被动多传感器探测目标跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被动多传感器目标跟踪是多传感器数据融合的一个重要研究内容,在军用和民用领域具有广阔的应用前景,备受国内外学者和工程领域专家的关注。本文针对被动多传感器探测的目标跟踪问题,从系统参数优化设计和目标跟踪方法等方面进行了深入、系统的研究,提出了一些有效的新方法。取得主要成果如下:
     1在系统参数优化设计方面,提出了一种基于目标跟踪精度分析的系统参数优化设计算法,采用多传感器集中式融合方式与扩展卡尔曼滤波(EKF)相结合实现被动目标跟踪,并推导了跟踪误差的克拉美-罗下限。在此基础上,给出了监视空域内目标跟踪精度的几何分布(GDTE)。此外,通过分析系统参数对目标跟踪精度几何分布的影响,给出了提高系统性能的有效措施。
     2在单目标跟踪方面,提出了一种基于无迹卡尔曼滤波(UKF)的被动目标跟踪算法,将无迹变换(UT)引入卡尔曼滤波,避免了传统的扩展卡尔曼滤波的线性化近似过程,在保证目标跟踪实时性的前提下,有效提高了目标跟踪精度。针对单一坐标系下滤波算法中目标状态耦合问题,提出了一种基于混合坐标系无迹卡尔曼滤波(HC-UKF)的被动目标跟踪算法,利用无迹变换实现目标状态的坐标转换,降低了目标状态的耦合程度,有效提高了目标跟踪精度。针对基于粒子滤波(PF)的被动目标跟踪算法计算量大的问题,提出了一种基于拟蒙特卡罗采样高斯粒子滤波(QMC-GPF)的被动目标跟踪算法,通过拟蒙特卡罗采样实现高斯粒子滤波的递归计算,减少了样本点数量,在保证目标跟踪精度的前提下,有效降低了算法的计算复杂度。
     3在机动目标跟踪方面,提出了一种基于二次加权变结构多模型(RVSIMM)的被动机动目标跟踪算法,将二次加权过程引入到模型交互过程中,提高了模型融合精度。为了避免不匹配模型的影响,引入模型集合自适应调整过程,在降低计算复杂度的同时,提高了目标跟踪精度。提出了一种基于自适应两阶段扩展卡尔曼滤波(RTSEKF)的被动机动目标跟踪算法,采用两阶段卡尔曼滤波分别估计目标状态和机动偏差扰动,通过对机动偏差的在线估计来修正滤波输出,并引入改进的噪声自适应估计算法实时估计模型噪声参数,在不明显增加计算量的情况下,有效提高了目标跟踪精度。
     4在多目标跟踪方面,针对杂波环境下数目未知且时变的多个机动目标的跟踪问题,提出了一种基于交互多模型概率假设密度(IMM-PHD)滤波的被动机动多目标跟踪算法,将多目标状态和观测建模为随机有限集合,并通过概率假设密度滤波(PHD)同时估计目标数目和状态。为了避免目标机动时出现失跟现象,将交互多模型算法(IMM)引入到滤波递归过程中,有效提高了目标跟踪精度。
The techniques of passive target tracking are important topics of the research on multi-sensor data fusion. Because of their wide applications in both military and civil areas, much attention has been paid to their developments by worldwide researchers and engineers. Aiming at the techniques of target tracking based on passive multi-sensor detection, this dissertation mainly involves some significant aspects, such as the optimal design of system parameters, target tracking algorithms etc. Some novel efficient methods have been proposed. The main contributions of the dissertation are as follows:
     1 For the problem of the optimal design of system parameters, an optimal design method based on the analysis of target tracking accuracies is proposed, which involves passive target tracking achieved by introducing extended Kalman filter (EKF) into the multiple-senor centralized fusion scheme, and the Cramer-Rao lower bounds of tracking errors are deducted. Furthermore, the geometrical dilution tracking error (GDTE) in the surveillance area is given. Some efficient approaches to improve system performance are brought forward on the basis of the analysis of the influences of the system parameters to GDTE.
     2 For the problem of single target tracking based on noisy passive measurements, an unscented Kalman filter (UKF) based passive target tracking algorithm is proposed, in which the unscented transformation (UT) is introduced into Kalman filter with the scheme of multi-senor centralized fusion, by which the numerical accuracies are enhanced with little additional computational costs because of the avoidance of errors from the linearization in extended Kalman filter (EKF). To solve the problem of state coupling in single coordinate based filters, a hybrid coordinates UKF (HC-UKF) based passive target tracking algorithm is proposed, which emploies UT to achieve the nonlinear coordinate transformation. The numerical accuracies of target tracking are improved due to the depressed target's state coupling. Furthermore, a quasi Monte Carlo sampling Gaussian particle filter (QMC-GPF) based passive target tracking approach is proposed to solve the problem of heavy computational costs for particle filter (PF) based methods. The algorithm introduces quasi Monte Carlo technique into Gaussian particle filter recursion, by which the computational costs are reduced because of the reduced number of samples, and the numerical accuracies are enhanced.
     3 To solve the problem of maneuvering target tracking, a reweighted variable structure interacting multiple model (RVSIMM) algorithm is proposed. The method introduces reweighted steps into the interacting of multiple models. Moreover, the model sets in each recursion is modified to avoid the blights from the invalid models. Consequently, both of computational costs and numerical accuracies are improved. Furthermore, a robust two stage EKF (RTSEKF) for passive maneuvering target tracking is proposed. The algorithm estimates both the target's state and its maneuver bias input online, where the estimation of target's state is modified by the estimation of the maneuver bias. At the same time, the noise statistics parameters are estimated to revise the models of filtering. Consequently, the numerical accuracies are enhanced without too much additional computational costs.
