高频地波雷达舰船目标跟踪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高频地波雷达具有探测距离远,探测范围大等优良特点,在一些领域有着重要的应用;然而其可能会随着目标自身特性或环境背景差异而出现探测概率低、角探测精度低等不足,给目标跟踪带来很大困难。本文面向高频地波雷达跟踪舰船目标要求,提出或改进了数据处理关键问题若干方法,复杂背景下远端舰船目标的航迹起始与跟踪与是本文研究的重点。
     本文首先介绍了雷达目标跟踪中进行状态估计所需要的基本知识。介绍了目标跟踪中经典的卡尔曼滤波器原理、算法步骤;并分析了传统的非线性问题的滤波方法——扩展卡尔曼滤波,它将非线性问题线性化的近似性方法,从而使卡尔曼滤波应用于非线性领域中,本文指出了这种方法的优点与不足。目标机动时,交互多模型滤波方法是最常用的方法之一,本文介绍了这种方法的原理并提出了新的多模型间转移概率的选取方式,改进了算法性能。
     地波超视距雷达数据处理过程中,由于远端目标角精度低所引起的切向距离误差更大,导致其航迹的形成往往比较困难。而且,针对远端目标相对较低的探测概率也使数据率变低,增加了航迹起始的不确定性。针对上述问题,基于信息论中的信息熵概念,利用目标探测角度误差与距离误差不相关的特性,本文提出了一种基于信息熵理论的远端航迹起始方法,通过考察目标点迹径向信息(距离、径向速度)与切向信息(角度),将远端航迹起始过程转化成一个从较大信息熵过渡到较小信息熵的过程。并基于贝叶斯估计的理论,引入了信息熵在航迹起始时的计算方法,讨论了信息熵理论框架下暂时航迹、确认航迹、假航迹的确认方法,最后分别通过仿真数据与实际数据验证了这种方法的有效性。
     地波超视距雷达的量测方程是非线性的,而且其运动方式有时也存在非线性特征。传统的解决非线性滤波思路是对非线性方程进行线性化近似,但这种近似势必带来线性化误差,而误差的积累会使滤波器性能下降,甚至导致其发散;解决此问题的一种替代思想是根据当前状态值进行采样,采样出的“粒子”可以代替当前状态的分布状况,而采样方式可以分成两类:以无味滤波为代表的确定性采样方式和以粒子滤波为代表的随机采样方式。
     无味滤波(UF)为解决非线性问题提供了一种新的思路;首先介绍了无味滤波的原理——无味变换思想,阐述了无味滤波算法步骤;通过与其与扩展卡尔曼滤波对比,证明与扩展卡尔曼滤波相比,无味滤波在计算量上变化不大,而在性能上有较大优势。
     粒子滤波(PF)技术通过非参数化的蒙特卡罗模拟方法实现递推贝叶斯滤波,适用于非线性目标运动模型、非高斯噪声背景下的目标跟踪。它的本质是通过寻找一组在状态空间中传播的随机样本对概率密度函数进行近似,因此其初始化精度对滤波效果有较大影响。针对其在应用于雷达目标跟踪时的粒子初始化问题,本文提出了基于竞争机制的粒子初始化方法,根据初始阶段有效粒子数原理选择准确度高的粒子,从而改善其滤波效果。粒子滤波最大的困难是粒子退化,现有两种类型的方法以改善粒子退化问题:优化重要密度函数,重采样;然而它们在使用范围与计算量等方面还有待改善。针对这一情况,本文提出了一种新算法:一步采样粒子滤波方法,该方法与重采样方法出发点相同——即利用新的采样方法改善退化现象,不同点在于:这种方法完全摒弃了“一群粒子在空间中传播”的思维模式,通过滤波均值与方差产生粒子,本方法在计算量与滤波效果方面均优于重采样方法。
     概率数据互联(PDA)算法是解决目标数据关联的最常用的方法之一,属于贝叶斯的滤波算法。最优的贝叶斯方法需要对当前时刻以前的所有确认量测集合进行研究,并给出每一个量测序列的概率;而PDA只对最新的确认量测集合进行研究,因此是次优的贝叶斯方法。实验证明:与次优的贝叶斯方法相比,最优贝叶斯方法性能更为优越,但计算量也大得多,很难工程化实现。为在计算量容许的情况下进一步提高PDA算法的性能,本文将历史统计得到的目标速度、航向信息引入PDA算法过程中,仿真实验证明新方法可有效提高数据关联精度和可靠性。
For its good detection performance in long distance and extensive areas, High Frequency Surface Wave Radar (HFSWR) has been in important application in some areas. However, some kinds of shortcomings, like low detection rate, low detection accuracy in angle, may happen with the different characters of targets or with the difference of surroundings, which makes the target tracking much more difficult.
