多平台多传感器配准算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在多平台多传感器系统中,各传感器是互相独立工作的,其采样率也不全相同;测量数据的预处理是在各个传感器的局部坐标系里进行的。信息融合并不是多个传感器数据的简单的叠加,为了达到信息融合的目的,在数据相关之前需要进行时间和空间的配准,以形成时间和空间上统一的观测信息。传感器配准是信息融合的先决条件,也是提高系统整体性能的关键技术之一,它在武器系统、遥感、导航、智能交通、机器人和安全检查等军事领域和民用领域有着广泛的应用。
     本论文针对多平台多传感器配准算法的基础问题进行了深入、系统的研究。研究围绕着解决同类/异类传感器配准、动态偏差估计和异步传感器配准问题展开。主要研究成果如下:
     1.提出了高斯均值移动算法及其收敛的充分条件。首先研究了由核密度估计器推导均值移动算法的过程,以及均值移动算法的收敛性和轨迹平滑性。在此理论基础上,由极大似然概率密度函数推导出了高斯均值移动算法,给出并证明了高斯均值移动算法的收敛定理,该定理将当前的均值移动算法的收敛条件从一个凸核函数扩展为分段的凸核函数与凹核函数,拓宽了高斯均值移动算法的应用领域和应用空间,为后续提出的高斯均值移动传感器配准算法提供了理论基础。
     2.提出了基于信息融合的修正极大似然配准算法。针对传统双站被动定位系统的空间配准问题,分析了双站被动交叉定位法在有配准偏差的情况下存在导致盲区内目标不可观测的原因,结合多平台多传感器的项目背景与信息融合技术,提出了冗余信息补偿原理,用于修正极大似然配准算法。该算法利用系统中多站冗余信息,通过对盲区内的距离信息进行更新补偿,重新建立多站偏差补偿的配准模型,信息补偿后的目标位置被用于估计传感器偏差,实现了多平台被动传感器偏差补偿和目标定位。仿真结果表明,与现有方法相比,该算法可以有效提高无源定位系统的配准偏差的估计精度和系统的跟踪性能。
     3.提出了异类传感器的均值移动配准算法。针对多平台多传感器信息融合系统中的异类传感器配准问题,将极大似然法与均值移动法结合,提出了一种新的均值移动配准算法,并分析了算法的计算复杂度。该算法利用极大似然法估计目标状态,再将均值移动算法估计异类传感器的偏差。均值移动配准算法避免了极大似然配准算法中矩阵复杂的相乘和逆运算,减少了算法的计算量,且仿真结果显示,该算法较现有方法的偏差估计精度还略有提高。
     4.提出了用于动态偏差估计的高斯均值移动配准算法。现有的动态偏差配准方法是一种基于多帧多目标的方法,不能处理单一目标情况下的配准问题。针对多平台多传感器系统中动态变化的配准偏差问题,在高斯均值移动算法的理论研究的基础上,假设测量噪声服从高斯分布,推导出用于动态偏差估计的高斯均值移动配准算法。该算法的基本思想是首先利用扩展卡尔曼滤波器实时地估计目标状态,再利用高斯均值移动算法估计传感器的动态偏差。随后,又分析了该算法的计算复杂度,分析结果表明所提出的算法比现有方法的计算量小。利用该算法可以得到较好的配准效果,尤其是对于目标数较少的情况下,其配准效果较现有方法更加明显。
     5.提出了异步传感器的偏差估计算法。首先利用目标在同一时刻的真实目标状态对不同传输速率的传感器的测量值进行描述,再对不同传感器的测量值进行线性组合,目的是消除目标状态、构造关于传感器偏差的伪测量线性方程。然后,根据偏差的动态方程推导出了关于偏差的等效状态方程,最后利用卡尔曼滤波器对偏差进行估计。该算法可以有效地对异步传感器进行配准,与现有方法相比,它不受传输速率和传感器数量的限制,而且在偏差伪测量方程中没有引入自相关测量噪声。仿真结果表明,该算法与现有方法相比,不仅减小了计算量,而且提高了系统对偏差的估计精度。
In multi-platform multi-sensor systems, each sensor is independent to work, and the data ratio is not completely same. The pretreatments of measurements are implemented in local coordinate of each sensor. Information fusion is not a process to accumulate the data from multiple sensors. In order to achieve the aim of information fusion, the temporal and spatial calibrations are performed to transform the measurements into uniform information in a common coordinate. Sensor registration is a precondition of information fusion, and is a key technique to improve the system performance. The sensor calibration has been applied in weapon systems, remote sensing, navigation, intelligent traffic, robot, security examination, other martial and civil areas.