     4 For the problem of passive multi-sensor multi-target tracking, when the time varying number of targets maneuver and the measurements are mixed with the interferences of clutters, the methods based on random finite set (RFS) are addressed. Then, an IMM probability hypothesis density (IMM-PHD) filter based passive multiple maneuvering targets tracking approach is proposed. The algorithm involves modeling both of the time varying number of targets'states and passive measurements as RFSs. Besides, the interacting multiple model (IMM) is embedded into the filtering recursions to avoid the loss of maneuvering targets. Consequently, tracking accuracies are improved.
引文
[1]孙仲康,周一宇,何黎星.单多基地有源无源定位技术,国防工业出版社,1996.
    [2]何友.多目标多传感器分布信息融合算法研究,博士论文,清华大学,1996.
    [3]桑炜森,顾耀平,综合电子战新技术新方法,国防工业出版社,1996.
    [4]李洪志.信息融合技术,国防工业出版社,1996.
    [5]康耀红.数据融合理论与应用,西安电子科技大学出版社,1997.
    [6]刘同明,夏祖勋,解洪成.数据融合技术及其应用,国防工业出版社,1998.
    [7]Y. Bar-Shalom, X. R. Li, Estimation and Tracking:Principles, Techniques and Software. Boston, MA:Artech House,1993.
    [8]S Blackman and R Popoli, Design and analysis of modern tracking systems, Norwood, MA:Artech House,1999.
    [9]何友,王国宏等.传感器信息融合及应用,电子工业出社,2000.
    [10]Yaakov Bar-Shalom, Thiagalingam Kirubarajan, X. R. Li, Estimation with Applications to Tracking and Navigation, John Wiley & Sons, Inc.,2002.
    [11]王国宏.分布式检测、跟踪及异类传感器数据关联与引导研究,博士论文,北京航空航天大学,2002.
    [12]杨万海.多传感器数据融合及其应用,西安电子科技大学出版社,2004.
    [13]乔向东.信息融合系统中的目标跟踪技术研究,博士论文,西安电子科技大学,2003.
    [14]韦毅.红外无源定位技术研究,硕士论文,西安电子科技大学,2002.
    [15]宋骊平.多站红外被动定位及跟踪技术研究,硕士论文,西安电子科技大学,2003.
    [16]刘宗香.被动传感器组网系统目标探测与跟踪方法,博士论文,西安电子科技大学,2005.
    [17]杨柏胜.多站被动传感器定位技术研究,硕士论文,西安电子科技大学,2006.
    [18]李良群.信息融合系统中的目标跟踪及数据关联技术研究,博士论文, 西安电子科技大学,2007.
    [19]R. Branko, A. Sanjeev, M. Christian, The influence of communication bandwidth on target tracking with angle only measurements from two platform. Signal Processing. Vol.81. pp.1801-1811,2001.
    [20]Helferty, J. P., Improved tracking of maneuvering targets:The use of turn-rate distributions for acceleration modeling, IEEE Trans. Aerospace and Electronic Systems,32(4), pp.1355-1361, Oct 1996
    [21]Kendrick, J. D., Maybeck, P.S., Reid, J.G., Estimation of Aircraft Target Motion Using Orientation Measurements, IEEE Trans. Aerospace and Electronic Systems, 17(2), pp.254-260, March 1981
    [22]R. L. Moose, H. F. Vanlandandingham, D. H. Mecabe, Modeling and Estimation for Tracking Maneuvering Targets. IEEE Trans. Aerospace Electron Systems, 1979,15(3), pp.448-456.
    [23]K. Mehrotra, P. R. Mahapatra, A Jerk Model to Tracking Highly Maneuvering Target. IEEE Trans. Aerospace and Electronic Systems,1997,33(4), pp.1094-1105
    [24]R. F. Berg, Estimation and Prediction for Maneuvering Target Trajectories. IEEE Trans. Automatic Control,28(3), pp.294-304, Mar.1983
    [25]Peter D. Hanlon, Peter S. Maybeck, Multiple-model adaptive estimation using a residual correlation Kalman filter bank. IEEE Trans. Aerospace and Electronic Systems,2000,36(2), pp.383-406.
    [26]Kalata P. R., The tracking index:a generalized parameter for α-β and α-β-γ target. IEEE transactions on aerospace and electronic systems.1984, vol.20, no 2, pp. 174-182
    [27]Graham W. Pulford, Data fusion of multi-radar system by using genetic algorithm. IEEE Trans on Aerospace and Electronic Systems,2002,38 (2).pp.601-611.
    [28]Chummun R., Kirubarajan T., Fast data association using multidimensional assignment with clustering. IEEE Trans on Aeros pace and Electronic Systems, 2001,37 (3), pp.898-910.
    [29]Chang K C, Tian Zhi. Performance evaluation of track fusion with information matrix filter. IEEE Trans on Aerospace and Electronic Systems,2002,38 (2), pp. 455-465.
    [30]Shozo Mori, William H. Barker, Track association and track fusion with non-deterministic target dynamics. IEEE Trans on Aerospace and Electronic Systems, 2002,38 (2), pp.659-667.