     Facing the request to ship target tracking of HFSWR, this paper brings up or improves methods for data processing. The main point is focused on the multi-ships tracking in complex backgrounds and track initiation of targets in long distance. Firstly the paper introduces the basic knowledge about the state estimation in radar target tracking. The classic filtering method in target tracking is Kalman Filter, the paper shows its basic theory and its algorithm process. The traditional filtering method of non-linear filtering is Extend Kalman Filtering (EKF), it extends the Kalman Filter into the non-linear areas through linearization, and the paper shows both the values and the limitations of EKF. When the target is maneuvering, the equation of motion is also non-linear, then the interacting multi-model (IMM) algorithm is one of the most valuable methods, this paper introduces the theory of IMM and brings up a new selection method of transfer probability matrix between multi-models, which improves the performance of the algorithm.
     In data processing of HFSWR, a target that is further from the radar will lead to bigger tangential location error, which makes the track initiation difficult. What’s more, relatively low detection probability degreades the data rate, which further adds the indefinability. Aiming at this problem, based on the theory of information entropy, and taking advantage of the non-correlation between the angle error and the range error, this paper brings up a new track initiation method for the far targets, through research on the radial information (range and radial velocity) and tangential information (angle), the track initiation problem is transferred into a process of entropy decrese. The method also shows the calculation of entrapy and the determinant method of temporary tracks, affirmative tracks and false tracks. In the end, both the imitations and the real datas approve the validity of the method.
     For the HFSWR, the measurement equation is non-linear and the motion is sometimes non-linear too. Traditional method to solve the non-linear filtering is to approcimate through linearization, while this approcimation will surely bring up the linearization error, and the error accumulation will reduce the performance of filtering and even make the filtering diverge. A substitution of the method is to sampling according to the current state, and the sampling“particles”can show the distribution of current state, there are two kinds of methods based on sampling methods: the confirmed sampling (as the unscented filtering) and the random sampling (as the particle filtering).
     Unscented filtering (UF) provides a new way to solve the non-linear problem. The paper firstly introduces the basic principle of unscented filtering——unscented transform, and shows the basic algorithm process. Through compared with EKF, UKF costs a little more in calculation, while shows much better performance in precision for the maneuvering target.
     Particle filtering (PF) achieves the recursive Bayes filtering through Monte-Carlo method, which is applicable to target tracking of non-linear and non-Gaussian background, the essence of PF is to seek random samples that spread in the state space, and the precision of initiation affects the filtering performance a lot. Aiming at the problem of initiation in target tracking, this paper brings up the particle filtering initiation method, which is based on the effective numbers of initial particles, in the new method, the filtering performance is improved for the more precise particles are selected. The most difficult problem of PF is particle degeneracy, two main kinds of methods to deal with degeneracy are: (1) optimize selection method of importance density function; (2) resampling. Although importance density function matters a lot to PF, there is still no perfect selection method in general circumstance. Resampling alleviates particle degeneracy, but it takes much calculation, and can hardly satisfy real-time operation. What’s more, resampling decreases diversity of particles hence make algorithm unrobust. Aiming at this problem, the paper brings up a new method: one-step particle filtering method, as well as the resampling method, the new method aims at solving the degeneracy through new sampling method; while the difference is that the new method sample particles not through the particles of prior time, but based on the mean and coviance of prior filtering results. This method shows better performance in both precision and calculation amount.
     Probability data association (PDA) algorithm, which belongs to Bayes algorithm, is one of the most useful methods in target tracking. The optimal Bayes method need consider all affirmative measurements and calculate the probability of every measurement sequence, while the PDA algorithm only considers the current affirmative measurements, hence it is sub-optimal Bayes algorithm. It has been proved that at the cost of much more calculation, the optimal Bayes method shows better performance than the sub-optimal Bayes algorithm, while it is difficult in engineerring. To increase the performance of PDA at the condition of proper calculation, this paper leads into the velocity estimation and course estimation which is based on the history information, Simulations show that the new PDA algorithm combined with velocity and course information can improve the accuracy of association.