     In this dissertation, multi-platform multi-sensor registration algorithms are studied. The research focuses on solving the problems of homologous / dissimilar sensor registration, dynamic bias estimation, and asynchronous sensor registration. The main contributions of this dissertation are summarized as follows:
     1. Gaussian mean shift and the sufficient condition for convergence are presented. The process that mean shift is derived from kernel density estimator, the convergence of mean shift, and its smooth trajectory property are studied firstly. Gaussian mean shift is derived from maximum likelihood density function, then the convergent theorem of Gaussian mean shift is proved. The theorem extends the current theorem from a convex kernel to a piece-wise convex and concave kernel, which widens the applied areas of Gaussian mean shift and provides the theoretic base for the latter chapters.
     2. Modified maximum likelihood registration algorithm based on information fusion is proposed. Aiming at the space registration in two-observer passive tracking system, the reason that target is not observable in the blind spot is analyzed when there are registration biases in the system. The principle of redundant information compensation, based on the background of projects and information fusion, is proposed. The range information in the blind spot is updated by using the redundant information, and the registration model for bias compensation is rebuilt. The target location updated in the blind spot is used to estimate the sensor biases. The modified maximum likelihood registration algorithm achieves the aims of bias compensation and target location in multi-platform passive sensors system, which improves the estimation precision and the tracking performance of passive tracking system.
     3. Mean shift registration algorithm for dissimilar sensors is presented. The target state is calculated by maximum likelihood estimate, then mean shift is used to estimate the sensor biases. The computation complexity of the proposed algorithm is also analyzed. The algorithm is applied to estimate the biases of dissimilar sensors. The simulation results show that the new method improves the bias estimation precision, and furthermore, it reduces the complex computation.
     4. Gaussian mean shift registration algorithm for dynamic bias estimate is proposed. Based on the theoretic study on mean shift in the second chapter, Gaussian mean shift is derived with the assumption that the measurement noises are Gaussian. The basic idea of the proposed algorithm is that Gaussian mean shift combined with extended Kalman filter is implemented to estimate the dynamic biases. The algorithm complexity is also analyzed, and the computation of the proposed algorithm is less than other methods. The algorithm has better estimation performance than other methods, especially for that the number of targets is several.
     5. Asynchronous sensors registration algorithm is proposed. Firstly, the measurements from asynchronous sensors are expressed by the true target state in same time index. Then the linear function of the measurements is constructed to cancel the target state, and the pseudomeasurement equation of sensor biases is obtained. Thirdly, the equivalent bias state equation is derived from the bias dynamic equation. Finally, Kalman filter is used to estimate the biases of asynchronous sensors. The algorithm is effective to calibrate the asynchronous sensors without the limit of the data ratio and the number of sensors, and the autocorrelated measurement noises are not introduced in the pseudomeasurement equation. The proposed algorithm reduces the computation and improves the estimation precision.
引文
[1] Bar-Shalom Y. and Fortmann T. E., Tracking and data association, New York, Academic Press, 1988.
    [2] Waltz E. and Llinas J., Multisensor data fusion, Artech House, Norwood, Massachusetts, 1990.
    [3] DSTO ( Defence Science and Technology Organization ) Data Fusion Special Interest Group, Data fusion lexicon, Department of Defence, Australia, 1994.
    [4] Hall D. L., Mathematical techniques in multisensor data fusion, Artech House, Boston, London, 1992.
    [5] Farina A., and Studer F. A., Radar data processing, Vol.Ⅱ, Research Studies Press LTD, 1986.
    [6] Blackman S. S., Multiple-target tracking with radar application, Artech House,Norwood, Massachusetts, 1986.
    [7] Bar-Shalom Y., Fortmann T. E., Tracking and data association, Academic Press, 1988.
    [8] Bar-Shalom Y. (editor), Multitarget-multisensor tracking: advanced application, Vol.Ⅰ, Decham, MA: Artech House, INC, 1990.
