2.15 cell is complicated. According totime, the trend of action is inhibiting→prornoting→reversion, this result equal to Southern Blottest. The result of Southern Blot shows SC influence replication of HBV scDNA. At 4d, theinhibition ratio is upper than 70%; at 7d, the influence changed to promote(highest 200%); at10d(drug withdraw), almost no influence.
     SC also inhibits HBsAg(40%) and HBeAg(90%) secretion in L2.2.15 cell line, and inhibitoryactions show direct dose-effect relationship. From 4d to 14d, different doses, trend of inhibitionratio is increase→decrease, 8d>11d>4d≈14d; SC=12.5μg/ml, inhibition ratio 14d>4d.
     1.2 toxicity
     cell lines:L2.2.15, HepG2 and CCC-HEL-1; method: MTS to test inhibition ratio of cellproliferation.
     SC influences proliferation of these three cell lines, it has different level for each cell line.Above all, low dose promoting and high dose inhibiting. Basicly, inhibiting level is also directdose-effect relationship. It is a crisis concentration SC=8μg/ml for each cell line, if lower,inhibiting level is not obvious(<30%), by chance promoting. There is an evidence of safetymedication dose for SC. If SC>16μg/ml, inhibition ratio of proliferation will be upper than 50%for these three cell lines, thus it would be toxicity to human embryo liver cell line. Specially, whiledifferent SC concentration for 48 hours, it has 40~80%inhibition ratio to L2.2.15 cell line, on thecontrary, to the other two cell lines, it have not. It indicates SC maybe possess selective activity ofcell toxicity.
     To sum up, SC has potential anti-HBV activities in vitro. To L2.2.15 cell line, safetyconcentration, these activities will be increase earlier, after peak, decrease, then stable relatively,no rebound. The inhibition ratio for HBsAg and HBeAg increase according to dose raising andtime lasting.
     2 SC immunifaetion in mouse
     SC 0.2mg/kg i.p, qd, 7 times, concanavalin A induced proliferation of lymphocyteincreasing(p<0.05), with thymic hyperplasia(p<0.05). SC 0.4 or 0.8mg/kg i.p, qd, 7 times,concanavalin A induced proliferation of lymphocyte decreaseing(p>0.05), thymichyperplasia(p>0.05). Index number of spleen is increasing follow as concentration of SC,while SC=0.8mg/kg, there is significant difference(p<0.02) with control group.
     SC 0.2, 0.4 or 0.8mg/kg i.p, qd, 7 times, phagocytosis of peritoneal macrophage increasesobviously(p<0.01), while group 0.8mg/kg, phagocytosis promotion ratio decreased relatively.Natural killer(cell) cytoactive is promoting equally(group 0.2mg/kg, p<0.05, group 0.8mg/kg,p<0.01). SC i.p, no manifest influence to carbon clearance in mouse(p>0.05).
     Avove all, SC i.p group 0.2 or 0.4mg/kg maybe up-regulate immunological function inmouse, on the contrary group 0.8mg/kg suppresses.
     3 Functions of SC-MS inhibits DHBV-DNA in duck hepatitis B virus model in vivo
     Objective: to test the influence of pharmacodynamic for three administration styles. Injectionform: sc, ip and iv. Dosage: 25, 50 and 100mg/kg, b.i.d×10(sc, ip); 2.5, 5.0 and 10.0mg/kg, 5d adun vic(iv), positive control: 3TC, po, 50mg/kg, b.i.d×10. Sampling: before administration(T0), ad.5dOT5, ad. 10d(T10) and after drug withdraw 3d(P3), get plasma samples, dot blot, detect andmake statistics.
     3.1 ad. sc
     SC 100mg/kg, b.i.d×10, very significant or significant difference(p<0.01 or p<0.05) to theinbit ratio of DHBV-DNA. SC 50mg/kg, b.i.d×10, unvarying inhibition. SC 25mg/kg, b.i.d×10,no apparent inhibition.
     3.2 ad. ip
     SC 100mg/kg, b.i.d×10, very significant or significant difference(P3, p<0.01; T5, T10,p<0.05) to the inbit ratio of DHBV-DNA. SC 50mg/kg, b.i.d×10, very significant or significantdifference(P3, p<0.01; T10, p<0.05). SC 25mg/kg, b.i.d×10, no apparent inhibition.
     3.3 ad. iv
     SC 10mg/kg, 5d ad un vie, significant difference(P3, T10, p<0.05) to the inbit ratio ofDHBV-DNA. SC 5mg/kg, 5d ad un vic, same to 10mg/kg group. SC 2.5mg/kg, 5d ad un vic, noapparent inhibition.