引文
1 L.R.Wyatt. Progress in the Interpretation of HF Sea Echo: HF Radar as a Remote Sensing Tool. IEE Proceedings. 1990,137(2):139~147
    2 L.R.Wyatt. High-Frequency Radar Measurements of the Ocean Wave-Directional Spectrum. IEEE Journal of Oceanic Engineering. 1991,16(1): 163~169
    3 W.John, J.Barry, Dawe and S.K.Srivastava. Remote Sensing of Icebergs by Ground-Wave Doppler Radar. IEEE Journal of Oceanic Engineering. 1986, 11(2):276~284
    4 E.W.Gill, J.Walsh. Extraction of Ocean Wave Paramrters from HF Backscatter Received by a Four-element Array: Analysis and Application. IEEE Journal of Oceanic Engineering. 1992,17(4):376~386
    5 K.W.Gurgel, G.Antonischki, H.H.Essen and T.Schlick. Wellen Radar (WERA): A New Ground-Wave HF Radar for Ocean Remote Sensing. Coastal Engineering. 1999,37:219~234
    6 H.C.Chan and K.L.Hang. An Invertigation in Interference Suppression for HF Surface Wave Radar. Defence Research Establishment Ottawa, Technical Report Dreo TR 2000-028. 1999:1~32
    7 Research news: Over-the-Horizon (OTH) Maritime Sensor. CEC Journal of Research. 1996,13(1):54~55
    8俄罗斯和乌克兰超视距无线电定位研究的历史及成果.电子工程信息. 1994:10~14
    9曲翠萍,毛滔.超视距雷达综述.雷达与对抗. 2006, 3: 1~4
    10陈祥占.国外地波超视距雷达的研究和应用.电子工程信息. 1994,9: 19~23
    11杨强.高频地波雷达检测器研究.哈尔滨工业大学工学博士学位论文. 2002: 2~3
    12董志荣.论航迹起始方法.情报指挥控制系统与仿真技术, 1999, 2:1~6
    13董志荣.多目标密集环境下航迹处理问题及集合论描述法(续)上.火力与指挥控制, 1987, 1: 1~11
    14周宏仁,敬忠良,王培德.机动目标跟踪.国防工业出版社, 1991.8 376~386
    15何友,修建娟,张晶炜等.雷达数据处理及应用.北京:电子工业出版社.2005: 87~97
    16苏峰,王国宏,何友.修正的航迹起始算法.现代防御技术. 2004.32(5):66~68
    17唐劲松,何友等.多雷达系统及其数据处理.海军航空工程学院学报. 1992,
    4: 72~78
    18 C. B. Chang, J. A. Tabaczynski Application of State Estimation to Target Tracking. IEEE Transactions on Automatic Control. 1984, 29(2): 98~109
    19袁刚才,吴永强,张杰.无源定位系统的快速航迹起始算法.系统仿真学报. 2005, 17(6):1484~1496
    20 M. C. Smith and E. M. Winter. Feature Space Transform for Multi-target Detection in Proc. IEEE Conference On Decision and Control, Albuquerque, 1980: 835~836
    21 Carlson B D, Evans E D, Wilson S L. Search Radar Detection and Track With Hough Transform. PartⅠ: System Concept, PartⅡ: Detection Statistics, Part Ⅲ: Detection Performance with Binary Integration. IEEE Trans. Vol. AES-30(1), 1994: 102~125
    22 Kiril M. Alexiev, Ljudmil V. Bojilov. A Hough Transform Track Initiation Algorithm for Multiple Passive Sensors. Proc. of the International Conf. On Multisource-Multisensor Information Fusion, FUSION’2000: TuB2-11~ 2-16
    23 Kiril M. Alexiev. Implementation of Hough Transform as Track Detector. Proc. of the International Conf. On Multisource-Multisensor Information Fusion, FUSION’2000, ThC4-11~ThC4-16
    24程洪玮,孙仲康.利用Hough变换实现目标监测与航迹起动.国防科技大学学报, 2002, 42(7):909~912
    25王国宏,苏峰,毛士艺,何友.杂波环境下基于Hough变换和逻辑的快速起始航迹起始算法.系统仿真学报. 2002,14(7): 873~875
    26 Leung H, Hu Z, Blanchester M. Evaluation of Multiple Target Track Initiation Techniques in Real Radar Tracking Environments. IEE proc. Radar, Sonar Navig, 1996,143(4): 246~254
    27 Thang K C, Mori S, Chong C Y.Performance Evaluation of Track Initiation in Dense Target environments. IEEE Trans. Vol. AES-30 (1)1994:213~219