    [9] Bar-Shalom Y. (editor), Multitarget-multisensor tracking: advanced application, Vol.Ⅱ, Decham, MA: Artech House, INC, 1992.
    [10] Bar-Shalom Y. and Dale Blair W. (editors), Multitarget-multisensor tracking: advanced application, Vol.Ⅲ, Artech House, 2000.
    [11] Bar-Shalom Y., and Li X. R., Estimation and tracking: principles, techniques and software, Boston, MA: Artech House, 1993.
    [12] Bar-Shalom Y., and Li X. R., Multitarget-multisensor tracking: principles and techniques, Stors, CT:YBS Publishing, 1995.
    [13] Y. Bar-Shalom, On the track-to-track correlation problem, IEEE Transactions on Automatic Control, 26(2), pp. 571-572, 1981.
    [14]何友,王国宏,陆大(金)等,多传感器信息融合及应用,北京,电子工业出版社, 2000.
    [15] Chair Z., and Varshney P., Distributed bayesian hypothesis testing with distributed data fusion, IEEE Transactions on Systems, Man and Cybernetics, 18(5), pp. 695-699.
    [16] Magarini M., and Spalvieri A., Optimization of distributed detection systems under the minimum averagemisclassification risk criterion, IEEE Transactions on Information Theory, 46(4), pp1649-1653.
    [17] WeiXian L., and Fu J., Data fusion of multiradar system by using genetic algorithm, IEEE Transactions on Aerospace and Electronic Systems, Vol.38, No.2, pp. 601-612, 2002.
    [18] Li T., and Sethi I., Optimal multiple level decision fusion with distributed sensors, IEEE Transactions on Aerospace and Electronic Systems, Vol.29, No.4, pp. 1252-1260, 1993.
    [19] Gunatilaka A., and Baertlein B., Feature-level and decision-level fusion of noncoincidently sampled sensors for land mine detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.23, No.6, pp. 577-589, 2001.
    [20] Biao C., and Varshney P., A bayesian sampling approach to decision fusion using hierarchical models, IEEE Transactions on Signal Processing, Vol.50, No.8, pp. 1809-1818, 2002.
    [21] Hegarat L., and Bloch S., etc, Application of dempster-shafer evidence theory to unsupervised classification in multisource remote sensing, IEEE Transactions on Geoscience and Remote Sensing, Vol.35, No.4, pp. 1018-1031, 1997.
    [22] Datcu M., and Melgani F., A multisource data classification with dependence trees, IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No.3, pp. 609-617, 2002.
    [23] Arunas Mazeika, Luc Jaulin, and Christophe Osswald, A new approach for computing with fuzzy sets using interval analysis, in Proceedings of the 9th International Conference on Information Fusion, Florence, Italy, July 2006.
    [24] Haim Karniely, and Hava T. Siegelmann, Sensor registration using neural networks, IEEE Transactions on Aerospace and Electronic Systems, 36(1), pp. 85-101, 2000.
    [25] Helmick R. E., and Rice T. R., Removal of alignment errors in an integrated system of two 3D sensors, IEEE Transactions on Aerospace and Electronic Systems, 29(4), pp. 1333-1343, 1993.
    [26] Nabaa N., and Bishop R. H., Solution to a multisensor tracking problem with sensor registration errors, IEEE Transactions on Aerospace and Electronic Systems, 35(1), pp. 354-363, 1999.
    [27] Cowley D. C., and Shafai B., Registration in multi-sensor data fusion and tracking, in Proceedings of the American Control Conference, San Francisco, CA, 1993, pp. 875–879.
    [28] Dhar, Application of a recursive method for registration error correction in tracking with multiple sensors, in Proceedings of the American Control Conference, San Francisco, CA, June 1993, pp. 869-874.
    [29] Dela Cruz E., Alouani A., Rice T., and Blair W., Sensor registration in multisensor systems, in O. E. Drummond (Ed.), Signal and Data Processing of Small Targets 1992, Proceedings of SPIE, Vol. 1698, 1992, pp. 382-393.
    [30] Wax M., Position location from sensors with position uncertainty, IEEE Transactions on Aerospace and Electronic Systems, 19(5), pp. 658-661, 1983.
    [31] Blom H. A. P., Hogendoom R. A., and Van Doorn B. A., Design of multisensor tracking system for advanced air traffic control, in Y. Bar-Shalom (Ed.), Multitarget-Multisenor Tracking: Applications and Advances. Norwood, MA: Artech House, 1992, ch. 2.