    [31]Li Ling jie, Luo Zhi Quan, Convex optimization approach to identity fusion for multisensor target tracking. IEEE Trans on Systems, Man and Cybernetics Part A: System and Humans,2002,31(3), pp.172-178.
    [32]Weda Eweda. Degradation of the tracking performance of adaptive filtering algorithm with data correlation. IEEE Trans on Circuit and Systems Ⅱ Analog
    and Digital Signal Processing,2000,47 (6), pp.559-561.
    [33]Chang K. C., Saha R. K., An efficient algorithm for multi-sensor track fusion. IEEE Trans on Aerospace and Electronic Systems,1998,34 (1), pp.200-210.
    [34]Yee Mingchen, Huang Chehuang, Multi-sensor data fusion for maneuvering target tracking. International Journal of System Science,2001,32 (2), pp.205-214.
    [35]Lipton J. M., Dabke K. P.,1/f Filtered chaotic processes. Circuits Systems Signal Processing,1998,17 (5):575-589.
    [36]Haykin S., Li X. R., Detection of signals in chaos. Proceedings of the IEEE,1995, 83(1), pp.95-122.
    [37]Peter Tino, Miroslav Koteles, Extracting finite-state representation from recurrent neural net works trained on chaotic symbolic sequence. IEEE Electronic System, 2001,37 (4), pp.1406-1418.
    [38]Lee G., Farhat N. H., The bifurcating neuron net works. IEEE Trans. Neural Net works,2001,12 (14), pp.115-131.
    [39]Luonan Chen, Kazuyuki Aihara, Strange attractors in chaotic neural net works. IEEE Trans on Circuit and Systems I fundamental Theory and applications 2000,47 (6):902-909.
    [40]Kirubarajan T., Bar-shalom Y., IMMPDA for radar management and tracking benchmark with ECM. IEEE Trans on Aerospace and Electronic Systems,1998, 34(4):1115-1132.
    [41]M. R. Chummun, T. Kirubarajan, Multi-sensor tracking of a maneuvering target in clutter using IMMPDA Fixed Lags moothing. IEEE Trans on Aerospace and Electronic Systems,2000,36 (3):983-991.
    [42]M R Chummun, Y Bar-shalom, Adaptive early detection ML-PDA estimator for LO target with EO sensors. IEEE Trans on Aerospace and Electronic Systems, 2002,38 (2):694-707.
    [43]Sinha A., Kirubarajan T., Maximum likelihood angle extractor for two closely spaced targets. IEEE Trans. on Aerospace and Electronic Systems,2002,38 (1): 183-201.
    [44]Kirubarajan T., Bar-shalom Y., Bearings-only tracking of maneuvering targets using a batch recursive estimator. IEEE Trans on Aerospace and Electronic Systems,2001,37 (3):770-778.
    [45]郭福成,孙仲康,安玮.利用方向角及其变化率对固定辐射源的三维单站无源定位,电子学报,2002,12,pp.1885-1887.
    [46]龙翔,敬忠良,金德琨,王安.随机模糊神经网络在目标状态信息融合中的 应用.控制与决策,17(4),2002,7,pp.497~499.
    [47]何友,彭应宁,多目标多传感器模糊双门限航迹相关算法,电子学报,1998,26(3),pp.15-19.
    [48]左东广,韩崇昭,郑林,朱洪艳,韩红.机动目标的模糊多模型跟踪算法,西安交通大学学报,2002,12,pp.1240~1244
    [49]胡振涛,潘泉,梁彦,程咏梅.基于粒子滤波的模型自适应机动目标跟踪算法,控制与决策,2008,12,pp.1333~1337
    [50]Serafin Robert J., Wilson James W., Operational Weather radar in the United States:Progress and opportunity, Bulletin of the American Meteorological Society, Vol.81, No.3, pp.501-518,2000.
    [51]Robert A. Maddox, Jian Zhang, Jonathan J. Gourley, and Kenneth W. Howard, Weather Radar Coverage over the Contiguous United States, Weather and Forecasting, Volume 17, Issue 4, pp.927-934,2002.
    [52]T.S. Perry, In search of the future of air traffic control, Spectrum, IEEE, vol.34, no.8, pp.18-35, Aug.1997.
    [53]C. Evers, A. Smith, D. Lee, Application of radar multistatic techniques to air traffic control, Radar Conference,2000. The Record of the IEEE 2000 International, pp.763-768,2000.
    [54]P. Paillou, A. Rosenqvist, The SAHARASAR project:potential support to water prospecting in arid Africa by SAR, Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings.2003 IEEE International, vol.3, no., pp. 1493-1495, Jul.2003.
    [55]Irving and Rosemary J. Knight, Numerical simulation of antenna transmission and reception for crosshole ground-penetrating radar,Geophysics, vol.71, no2, pp. K37-K45,2006.
    [56]M. Dalati,, Remote sensing techniques in active faults surveying. Case study: detecting active faulting zones NW of Damascus, Syria, Recent Advances in Space Technologies,2005. RAST 2005. Proceedings of 2nd International Conference on, vol., no., pp.479-482, Jun.2005.
    [57]Elliot JL, Freymueller JT, Rabus B, Coseismic deformation of the 2002 Denali fault earthquake:contributions from synthetic aperture radar range offsets. Journal of geophysical research. B, Solid earth,2007, vol.112, (no.B6).
    [58]K. P.Gowd, J. Sahu, Aerodynamic Body Shaping Method for a Stealth Fighter Aircraft, Journal of Aerospace Sciences and Technologies, Vol.59, No.3, pp. 208-211,2007.