    28 X. R. Li, Ning Li and V. P. Jilkov. SPRT-Based Track Confirmation and Rejection, Proceedings of the Fifth Intimation Conference on Information Fusion. 2002:951~958
    29朱洪艳,韩崇昭,韩红,左东广.航迹起始算法研究.航空学报. 2004, 25(3): 284~288
    30汤琦,黄建国,杨旭东.航迹起始算法及性能仿真.系统仿真学报. 2007, 19(1): 149~152
    31刘宗香,谢维信,黄敬雄,杨恒.被动传感器网基于模糊综合贴近度的航迹起始.电子学报. 2007,35(8): 1476~1480
    32刘晨,冯新喜.基于IPDA的机动目标航迹起始算法.弹箭与制导学报, 2006,26(1):117~122
    33刘晋霞,李定主,杨瑞光.基于边扫描边跟踪系统的多目标航迹起始相关.火力与指挥控制. 2005, 30(4): 125~130
    34罗鹏飞,张文明.一种多目标跟踪航迹起始新算法及其性能评估.国防科技大学学报. 1999, 21(6):140~149
    35王丽珍,刘慧霞,潘广林,梁彦,潘泉.天波超视距雷达的混合多模型PDA航迹起始仿真分析.中国电子科学研究院学报. 2006, 1(2): 130~136
    36 Sunahara Y. An Approximate Method of State Estimation for Nonlinear Dynamical Systems. Joint Automatic Control Conference. University of Colorado, 1969:1692~1699
    37 Bucy R S, Renne K D. Digital Synthesis of Nonlinear Filter, Automatica, 1971,7(3):287~289
    38 S.J.Julier, J.K.Uhlmann, H.F.Durrant-Whyte. A New Approach for Filtering Nonlinear System. Proceedings of the American Control Conference, Seattle, WA, 1995: 1628~1632
    39 S.J.Julier, J.K.Uhlmann, H.F.Durrant-Whyte. A New Method for Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Trans.Automatic Control, 2000, 45: 477~482
    40 S. J. Julier, J. K. Uhlmann. Unscented Filtering and Nonlinear Estimation [J]., Proceedings of the IEEE, 2004, 92(3): 401~422
    41 S. J. Julier, J. Uhlmann, H.F. Durrant-Whyte. A New Method for The Nonlinear Transformation of Means and Covariances in Filters and Estimators [J]. IEEE Trans. Automatic Control, 2000, 45(3): 477~482
    42 S. Julier. The Spherical Simplex Unscented Transformation [A]. In: Proc. Amer. Control Conf., 2003: 2430~2434
    43 Julier, Simon J. and H. F. Durrant-Whyte. Navigation and Parameter Estimationof High Speed Road Vehicles. In Robotics and Automation Conference, 1995: 101~105
    44 E. A. Wan, R. Van Der Merwe. The Unscented Kalman Filter for Nonlinear Estimation. Proc. of IEEE Symposium 2000, Lake Louise, Alberta, Canada, 2000:1256~1260
    45 R. Van Der Merwe, E. A. Wan. the Square-Root unscented Kalman Filter for State and Parameter Estimation. International Conterence on Aacoustics, Speech, and Signal Processing. SaltLake City. 2001: 3461~3464
    46 R. Van Der Merwe, Nando De Freitas, Arnaud Doucet, Eric Wan. The Unscented Particle Filter. Advance Neural Inform, Process. 2000: 1596~1603
    47 Van der Merwe, R. and E. A. Wan. Effcient Derivative-Free Kalman Filters for Online Learning. European Symposium on Artificial Neural Networks, Bruges,Belgium, 2001: 205~210
    48 Peihua, Li and Tianwen Zhang. Unscented Kalman Filter for Visual Curve Tracking. Proceedings of Statistical Methods in Video Processing, 2004,22(2):157~164
    49 Stenger, B., P. R. S. Mendonc, and R. Cipolla. Model-Based Hand Tracking Using an Unscented Kalman Filter. In Proceedings of the British Machine Vision Conference, 2001: 63~72
    50 N. Gordon, D. Salmond. Novel Approach to Non-linear and Non-Gaussian Bayesian State Estimation. [J]. Proc of Institute Electric Engineering, 1993, 140(2): 107~113
    51 Arnaud Doucet, Nando de Freitas, Neil Gordon. Sequential Monte Carlo in Practice, Springer-Verlag. 2001: 1291~1298