     To sum up, statistical pharmacodynamics show iv. SC-MS is the optimizationadministration, because of lower dosage and higher curative effect. These effects might becaused by iv. passive-liver-target. Especially, no matter each administration style, there is norebound like 3TC. This result might come from two actions, the one is long acting preparationfor SC-MS, the other one maybe different anti-DHBV mechanism from 3TC.
     4 SC-MS therapeutical effect to carbon tetrachloride induced acute hepatic injury in rats
     Model: carbon tetrachloride induced acute hepatic injury. Dosage: high, middle, low dosagegroups, each SC-MS(equivalent SC) 0.084, 0.042 and 0.021mg/kg, ip, s.i.d×7, positive control:inj. Solution of diammonium glycyrrhizinate(13.5mg/kg), ip, s.i.d×7.
     Results: SC-MS high group in the same inj. Solution of diammonium glycyrrhizinate couldsignificantly step down GPT and GOT in model rats(p<0.05). Moreover, each SC-MS high andmiddle group could significantly depress hepatomegaly induced by CC14 in rats((p<0.05).
     5 Toxicity of SC-MS in vivo.
     SC-MS iv, once, equal volume, different concentrations, in mouse and rats. Observe animalsreactions and deathasis, for 1~2 weeks. Results: LD_(50)(mouse)=580.93mg/kg, confidenceinterval(95%) 483.07~704.44mg/kg; LD_(50)(rats)=578.59mg/kg, confidence interval(95%)489.79~694.26mg/kg.
     long-term toxicity test in rats is agoing. Dosage: SC-MS iv. high, middle, low dosage groups,each SC-MS 120, 60 and 20mg/kg, once a week. By now(13 weeks), SC-MS iv, no influence toanimals weight and ingestion for each group.
     Hematology and biochemical indicator:
     ♂, low dosage group (contrast control group), Hb and PLT increasing(p<0.01); MOincreasing(p<0.05), GR decreasing(p<0.05); BUN decreasing(p<0.05).
     ♀, each group(contrast control group), Hb and PLT decreasing(p<0.01); high group, WBCincreasing(p<0.01); MO decreasing(p<0.05), GR increasing(p<0.05); high or middle group, ALBdecreaing(p<0.05); each group, ALT decreasing(only low group, p<0.05).
     Organ index number:
     ♂, each group(contrast control group), spleen multiplication(p<0.05), lung multiplication(p<0.01), liver multiplication(no significant).
     ♀, each group(contrast control group), spleen multiplication(p<0.01), lung multiplication(p<0.01 or p<0.05), liver multiplication(p<0.05, high or middle group).
     Pathology half quantitative observation:
     SC-MS, iv, 13 weeks, in rats. Livers, spleens and lungs of rats become diversity extentpathology changes, spleens most severity, next livers and lungs.
     Above all, SC-MS, iv, 13 weeks, in rats. Toxicity is visualization. Main targeting organ isspleen, and lung, and liver. Especially, sex differences show up.
     With time goes on, come to the end of the toxicity experiment, more certain and preciseresult would be discovered.
引文
[1] Blumberg BS.JAMA, 1965; 191: 541.
    [2] Blumberg BS.Ann Intern Med, 1967; 66: 924.
    [3] 骆抗先,编著.乙型肝炎基础与临床(第二版),人民卫生出版社,2003:1.
    [4] Lok AS, Heathcote EJ, Hoofnagle JH, Management of hepatitis B: 2000-summary of a workshop.Gastroenterology,2001,120:1828-1853.
    [5] 庄辉.慢性乙型肝炎病毒感染及其防治.中华肝脏病杂志,2005,13(5):324—325.
    [6] McMahon BJ, Holck P, Bulkow L, et al. Serologic and clinical outcomes of 1536 Alaska Natives chronically infected with hepatitis B virus. Ann Intern Med, 2001,135:759-768.
    [7] McMahon BJ, Chronic carriers of hepatitis B virus who clear hepatitis B surface antigen: are they really "offthe hook" ? Hepatology, 1998,28:265-267.
    [8] Lok AS, McMahon BJ; Practise Guidelines Committee, American Association for the study of Liver Diseases(AASLD). Chronic hepatitis B: update of recommendations. Hepatology,2004,39:857-861.