    [59]M. Sedehi, D. Cristallini, J. Marini, P. Lombardo, Impact of an Electromagnetic Interference on Imaging Capability of a Synthetic Aperture Radar, Aerospace Conference,2007 IEEE, pp.1-8, Mar.2007.
    [60]William J. Martin and Alan Shapiro, Impact of Radar Tilt and Ground Clutter on Wind Measurements in Clear Air, Journal of Atmospheric and Oceanic Technology, Vol.22, Issue 6 pp.649-663, Jun.2005.
    [61]D.K.P. Tan, H. Sun, Y. Lu, M. Lesturgie, H.L. Chan, Passive radar using Global System for Mobile communication signal:theory, implementation and measurements, Radar, Sonar and Navigation, IEE Proceedings, vol.152, no.3, pp. 116-123, Jun.2005.
    [62]Alex Barsamian, Vincent H. Berk, George V. Cybenko, Target tracking and localization using infrared video imagery Unattended Ground, Sea, and Air Sensor Technologies and Applications VIII. Edited by Carapezza, Edward M. Proceedings of the SPIE,2006.
    [63]Leykin A., Yang Ran, Hammoud R., Thermal-Visible Video Fusion for Moving Target Tracking and Pedestrian Classification, Computer Vision and Pattern Recognition,2007. CVPR'07. IEEE Conference on, vol., no., pp.1-8, Jun.2007.
    [64]Bar-Shalom Y, Kirubarajan T., Lin X., Probabilistic data association techniques for target tracking with applications to sonar, radar and EO sensors, Aerospace and Electronic Systems Magazine, IEEE, vol.20, no.8, pp.37-56, Aug.2005.
    [65]Do Hoang, Silverman, Harvey F., A Fast Microphone Array SRP-PHAT Source Location Implementation using Coarse-To-Fine Region Contraction(CFRC), Applications of Signal Processing to Audio and Acoustics,2007 IEEE Workshop on, vol., no., pp.295-298,21-24 Oct.2007.
    [66]Cevher, V., McClellan, J.H., General direction-of-arrival tracking with acoustic nodes, Signal Processing, IEEE Transactions on, vol.53, no.1, pp.1-12, Jan. 2005.
    [67]Yiu-Tong Chan, Wing-Yue Tsui, Hing-Cheung So, Pak-chung Ching, Time-of-arrival based localization under NLOS conditions, Vehicular Technology, IEEE Transactions on, vol.55, no.1, pp.17-24, Jan.2006.
    [68]Touzi R., Lopes A., Bousquet P., A statistical and geometrical edge detector for SAR images, Geoscience and Remote Sensing, IEEE Transactions on, vol.26, no.6, pp.764-773, Nov.1988.
    [69]Luo R.C., Chih-Chen Yih, Kuo Lan Su, Multisensor fusion and integration: approaches, applications, and future research directions, Sensors Journal, IEEE, vol.2, no.2, pp.107-119, Apr.2002.
    [70]M.G. Ceruti, Data management challenges and development for military information systems, Knowledge and Data Engineering, IEEE Transactions on, vol.15, no.5, pp.1059-1068, Sept.-Oct.2003.
    [71]Y Bar-Shalom, Multitarget-multisensor tracking:Applications and advances, Norwood,MA, Artech House, Inc.,2000.
    [72]Singer, R.A., Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets, Aerospace and Electronic Systems, IEEE Transactions on, vol.AES-6, no.4, pp.473-483, Jul.1970.
    [73]Edward L. Waltz and James Llinas, Multisensor Data Fusion, Artech House, Inc. Norwood, MA, USA,1990.
    [74]David Lee Hall, Sonya A. H. McMullen, Mathematical Techniques in Multisensor Data Fusion, Artech House,1992.
    [75]David L. Hall, James Llinas, Handbook of Multisensor Data Fusion (Edition:2), CRC Press,2001.
    [76]Brooks, Richard R. and Iyengar, S.S., Multi-sensor fusion:fundamentals and applications with software, Upper Saddle River:Prentice-Hall PTR,1998.
    [77]D.L. Hall, J. Llinas, An introduction to multisensor data fusion, Proceedings of the IEEE; Vol.85, ISSUE:1, pp.6-11, Jan.1997.
    [78]A.Farina, F.A. Studer, Radar Data Processing. V.1., Researches Studies Press. England, May 1985.
    [79]S.S. Blackman. Multiple-target Tracking with Radar Application. Boston, MA: Artech House.1986.
    [80]Y.Bar-Shalom, T. E. Fortmann, Tracking and Data Association, Academic Press, 1988.
    [81]Y.Bar-shalom, X. R. Li. Multitarget-Multisensor tracking:Principles and Techniques. Storrs, CT:YBS Publishing,1995.
    [82]Y.Bar-Shalom, X.R. Li, Estimation and Tracking:Principles, Techniques, and Software. Boston, MA:Axtech House,1993.
    [83]Y. Bar-Shalom, X. R. Li, and T.Kirubarajan. Estimation with Applications to Tracking and Navigation:Theory Algorithms and Software, John Wiley & Sons, Inc.,2001.
    [84]Doucet A., de Freitas J. F. G., Gordon N. J., An introduction to sequential Monte Carlo methods. in Sequential Monte Carlo Methods in Practice, New York: Springer-Verlag,2001.