    52 Sanjeev Arulampalam, Simon Maskell, Neil Gordan, Tim Clapp, A Tutorial on Particle Filters for Online Non-linear/Non-gaussian Bayesian Tracking. IEEE Transaction on Signal Processing, 2002,50(2) : 174~188
    53 A. Doucet, N. Gordon. Sequential Monte Carlo Methods in Practice. [M]. NewYork: Springer-Verlag, 2001: 1~35
    54 Crisan, Dan, Doucet, Arnaud. A Survey of Convergence Results on Particle Filtering Methods for Practitioners. IEEE Transactions on Signal Processing, 2002, 50(3): 736~746
    55 A. Doucet, S. Godsill and C. Andrieu. On Sequential Monte Carlo SamplingMethods for Bayesian Filtering, Statistics and Computing, 2000, 10(3): 197~208
    56 Bruno, Marcelo G.S. Improved Sequential Monte Carlo Filtering for Ballistic Target Tracking. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 1103~1108
    57 Deng, Xiaolong, Xie, Jianying. Nonlinear Target Tracking Based on Particle Filter. Proceedings of the World Congress on Intelligent Control and Automation, 2004, 2: 1618~1620
    58 G.. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models. [J]. J of Computational and Graphical Statistics, 1996, 5(1): 1~25
    59 Bruno, G. S. Marcelo, Pavlov and Anton. Improved Particle Filters for Ballistic Target Tracking. Proc of IEEE International Conference on Acoustics, Speech and Signal Processing, 2004, 2: 705~708
    60李涛,薛祖瑞,胡小平.一种使用非等权值粒子的确定性粒子滤波算法.国防科技大学学报, 2004, 26(1): 72~76
    61朱志宇,姜长生.机动目标跟踪的高斯_厄米特粒子滤波算法.系统工程与电子技术. 2007, 29(10): 1596~1599
    62邓小龙,谢剑英,杨煌普.基于交互式多模型的粒子滤波算法.系统仿真学报. 2005, 17(10): 2360~2363
    63左东广,韩崇昭,卞树檀,郑林,朱洪艳.闪烁噪声机动目标跟踪的模型集交互跟踪算法.系统仿真学报. 2004, 76(4): 767~771
    64于国桥,张安清.机动目标跟踪的非线性算法.火力与指挥控制. 2007, 32(6): 15~24
    65 R.W.Sittler. An Optimal Data Association Problem in Surveillance Theory. IEEE Trans.Mil.Electron.Vlo.MIL-8.1964: 125~139
    66 Singer, R.A. and Sea, R.G.. New Results in Optimizing Surveillance System Tracking and Data Correlation Performance in Dense Multiple target Environment. IEEE Trans. Automat. Contr..1973, 18: 571~581
    67 Bar-Shalom Y, Forman TE. Tracking and Data Association. Press Inc. 1988: 594~610
    68 Bar-Shalom Y, E.Tse. Tracking in a Cluttered Environment with Probabilistic Data Association. Automatic. 1975, 11: 451~460
    69 Stubberud S C, Kramer K A. Data Association for Multiple Sensor Types UsingFuzzy Logic. IEEE Trans. On Instrumentation and Measurement. 2006,55(6):2292~2303
    70 Birmiwal, K., Bar-Shalom, Y. On Tracking a Maneuvering Target in Clutter. IEEE Trans. Aerosp. Electron. Syst.1984, 20: 635~645
    71 Y. Bar-Shalom, K.C. Chang, and H. A. P. Blom. Automatic Track Formation in Clutter with a Recursive Algorithm, Chapter 2 in Multitarget-Multisensor Tracking: Advanced Applications, 1990: 25~42
    72 R. J. Fitzgeraid. Development of Practical PDA Logic for Multitarget Tracking by Microprocessor. 1990, 8: 889~898
    73 Y. Bar-Shalom. Tracking Method in Multitarget Environment. IEEE TRAMAC-23. 1978: 618~626
    74 D. L. Alspach. A Gaussian Sum Approach to the Multi-target Identification Tracking Problem. Automatic. 1975, 11: 285~296