    [9] 卢国强,李雪宏,林海,等.医务人员肝炎病毒感染状况分析[J].中华流行病学杂志,2000,2:103-105.
    [10] 刘崇柏.我国病毒性肝炎人群流行病学特征及流行因素研究[J].中华肝脏病杂志,1998,2:67-70.
    [11] 王豪.乙型肝炎感染的自然史[J].中国计划免疫,2004,10(3):166—170.
    [12] 彭文伟.传染病学[M].北京:人民卫生出版社,2001:30.
    [13] 池肇春,叶维法.新编实用肝病学[M].北京:中国医药科技出版社,1994:65.
    [14] 周最明,郭亚兵,骆抗先.乙型肝炎病毒变异对其特异性CTL反应的影响[J].中华肝脏病杂志,2002,10(1):74.
    [15] 于梦久.传染病学进展[M].长春:长春出版社出版,2001:65.
    [16] 赵英杰,熊良仲,高志文.对慢性乙型肝炎发病机制的再认识.华西医学,2004,19(2):345。
    [17] 季伟,王慧芬.乙型肝炎病毒持续感染的可能机制[J].临床肝胆病杂志,2000,16(4):201-202.
    [18] 骆抗先,编著.乙型肝炎基础与临床(第二版),人民卫生出版社,2003:3.
    [19] 詹万雷,崔东.乙肝病毒研究进展.广东医学,2004,25(3):336—337.
    [20] 骆抗先,编著.乙型肝炎基础与临床(第二版),人民卫生出版社,2003:27—28.
    [21] Anna Suk, Fong Lok. Hepatitis B infection: pathogenesis and management. Journal of hepatology,2000,32(Suppl 1):89.
    [22] 成萍,尤忠胜,孔玉英,等.乙型肝炎病毒的核心启动子各区段功能的研究.生物化学与生物物理学报,1999,31(5):577-582.
    [23] Reifenberg K, Lohler J, Pudollek HP, et al. Long-term expression of the hepatitis B virus core-e-and x protein does not cause pathologic changes in transgenic mice. J Hepatol, 1997,26:119
    [24] Wang XW, Gibson MK, Vermulen W, et al. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res, 1995,23:53
    [25] 姚桢,编著.分子乙型肝炎病毒相关病学(M).中国医药科技出版社,1998:3-4.
    [26] 骆抗先,编著.乙型肝炎基础与临床(第二版),人民卫生出版社,2003:29—32.
    [27] 成军,杨守纯,编著.现代肝炎病毒分子生物学.人民军医出版社,1997:31—34.
    [28] 骆抗先,编著.乙型肝炎基础与临床(第二版),人民卫生出版社,2003:37—39.
    [29] 姚桢,编著.分子乙型肝炎病毒相关病学[M].中国医药科技出版社,1998:4.
    [30] De Meyer S, Gong ZJ, Suwandhi W, et al. Organ and species specificity of hepatitis B virus infection: a review of literature with a special reference to preferential attachment of HBV to human hepatocytes. J Viral Hepat, 1997,4:145-153.
    [31] Treichel U, Meyer zum B, Dienes HP, et al. Receptor-mediated entry of hepatitis B virus particles into liver cells. Arch Virol, 1997,142:493-498.
    [32] Mabit H, Vons C, Dubanchet S, et al. Primary cultured normal human hepatocytes for hepatitis B virus receptor studies. J Hepatol, 1996,24:403-412.
    [33] Sung Gyoo Park, Jin Kyung Rho, and Guhung Jung. Hsp90 makes the human HBV Pol competent for in vitro priming rather than maintaining the human HBV Pol/pregenomicRNA complex. Archives of Biochemistry and Biophysics, 2002,401:99-107.
    [34] Zeuzem S, da Man RA, Honkoop P, et al. Dynamics of hepatitis B virus infection in vivo. J Hepatol, 1997,27:431-436.
    [35] Delaney WE, sore HC. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology, 1998, 28:1134-1146.
    [36] He TC, Zhou S, Da-Costa LT, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA, 1998, 95:2509-2514.
    [37] Sprinzl MF, Oberwinkler H, Schaller H, et al. Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice:crossing the species barrier. J Virol, 2001, 75: 5108-5118.
    [38] Smolec J, Snyder R. A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc Natl Acad Sci USA,1978, 75:4533-4537.
    [39] Marion PL, Oshiro LS, Regnery DC, et al. A virus in Beechey ground squirrels that is related to hepatitis B virus of humans. Proc Natl Acad Sci USA,1980, 77:2941-2945.