    [85]Y.Bar-Shalom. Multitarget-Multisensor Tracking:Advanced Applications, Boston, MA:Artech House,1990.
    [86]Y.Bar-Shalom(editor), Multitarget-Multisensor Tracking:Applications and Advances. vol. Ⅱ, Boston, MA:Artech House,1992.
    [87]韩崇昭,朱洪艳,段战胜等.多源信息融合,清华大学出版社,2006.
    [88]E. Fogel, M. Gavish, Nth-order dynamics target observability from angle measurements, Aerospace and Electronic Systems, IEEE Transactions on, vol.24, no.3,pp.305-308, May.1988.
    [89]S.C. Nardone, V.J. Aidala, Observability Criteria for Bearings-Only Target Motion Analysis, Aerospace and Electronic Systems, IEEE Transactions on, vol.AES-17, no.2, pp.162-166, Mar.1981.
    [90]S.E. Hammel, V.J. Aidala, Observability Requirements for Three-Dimensional Tracking via Angle Measurements, Aerospace and Electronic Systems, IEEE Transactions on, vol.AES-21, no.2, pp.200-207, Mar.1985.
    [91]Taek Lyul Song, Observability of target tracking with bearings-only measurements, Aerospace and Electronic Systems, IEEE Transactions on, vol.32, no.4, pp.1468-1472, Oct.1996.
    [92]S. Nardone, A. Lindgren, Gong Kai, Fundamental properties and performance of conventional bearings-only target motion analysis, Automatic Control, IEEE Transactions on, vol.29, no.9, pp.775-787, Sep.1984.
    [93]Y. Oshman, P. Davidson, Optimization of observer trajectories for bearings-only target localization, Aerospace and Electronic Systems, IEEE Transactions on, vol.35, no.3, pp.892-902, Jul.1999.
    [94]C. Leung, S. Huang, G. Dissanayake, T. Furukawa, Trajectory planning for multiple robots in bearing-only target localisation, Intelligent Robots and Systems, 2005. (IROS 2005).2005 IEEE/RSJ International Conference on, pp.3978-3983, Aug.2005.
    [95]Xiaohong Sheng, Yu-Hen Hu, Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks, IEEE Transactions on Signal Processing, Vol.53, pp.44-53,2005.
    [96]周宏仁,敬忠良等.机动目标跟踪.国防工业出版社,1994.
    [97]X. R. Li, V. P. Jilkov, Survey of Maneuvering Target Tracking Part I:Dynamic Models. IEEE Trans on AES, Vol.39, No.4, pp.1333-1364, Oct.2003.
    [98]X. R. Li, V. P. Jilkov, A survey of maneuvering target tracking-Part II:Ballistic target models, In Proceedings of the 2001 SPIE Conference on Signal and Data Processing of Small Targets, Vol.4473, San Diego, CA, pp.559-581, July-Aug. 2001.
    [99]X. R. Li, V. P. Jilkov, A survey of maneuvering target tracking-Part Ⅲ: Measurement models, In Proceedings of the 2001 SPIE Conference on Signal and Data Processing of Small Targets, Vol.4473, San Diego, CA, pp.423-446 July-Aug.2001
    [100]X. R. Li, V. P. Jilkov, A Survey of maneuvering target tracking-Part Ⅳ: Decision-based methods, In Proceedings of the 2002 SPIE Conference on Signal and Data Processing of Small Targets, Vol.4728, Orlando, FL, Apr.2002
    [101]X. R. Li, V. P. Jilkov, A survey of maneuvering target tracking-Part Ⅴ: Multiple-model methods, In Proceedings of the 2003 SPIE Conference on Signal and Data Processing of Small Targets, Vol.5204, San Diego,CA, Aug.2003
    [102]X. R. Li, V. P. Jilkov, A survey of maneuvering target tracking:Dynamic models, In Proceedings of the 2000 SPIE Conference on Signal and Data Processing of Small Targets, Vol.4048, Orlando, FL, pp.212-236, Apr.2000.
    [103]Arthur E. Bryson, Yu-Chi Ho, George M. Siouris, Applied Optimal Control: Optimization, Estimation, and Control, Systems, Man and Cybernetics, IEEE Transactions on, vol.9, no.6, pp.366-367, Jun.1979.
    [104]Frank L. Lewis, Applied Optimal Control and Estimation, Prentice Hall PTR, Upper Saddle River, NJ,1992.
    [105]Arthur Gelb, Applied Optimal Estimation, MIT Press,1992.
    [106]Frank L. Lewis, Optimal Estimation, John Wiley & Sons, Inc., New York,1986.
    [107]P. S. Maybeck, Siouris, George M., Stochastic Models, Estimation, and Control, Volume Ⅰ, Systems, Man and Cybernetics, IEEE Transactions on, vol.10, no.5, pp.282-282, May 1980.
    [108]N. Bergman, Recursive Bayesian estimation:navigation and tracking applications. Linkoping:Linkoping University,1999.
    [109]Jerk. B.L., Development of an adaptive Kalman target tracking filter and predictor for fire control applications. AD-A039907,1977.
    [110]Kailath, T., An innovations approach to least-squares estimation-Part Ⅰ:Linear filtering in additive white noise, Automatic Control, IEEE Transactions on, vol. 13, no.6, pp.646-655, Dec.1968.
    [111]Mohinder S. Grewal, Angus P. Andrews, Kalman filtering:theory and practice, Prentice-Hall, Inc., Upper Saddle River, NJ,1993.