    [32] Van Doorn B. A., and Blom H. A. P., Systematic error estimation in multisensor fusion systems, in O. E. Drummond (Ed.), Signal and Data Processing of Small Targets 1993, Proceedings of SPIE, Vol. 1954, 1993, pp. 450-461.
    [33] Chan Y. T., Hattin R. V., and Plant J. B., The least squares estimation of time delay and its use in signal detection, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-26, no. 3, June 1978.
    [34] Fjallbrant T. T., Interpolation and extrapolation in nonuniform sampling sequences with average sampling rates below the Nyquist rate, Electronics Letters, 12th June 1975, vol.11, no. 12, pp. 264-266.
    [35]李教,多平台多传感器多源信息融合系统时空配准及性能评估研究,西北工业大学博士学位论文, 2003.
    [36] Burke J. J., The SAGE real quality control fraction and its interface with BUICⅡ/BUICⅢ, MITRE Corp. Tech. Rep. 308, Nov. 1966.
    [37] Zhou Y., Leung H., and Yip P. C., An exact maximum likelihood registration algorithm for data fusion, IEEE Transactions on Signal Processing, 45(6):1560-1573, 1997.
    [38] Leung H., Blanchette M., and Gault K., Comparison of registration error correction techniques for air surveillance radar network, in Proceedings of SPIE, Vol. 2561, 1995, pp. 498–508.
    [39] Leung H., Blanchette M., and Harrison C., A least squares fusion of multiple radar data, in Proc. RADAR 94, Paris, France, pp. 364-369.
    [40] Dana, M. P., Registration: A prerequisite for multiple sensor tracking, in Y. Bar-Shalom (Ed.),Multitarget-Multisenor Trucking: Advanced Applications, Norwood, MA: Artech House, 1990, ch. 5.
    [41] Mulholland R. G., and Stout D. W., Stereographic projection in the national airspace system, IEEE Transactions on Aerospace and Electronic Systems, 18(1): 48-57, 1982.
    [42] Zhou Y., Leung H., and Blanchette M., Sensor alignment with earth-centred earth-fixed (ECEF) coordinate systems, IEEE Transactions on Aerospace and Electronic Systems, 35(2): 410-418, Apr. 1999.
    [43] Dong Yunlong, He You, and Wang Guohong, A modified exact maximum likelihood registration algorithm, 2004 3rd International Conference on Computational Electromagnetics and Its Applications Proceedings, Nov. 2004, pp. 85-88.
    [44] Nickens Okello, and Branko Ristic, Maximum likelihood registration for multiple dissimilar sensors, IEEE Transactions on Aerospace and Electronic Systems, Vol.39, No.3, pp.1074-1083, Jul.2003.
    [45] Blackman, S., and Popoli, R., Design and analysis of modern tracking systems, Dedham, MA: Artech House, 1999.
    [46] Cowley, D. C. and Shafai, B., Registration in multi-sensor data fusion and tracking. in Proceedings of the American Control Conference, San Francisco, CA, 1993, pp. 875–879.
    [47] McMichael D. W., and Okello N. N., Maximum likelihood registration of dissimilar sensors, in Proceedings of the Australian Data Fusion Symposium (ADFS-96), Adelaide, Australia, 1996, pp. 31–34.
    [48] Li W, and Leung H, Simultaneous registration and fusion of multiple dissimilar sensors for cooperative driving, IEEE Transactions on Intelligent Transportation Systems, 5(2):84-98, 2004.
    [49] Zhou Y., Leung H., and Bosse E., Registration of mobile sensors using the parallelized extended Kalman filter, Optical Engineering, Vol. 36, No. 3, pp.780-788, 1997.
    [50] Julier S., Uhlmann J., and Durrant-Whyte H. F., A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Transactions on Automatic Control, Vol. 45, pp. 477-482, Mar. 2000.
    [51] Wan E. A., and Van Der Merwe R., The unscented Kalman filter, in Kalman Filter and Neural Networks, Haykin S., Ed. New York: Wiley, 2001, ch. 7.
    [52] Haim Karniely, and Hava T. Siegelmann, Sensor registration using neural networks, IEEE Transactions on Aerospace and Electronic Systems, Vol.36, No.1, pp.85-101, Jan. 2000.