    75 T. E. Fortman, Y. Bar-Shalom, and M. Scheffe. Multi-Target Tracking Using Joint Probabilistic Data Association. Proc. 1980 IEEE Conf. Decision and Control, Albuquerque. 1980, 2: 807~ 812
    76 T. E. Fortman, Y. Bar-Shalom, and M. Scheffe. Sonar Tracking of Multiple Targets Using Joint Probabilistic Data Association. IEEE Journal Ocean Engineering. 1983, 8: 173~184
    77 Taek Lyul Song, Dong Gwan Lee. A Probabilistic Nearest Neighbor Filter Algorithm for Validated Measurements. IEEE Trans. on Signal Processing. 2006,54(7): 2797~2802
    78 C. L. Morefield. Application of 0-1 Integer Programming to Multitarget Tracking Problems. IEEE Trans. On AC.1977,22: 302~312
    79 V. Nagarajan, M.R. Childambara, R. N. Sharma. New Approach to Improved Detection and Tracking Performance in Tracking-While-Scan Radars. IEE, Proceedings. 1987,134(1): 89~112
    80 Huimin Chen, X Rong Li, Yaakov Bar-Shalom. On Joint Track Initiation and Parameter Estimation under Measurement Origin Uncertainty. IEEE Trans. Aerospace and Electronic Systems. 2004,40(2): 675~694
    81 Donald B.Reid. An Algorithm for Tracking Multiple Targets. IEEE Trans. On AC. 1979, 24(6): 843~854
    82 Mori S,Chong C Y,Wishner R P,et al. Multitarget Multisensor Trackingproblems:a General Bayesian Approach. Proc.1983 American Control conference. San Francisco,1983: 47~53
    83 Challa S and Pulford G W. Joint Target Tracking and Classification Using Radar and ESM Sensors [J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 1039~1055
    84陈勇,刘福生,卓新元.杂波环境下多目标跟踪数据关联的快速算法.国防科技大学学报. 1995,17(4):13~19
    85李良群,姬红兵,罗军辉.杂波环境下被动多传感器机动目标跟踪新算法.电子与信息学报, 2007, 29(8): 1837~1840
    86何佳州,吴传利,周志华,陈世福.多假设跟踪技术综述.火力与指挥控制, 2004, 29(6):561~570
    87周其忠,闫利,关世义,苏康,秦筱,陈晓东.一种针对运动目标的快速航迹规划方法.系统仿真学报. 2007, 19(5): 987~989
    88 S.Cong, L.Hong. Computational Complexity Analysis for Multiple Hypothesis Tracking. Mathematical and Computer Modelling 1999,(29): 1~16
    89 Qiao X, Wang B. A Modified Adaptive Track Fusion approach. Proceedings of the Fifth International Conference on Information Fusion. 2002: 1535~1541
    90 Ozaki, Atsuo Takahashi, Katsumi, Sato, Hiroyuki. An Analysis of Calculation Load for Multiple Targets Tracking Program Based on Track-oriented MHT. Proceedings of the SICE Annual Conference, SICE Annual Conference 2004, 2004: 1799~1802
    91 Smith, P. L. and Buechler,“A Branching Algorithm for Discriminating and Tracking Multiple Objects,”IEEE Trans. Automat. Contr. 1975, 20: 101~104
    92乔向东,王宝树,刘城霞.一种改进的自适应航迹融合算法.西安电子科技大学学报. 2002, 29(6):748-751
    93 D.B.Reid. An Algorithm for Tracking Multiple Targets. IEEE Transcaion on Automatic Control. 1979,24: 843~854
    94 Mallick M, Pao LY, Charg KC: Multiple Hypothesis Tracking Based Distributed Fusion Using Decorrelated Pseudo Measurement Sequences. Proc American Control 2004. Boston: 4750~475
    95 Danchick, R. and Newman, G.E. A Fast Method for Finding the Exact N-best Hypothesis for Multi-target Tracking. IEEE Trans. Aerosp. Electron. Syst., 1993,
    29: 555~560
    96 Bar-Shalom Y, Kirubarajan T, Gokberk C. Racking with Classification-aided Muiti-frame Data Association. Signal and Data Processingessing of Small Targets 2003 :131~142