    [112]R. B. Brown and P. Y.C.Hwang. Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Sons, Inc.,1997.
    [113]H.W. Sorensen, Least-squares estimation:from Gauss to Kalman. IEEE Spectrum, pp.63-68, July 1970.
    [114]Bar-Shalom,Tracking and Data Association. J. Acoust. Soc. Am. Volume 87, Issue 2, pp.918-919, Feb.1990.
    [115]C. Andrew Harvey Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press,1991.
    [116]Greg Welch, Gary Bishop, An Introduction to the Kalman Filter, University of North Carolina at Chapel Hill, Chapel Hill, NC,1995.
    [117]M. Gavish, A.J.Weiss, Performance analysis of bearing-only target location algorithms, Aerospace and Electronic Systems, IEEE Transactions on, vol.28, no.3, pp.817-828, Jul.1992.
    [118]D.E. Manolakis, Efficient solution and performance analysis of 3-D position estimation by trilateration, Aerospace and Electronic Systems, IEEE Transactions on, Volume:32, Issue:4, pp.1239-1248, Oct.1996.
    [119]S.C. Nardone, M.L. Graham, A closed-form solution to bearings-only target motion analysis, Oceanic Engineering, IEEE Journal of, Volume:22, Issue:1, pp. 168-178, Jan.1997.
    [120]B.G. Ferguson, K.W. Lo, R.A. Thuraisingham, Sensor position estimation and source ranging in a shallow water environment, Oceanic Engineering, IEEE Journal of, Volume:30, Issue:2, pp.327-337, Apr.2005.
    [121]M. Boutayeb, H. Rafaralahy, M. Darouach, Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems, Automatic Control, IEEE Transactions on, Volume:42, Issue:4, pp. 581-586, Apr.1997.
    [122]M. Boutayeb, D. Aubry, A strong tracking extended Kalman observer for nonlinear discrete-time systems, Automatic Control, IEEE Transactions on, Volume:44, Issue:8, pp.1550-1556, Aug.1999.
    [123]Song Y and Grizzle J W. The extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems, J. Math. Syst. Estim. Contr.,5(1), pp.59-78,1995.
    [124]J. H. LEE, N. L. RICKER, Extended Kalman filter based nonlinear model predictive control, Industrial & engineering chemistry research, vol.33, no.6, pp. 1530-1541,1994.
    [125]S.J.Julier, J.K.Uhlmann. New extension of the Kalman filter to nonlinear systems. Proceedings of the SPIE. Vol.3068. pp:182-193.1997.
    [126]Eric A. Wan, Rudolph van der Merwe, and Alex T. Nelson. Dual Estimation and the Unscented Transformation, In S.A. Solla, T.K. Leen, and K.-R. Miiller, editors, Advances in Neural Information Processing Systems 12, pages 666-672. MIT Press,2000.
    [127]E.A. Wan, R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation, Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000, vol., no., pp.153-158, 2000.
    [128]R van der Merwe, A Doucet, N de Freitas, and E Wan, The Unscented Particle Filter, Cambridge University, Technical Report,2000.
    [129]S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE.2004,92(3). Pp.401-422.2004.
    [130]Julier, S.J., The scaled unscented transformation, American Control Conference, 2002. Proceedings of the 2002, vol.6, pp.4555-4559,2002.
    [131]Gordon N J., A Hybrid Bootstrap filter for target tracking in Clatter. IEEE Transactions on Aerospace and Electronic Systems,33(1), pp.353-358,1997.
    [132]Doucet A., On Sequential Monte Carlo Methods for Bayesian Filtering. Cambridge:Tech. Rep.,1998.
    [133]F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, P.-J. Nordlund, Particle filters for positioning, navigation, and tracking, Signal Processing, IEEE Transactions on, vol.50, no.2, pp.425-437, Feb.2002.
    [134]LIU J S, CHEN R., Sequential Monte Carlo methods for dynamical systems. J. Amer. Statist. Assoc,93, pp.1032-1044.1998.
    [135]雷桂媛.关于蒙特卡罗及拟蒙特卡罗方法的若干研究,博士学位论文,浙江大学,2003.
    [136]Karlsson R, Gustafsson F, Particle filter for underwater terrain navigation,2003 IEEE Workshop on Statistical Signal Processing, Sep.2003.
    [137]Gordon N, Salmond D., Novel approach to non-linear and non-Gaussian Bayesian state estimation. Proceedings of Institute Electric Engineering,140(2), pp. 107-113.1993.
    [138]M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle filters for online nonlinear/non-GaussianBayesian tracking, IEEE Trans. Signal Processing, vol.50, pp.174-188,2002.
    [139]Beichl I, Sullivan F, The importance of important sampling. Computing in
    Science & Engineering,1(2), pp.71.1999.
    [140]Pitt M, Shephard N, Filtering via simulation:Auxiliary particle filters. Journal of the American Statistical Association,1999,94(446), pp.590-599.1999.
    [141]Musso C, Oudjane N, Particle methods for multimodal filtering application to terrain navigation, IEE, Savory Place, London,1999.
    [142]G. Casella, C.P. Robet, Rao Blackwellisation of sampling schemes, Biometrika. 83(1).pp:81-94.1996.
    [143]J-J.Yin, J-Q.Zhang, M.Klass. The marginal Rao-Blackwellized particle filter for mixed linear/nonlinear state space models, Chinese Journal of Aeronautics.20(4). pp:346-352. Aug.2007.