    [40] Mason WS, Seal G, Summers J. Virus of Peking ducks with structural and biological relatedness to human hepatitis B virus. J Viol, 1980, 36:829-836.
    [41] Sprengel R, Kaleta EF, Will H. Isolation and characterization of a hepatitis B virus endemic in herons. J Virol, 1988, 62:932-937.
    [42] Tang H, McLachlan A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc Natl Acad Sci USA, 2001, 98: 1841-1946.
    [43] 焦成松,楼方岑,瞿瑶,等.鸭乙型肝炎动物模型的制备—DHBV经不同八千对雏鸭的实验感染[J].第一军医大学学报,1989.10(5):437.
    [44] 秦向菁.抗乙型肝炎病毒药物筛选模型及其应用.国外医学药学分册[J],2004,31(6):366—369.
    [45] Chisari FV. A transgenic mouse model of the chornic heptatitis surface antigen carrier state. Science, 1985,230(6): 1157-1160.
    [46] Babinet C. Specific expression of heptatitis B surface antigen(HBsAg) in transgenic mice. Science, 1985,230(6):1160-1163.
    [47] Araki K, Miyazaki J, Hino O, et al.Expression and replication of hepatitis B virus genome in transgenic mice[J].Proc Natl Acad Sci USA, 1989, 86(1):207-220.
    [48] Guidotti LG, Matzke B, Schaller H, et al.High level hepatitis B virus replication in transgenic mice[J].J virol, 1995,69:6158-6169.
    [49] 焦成松.转基因小鼠在乙型肝炎研究中的应用.国外医学(流行病学、传染病学分册),1998,25(5):198-201.
    [50] 邱英锋,缪晓辉.乙型肝炎动物模型及其建立方法.西北民族大学学报(自然科学版),2003,24(12):73—76.
    [51] Waddell PJ, Kishino H, Ota R. A phylogenetic fundation for comparative mammalian genomics. Genome Inform, 2001, 141:141-154.
    [52] 葛宪民,王树声.乙型肝炎病毒(HBV)感染动物模型研究的历史和现状.广西预防医学,1996.2:184-188.
    [53] Walter E, Keist R, Niederost B, et al. Hepatitis B virus infection of Tupaia hepatocytes in vitro and in vivo. Hepatology, 1996, 24: 1-5.
    [54] Kock J, Nassal M, Maclblly S, et al. Efficient infection of primary Tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol, 2001, 75: 5084-5089.
    [55] 严瑞琪,苏建家,陈志英,等.人乙型肝炎病毒实验感染成年树鼠句的初步研究.广西医学院学报,1984,1:10-15.
    [56] 刘芳华,饶娴宜.人乙型肝炎病毒血清实验感染树鼩的研究.贵州医药,1987,11:24-27.
    [57] 苏建家,严瑞琪,甘友全,等.成年树鼩实验感染人乙型肝炎病毒的研究.中华病理学杂志,1987,16:103-105.
    [58] 苏建家,王宇,杨春,等.HBV-DNA能整合入树鼩肝细胞基因.中华病理学杂志,1992,21:308-309.
    [59] 苏建家,王宇,杨春,等.人乙肝病毒DNA在感染树鼩肝细胞内状态的研究.广西科学,1997,4:139-142.
    [60] 李奇芬,丁明权,王洪,等.树鼩感染丁型肝炎病毒的实验研究.中华医学杂志,1995,75:611-613
    [61] De Clercq E. Antiviral drugs in current clinical use[J]. J Clin Vrol, 2004, 30(2): 115-133.
    [62] Gane m D, Prince AM. Hepatitis B virus infection-natural history and clinical consequences[J]. N Engl J Med, 2004, 350(11): 1118-1129.
    [63] Humphries JC, Dixon JS. Antivirals for the treatment of chronic hepatitis B: current and furture options[J].lntervirology,. 2003, 46(6): 413-420.
    [64] 骆抗先,编著.乙型肝炎基础’与临床(第二版),人民卫生出版社,2003:382—383.
    [65] Tompkins WA. Immunomodulation and therapeutic effects of oral use of interferon alpha: mechanism of action[J]. Interferon Cytokine Res, 1999, 19(8): 817.
    [66] Robek MD, Wieland SF, Chisati FV. Inhibition of hepatitis B virus replication by interferon requires proteasome activity[J]. Viral, 2002, 76(7): 3570.
    [67] 权启镇,主编.新肝脏病学.济南:山东科学出版社,2002,589.