    97 Darin T. Dunham. Tracking Multiple Targets in Cluttered Environments with the Probabilistic Multi-Hypothesis Tracking Filter. Proceedings from The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, 11(2): 185~192
    98 S. Deb. M. Yeddanapudi, K. R. Pattipati and Y. Bar-Shalom.A Generalized S-D Assignment Algorithm for Multisensor-Multitarget State Estimation. IEEE Trans. Aerospace and Elect. Systems, 1997, 33(2): 523~538
    99 K.R.PattiPati, S.Deb, Y.Bar-Shalom and R.B.Washburn. Passive Multisensor Data Association Using a New Relaxation Algorithm. Chapter 7 in Multitarget-Multisensor Tracking: Advanced applications. 1990: 219~246
    100 K.R.PattiPati, S.Deb, Y.Bar-Shalom and R.B.Washburn. A New Relaxation Algorithm and Passive Sensor Data Association. IEEE Trans. 1992, 37(2): 197~213
    101 Musicki D, Evans B. Joint Integrated Probabilistic Data Association. Transactions on Aerospace and Electronic Systems JIPDA. 2004, 40(3): 1120~1125
    102 A.B. Poore and A.J. Robertson. A New Lagrangian Relaxation Based Algorithm for a Class of Multidimensional Assignment Problems. Computational Optimization and Applications, 1997, 8: 129~150
    103 R. L. Popp, K. R. PattiPati and Y. Bar-Shalom. M-best SD Assignment Algorithm with Annfentinn to Multitarget Trarkina. Proc SPIE Conf on Signal and Data Processing of Small Targets 1998, Orlando, FL, 1998: 475~495
    104罗笑冰,王宏强,黎湘.转移概率自适应的交互式多模型跟踪算法.电子与信息学报. 2005, 27(10): 1539~1541
    105贾宇岗,梁彦,潘泉.交互式多模型算法过渡过程的仿真分析.系统仿真学报. 2002, 14(1): 16~18
    106 D. Lerro, Y. Bar-shalom. Tracking with De-biased Consistent Converted Measurements Versus EKF. IEEE Trans. on Aerospace and Electronic Systems. 1993, 29(3): 1015~1022
    107 Kenefic, R.J. Optimum Tracking of a Maneuvering Target in Clutter. IEEE Trans. Automat. Contr., Vol. AC-26, June 1981: 750~753
    108何友,修建娟,张晶炜等.雷达数据处理及应用.北京:电子工业出版社. 2005: 21~24
    109范小军,刘锋.一种新的机动目标跟踪的多模型算法.电子与信息学报. 2007,29(3): 532~535
    110 Bloomer L, Gray J E. Are more models better? The effect of the model transition matrix on the IMM filter. Proc. of the Thirty-fouth Southeastern Symposium on System Theory, Alabama, USA. 2002: 20~25
    111梁彦,潘泉,贾宇刚,周东华.强跟踪多模型估计器.电子学报, 2002,36(1): 34~37
    112 Yong-An Zhang, Di Zhou, Haoqian Wang. A Multiple Model Filter for Target Tracking with Interrupoted Range Measurements. The Sixth World Congress on Intelligent Control and Automation, Dalian, China. 2006,1: 1605~1609
    113 Byung-Doo Kim, Ja-Sung Lee. IMM Algorithm Based on The Analytic Solution of Steady State Kalman Filter for Radar Target Tracking. IEEE International Radar Conference, 2005: 757~762
    114 Daepour E, Bar-Shalom Y. An Interacting Multiple Model Approach for Target with Glint Noise. IEEE Trans. On Aerospace and Electronic Systems. 1995, 31(2): 706~715
    115 Jikkov V P, Angelova D S, Sermerdjiev T A. Design and Comparison of Mode-set Adaptive IMM Algorithms for Maneuvering Target Tracking. IEEE Trans. On Aerospace and Electronic Systems. 1999, 35(1): 343~350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700