    [144]P.E. Moraal, J.W. Grizzle, Observer design for nonlinear systems with discrete-time measurements, Automatic Control, IEEE Transactions on, vol.40, no.3, pp.395-404, Mar.1995.
    [145]R. Nikoukhah, A new methodology for observer design and implementation, Automatic Control, IEEE Transactions on, Vol.43, Issue:2, pp.229-234, Feb. 1998.
    [146]B. Sadeghi, B. Moshiri, Second-order EKF and Unscented Kalman Filter Fusion for Tracking Maneuvering Targets, Information Reuse and Integration,2007. IRI 2007. IEEE International Conference on, pp.514-519, Aug.2007.
    [147]Tine Lefebvre, Herman Bruyninckx, Joris De Schutter, Kalman filters for non-linear systems:a comparison of performance, International Journal of Control, Vol.77, Issue 7, pp.639-653, May 2004.
    [148]潘泉,杨峰,叶亮,一类非线性滤波器——UKF综述,控制与决策,2005,20(5),pp.481-494.2005.
    [149]V. Aidala, S. Hammel, Utilization of modified polar coordinates for bearings-only tracking, Automatic Control, IEEE Transactions on, vol.28, no.3, pp.283-294, Mar.1983.
    [150]D. V. Stallard, An angle-only tracking filter in modified spherical coordinates, in Proc. AIAA Guidance, Navigation, and Control Conf.1986.
    [151]W. Grossman, Bearings-only tracking:A hybrid coordinate system approach, J. Guidance, Contr., Dynamics, vol.17, no.3, pp.451-457, May/June 1994.
    [152]R.E. Caflisch. Monte carlo and quasi-monte carlo methods, Acta Numerica, Cambridge University Press.1998. pp.1-49,1998.
    [153]Dong Guo, Xiaodong Wang, Quasi-Monte Carlo filtering in nonlinear dynamic systems, IEEE Trans. Signal Processing, Vol.54 pp.2087-2098,2006.
    [154]J.H. Kotecha, P.M. Djuric, Gaussian particle filtering, Signal Processing, IEEE Transactions on, vol.51, no.10, pp.2592-2601, Oct.2003.
    [155]X. R. Li, V. P. Jilkov, A survey of maneuvering target tracking:approximation techniques for nonlinear filtering, Proc.2004 SPIE Conf. Signal and Data Processing of Small Targets, Vol.5428-62, Orlando, FL, April 2004, pp.537-550, 2004.
    [156]Ryan R. Pitre, Vesselin P. Jilkov, X. R. Li, A comparative study of multiple-model algorithms for maneuvering target tracking, Proceedings of the SPIE, Signal Processing, Sensor Fusion, and Target Recognition XIV. Vol 5809, pp.549-560, 2005.
    [157]X. R. Li, Y. Bar-Shalom, Multiple-model estimation with variable structure, IEEE Trans. Automatic Control, vol.41, pp.478-493,1996.
    [158]X. R. Li, Multiple-model estimation with variable structure-part Ⅱ:model-set adaptation, IEEE Trans. Automatic Control, vol.45, pp.2047-2060,2000.
    [159]X. R. Li, X. R. Zhi, Y. M. Zhang, Multiple-model estimation with variable structure-part III:model-group switching algorithm, IEEE Trans. Aerospace and Electronic Systems, vol.35, pp.225-241,1999.
    [160]X. R. Li, Y. M. Zhang, and X. R. Zhi, Multiple-model estimation with variable structure-part IV:design and evaluation of model-group switching algorithm, IEEE Trans. Aerospace and Electronic Systems, vol.35, pp.242-254,1999.
    [161]X. R. Li, Y. M. Zhang, Multiple-model estimation with variable structure-part V: likely-model set algorithm, IEEE Trans. Aerospace and Electronic Systems, vol.36, pp.448-466,2000.
    [162]X. R. Li, V. P. Jilkov, and J.-F. Ru, Multiple-model estimation with variable structure-part VI:expected-mode augmentation, IEEE Trans. Aerospace and Electronic Systems,41, pp.853-867,2005.
    [163]L. A. Johnston, V. Krishnamurthy, An improvement to the interacting multiple model (IMM) algorithm, IEEE Trans. Signal Processing, Vol.49, pp.2909-2923, 2001.
    [164]X. L. Meng, D. van Dyk, The EM algorithm-An old folk-song sung to a fast new tune, J. R. Statist. Soc. B, vol.59, no.3, pp.511-567,1997.
    [165]B. Freidland, Treatment of Bias in Recursive Filtering, IEEE Trans. Auto. Cont., Vol. AC-14, pp.359-367, Aug.1969.
    [166]A. T. Alouani, P. Xia, T. R. Rice, and W. D. Blair, A two-stage Kalman estimator for state estimation in the presence of random bias for tracking maneuvering targets, Proc. of the 30th Conference on Decision and control, Brighton, England, pp.2059-2062,1991.
    [167]A. T. Alouani, P. Xia, T. R. Rice, and W. D. Blair, Two-Stage Kalman Estimator For Tracking Maneuvering Targets, Systems, Man, and Cybernetics,1991.'1991 IEEE International Conference on Decision Aiding for Complex Systems, Conference Proceedings, vol.2, pp.761-766,1991.
    [168]Chien-Shu Hsieh, Fu-Chuang Chen, Optimal solution of the two-stage Kalman estimator, Automatic Control, IEEE Transactions on, vol.44, no.1, pp.194-199, Jan.1999.