    [68] Wong DK, Cheung AM, Orourke K, et al. Effect of alpha-interferon treatment in patients with hepatitis B e antigen positive chronic hepatitis B. Annals of Internal Medicine, 1993, 119: 312.
    [69] 吴佳,李瑛.慢性乙型肝炎的药物治疗.世界临床药物,2004,25(8):499—504.
    [70] 徐峰.胸腺素α1的作用机理及临床应用[J].国外医学流行病学传染病学分册,2000,27(4):152-155.
    [71] 骆抗先,编著.乙型肝炎基础与临床(第二版),人民卫生出版社,2003:421.
    [72] Chien RN, Liaw YF, Chen TC, et al. Efficacy of thymosin alphl in patients with chronic hepatitis B: a randomized, controlled trial. Hepatology, 1998, 27: 1383-1387.
    [73] Heider U, Heissner C, Zavrski I, et al. Treatment of refractory chronic lymphocytic leukemia with Campath-1 H in combination with lamivudine in chronic hepatitis B infection[J]. Eur J Hae mwtol, 2004, 72(1): 64-66.
    [74] 程红春,刘鹏,徐雪萍,等.乙肝疫苗的国内研究进展.实用医药杂志,2004,21(6):556-558.
    [75] Ishioka GY, Fikes J, Hermanson G, et al. Utilization of MHC class 1 transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes. Journal of Immunology, 1999, 162: 3915.
    [76] 罗漩,魏自力,陈万革,等.干扰素用于重组乙肝疫苗的佐剂作用.中国生物制品学杂志,2000,13(4):229.
    [77] 吴晓蓉,贾文祥,邝玉,等.缓释微球乙肝疫苗的初步研究.中国生物制品学杂志,2003,13(2):89.
    [78] 于梦久,主编.传染病学进展[M].长春:长春人民出版社,2001:97.李绍白.慢性乙型肝炎抗病毒药物治疗的评价[J].临床内科杂志,2002,19(4):251.
    [79] Karrayiannis P. Hepatitis B virus: old, new and future appreaches to antiviral treatment[J]. J Antimicrob Chemother, 2003, 51(4): 761-785.
    [80] 周平.抗病毒药拉米夫定治疗慢性乙型肝炎的研究进展[J].世界感染杂志,2001,1(1):75-77.
    [81] 周平.拉米夫定联合用药治疗慢性乙型肝炎[J].空军总医院学报,2002,18(1):43-45.
    [82] Chien RN, Liaw YF, Atkins M. Pretherapy alanine transaminase level as a determinant for hepatitis B e antigen seroconversion during lamivudine therapy in patients with chronic hepatitis B. Asian Hepatitis Lamivudine Trial Group. Hepatology, 1999, 30(3): 770-774.
    [83] 张福奎,贾继东,王宝恩.慢性乙型肝炎的治疗(J).中华肝脏病杂志,2000,8(4):253-255.
    [84] HeathcoteEJ, Jeffers L, WrightT, etal. Loss of serum HBVDNAandHBeAg Ⅱ and seroconversion following short-term(12 weeks) adefovir dipivoxil therapy in chronic hepatitis B: two placeb-controlled phase Ⅱ studies(abstr)[J] . J Hepatology, 1998, 28: 317.
    [85] 周吉定,彭伟军,罗家齐,等.治疗性乙肝疫苗治疗慢性病毒性乙型肝炎的疗效观察[J].宁夏医学杂志,2000,22(2):73.
    [86] 陈增潭.慢性乙型肝炎的中医治疗[J].中西医结合肝病杂志,2003,13(4):193-195.
    [87] 浦忠平.清肝汤治疗慢性乙型肝炎71例[J].山西中医,2003,19(1):18.
    [88] 张惠芸.治肝灵口服液治疗慢性乙型肝炎106例[J].上海中医药杂志,2003,37(1):19-20.
    [89] 黄顺东,熊昌清,吴国栋,等.苦参碱注射液治疗慢性乙型肝炎34例[J].中西医结合肝病杂志,2003,13(3):147.
    [90] 周清荣,张园海,申悦平.苦参素治疗慢性乙型肝炎32例[J].中西医结合肝病杂志,2003,13(3):174-176.
    [91] 陈诗慧,卢焯明.中药治疗乙型病毒性肝炎的进展.中国热带医学,2004,4(1):137-138.
    [92] 金生,袁平戈,张大志.病毒性肝炎的基因治疗进展.现代医药卫生,2004,20(13):1225-1228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700