    [169]Yong-An Zhang, Di Zhou, Guang-ren Duan, An Adaptive Iterated Kalman Filter, Computational Engineering in Systems Applications, IMACS Multiconference on, pp.1727-1730, Oct.2006.
    [170]Andrew P. Sage, Gary W. Husa, Algorithms for sequential adaptive estimation of prior statistics, Adaptive Processes (8th) Decision and Control,1969 IEEE Symposium on, vol.8, pp.61-61, Nov.1969
    [171]K. Myers, B. Tapley, Adaptive sequential estimation with unknown noise statistics, Automatic Control, IEEE Transactions on, vol.21, no.4, pp.520-523, Aug.1976.
    [172]G. W. Pulford, Taxonomy of multiple target tracking methods, IEE Proc. Radar, Sonar and Navigation, Vol.152, pp.291-304,2005.
    [173]S. S. Blackman. Multiple hypothesis tracking for multiple target tracking, IEEE A&E Systems Magazine.19(1). Pp.5-18,2004.
    [174]R. Mahler. Multitarget motion models. SPIE.1999, Vol.3720.pp:47-57.1999.
    [175]R.Mahler. An introduction to multisource-multitarget statistics and its applications, Technical Monograph. Lockheed Martin. Mar.2000.
    [176]Mahler R., Random set theory for target tracking and identification, Data Fusion Hand Book, D. Hall and J. Llinas (eds.), CRC press Boca Raton, pp.14/1-14/33, 2001.
    [177]R. Mahler, Random sets:Unification and computation for information fusion-A retrospective assessment, Proc. of The 7th International Conference on Information Fusion, Stockholm, Sweden.2004. pp.1-20.2004.
    [178]K. Panta, B-N. Vo, S. Singh, Novel Data Association Schemes for the Probability Hypothesis Density Filter, IEEE Trans. on AES.43(2). pp.556-570, Apr.2007.
    [179]D. J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes, New York:Springer,1988.
    [180]D. L. Snyder, M. I. Miller, Random Point Processes in Time and Space (2nd Ed.). New York:Springer.1991.
    [181]R. Mahler, Multi-target Bayes filtering via first-order multi-target moments, IEEE Trans. on AES.39(4), pp:1152-1178, Apr.2003.
    [182]B-N. Vo., W-K. Ma., Sequential Monte Carlo methods for multi-target filtering with random finite sets, IEEE Trans. on AES,41(4), pp.1224-1245, Oct.2005
    [183]B. Kalyan, A. Balasuriya, S. Wijesoma, Multiple target tracking in Underwater Sonar Images using Particle-PHD filter, OCEANS 2006-Asia Pacific, pp.1-5, May 2007.
    [184]D. Clark, B-T. Vo, B-N. Vo., Gaussian Particle Implementations of Probability Hypothesis Density Filters, Proc. of 2007 IEEE Aerospace Conference, Pp.1-11, Mar.2007.
    [185]B-N.Vo., W-K. Ma., A closed-form solution for the Probability Hypothesis Density filter, Proceedings of FUSION.2005, Vol.2, pp.856-863,2005
    [186]B-N. Vo., W-K. Ma., The Gaussian Mixture Probability Hypothesis Density Filter, IEEE Trans. Signal Processing.54(11). Pp.4091-4104,2006.
    [187]D.E.Clark, K.Panta, B-N.Vo. The GM-PHD filter multiple target tracker, Proceedings of FUSION.2006, pp.1-8,2006.
    [188]M. Ulmke, O. Erdinc, P. Willett, Gaussian mixture cardinalized PHD filter for ground moving target tracking, Proc. Of 2007 10th International Conference on Information Fusion, pp.1-8,2007.
    [189]J. R. Hoffman, R. P. S. Mahler, Multitarget Miss Distance via Optimal Assignment, IEEE Trans. Systems, Man and Cybernetics, Part A.34(3). pp. 327-336, May.2004.
    [190]R. L. Rothrock, O. E. Drummond, Performance metrics for mul-tiple-sensor, multiple-target tracking, In Proc. SPIE, Signal and DataProcessing of Small Targets, O. E. Drummond, Ed.2000, Vol.4048. pp.521-531,2000.
    [191]D. P. Huttenlocher, G A. Klanderman, W. J. Rucklidge, Comparing images using the Hausdorff distance. Pattern Analysis and Machine Intelligence, IEEE Transactions on,15(9). pp.850-863, Sep.1993.
    [192]D.Schuhmacher, B-T. Vo, B-N. Vo, A Consistent Metric for Performance Evaluation of Multi-Object Filters, Signal Processing, IEEE Transactions on, 56(8). pp.3447-3457, Aug.2008.
    [193]H. A. P. Blom, Y. Bar-Shalom, The Interacting Multiple Model Algorithm for System with markovian Switching Coefficients, Automatic Control, IEEE Transactions on,33(8). pp.780-783,1988.
    [194]R. J. Dempster, S. S. Blackman, T. S. Nichols, Combining IMM filtering and MHT data association for multitarget tracking, Proceedings of the Twenty-Ninth Southeastern Symposium on System Theory 1997, pp.123-127, Mar.1997
    [195]H. A. P. Blom, E. A. Bloem, Combining IMM and JPDA for tracking multiple maneuvering targets in clutter, Proceedings of the Fifth International Conference on Information Fusion, pp.705-712, Jul.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700