    [53] Lin Xiangdong, Bar-Shalom Y., and Kirubarajan T., Exact multisensor dynamic bias estimation with local tracks, IEEE Transactions on Aerospace and Electronic Systems, Vol.40, No.2, pp.576-590, April 2004.
    [54] Blom H. A. P., Hogendoorn R. A., and van Doorn B. A., Design of a multisensor tracking system for advanced air traffic control, Ch. 2 in Y. Bar-Shalom (editor), Multitarget-Multisensor Tracking: Applications and Advances, vol. II, Artech House, 1992 (reprinted by YBS Publishing, 1998).
    [55] Friedland B., Treatment of bias in recursive filtering, IEEE Transactions on Automatic Control, AC-14(4):359-367, Aug. 1969.
    [56] Leung H, Blanchette M., and Harrison C., A least squares fusion of multiple radar data, in Proceedings of RADAR, 1994, pp. 364-369.
    [57] Julier S. J., The spherical simplex unscented transformation, American Control Conference, Denver, Colorado: IEEE, 3:2430-2434, 2003.
    [58] Julier S. J., Uhlmann J. K., Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations, American Control Conference, Anchorage Alaska: IEEE, 2: 887-892, 2002.
    [59] Julier S. J., The scaled unscented transformation, American Control Conference, Anchorage Alaska: IEEE, 6: 4555-4559, 2002.
    [60] Julier S. J., Uhlmann J. K., Unscented filtering and nonlinear estimation, Proceedings of the IEEE (S0018-9219), 92(3):401– 422, 2004.
    [61] Fukunaga K., and Hostetler L. D., The estimation of the gradient of a density function, with applications in pattern recognition, IEEE Transactions on Information Theory, 21(1):32-40, 1975.
    [62] Cheng Y., Mean shift, mode seeking, and clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):790-799, 1995.
    [63] Subbarao R., and Meer P., Nonlinear mean shift for clustering over analytic manifolds, in Proc. IEEE Computer Society Conference Computer Vision and Pattern Recognition, 1, 2006, pp. 1168-1175.
    [64] Ramanan D., and Forsyth D.A., Finding and tracking people from the bottom up, in Proc. IEEE International Conference Computer Vision and Pattern Recognition, pp. 467-474, June 2003.
    [65] Ramanan D., and Forsyth D.A., Using temporal coherence to build animal models, in Proc. InternationalConference Computer Vision, pp. 338-346, Oct. 2003.
    [66] Fashing M., and Tomasi C., Mean shift is a bound optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3):471-474, 2005.
    [67] Carreira-Perpinán M.á., Gaussian mean-shift is an EM algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5): 767–776, 2007.
    [68] Comaniciu D., and Meer P., Mean shift: a robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603-619, 2002.
    [69] DeMenthon D., Spatio-temporal segmentation of video by hierarchical mean shift analysis, Proc. Statistical Methods in Video Processing Workshop, June 2002.
    [70] Wang J., Thiesson B., Xu Y., and Cohen M., Image and video segmentation by anisotropic kernel mean shift, Proc. Eighth European Conf. Computer Vision, T. Pajdla and J. Matas, eds., pp. 238-249, May 2004.
    [71] Polat E. and Ozden M., A nonparametric adaptive tracking algorithm based on multiple feature distributions, IEEE Trans. Multimedia, 8(6):1156-1163, 2006.
    [72] Comaniciu D., Ramesh V., and Meer P., Kernel-based object tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):564–577, 2003.
    [73] Elgammal A., Duraiswami R. and Davis L. S., Efficient kernel density estimation using the fast Gauss transform with applications to color modeling and tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(11):1499–1504, 2003.
    [74] Comaniciu D., Ramesh V., and Meer P., Real-time tracking of non-rigid objects using mean shift, in Computer Vision and Pattern Recognition, Proc. IEEE Conf. 2, 2000, pp. 142- 149.
    [75] Collins R., Mean-shift blob tracking through scale space, in Proc. IEEE International Conference. Computer Vision and Pattern Recognition, pp. 234-240, June 2003.
    [76] Chen H., and Meer P., Robust fusion of uncertain information, IEEE Transactions on Systems, Man Cybernetics-Part B, 35(3):578–586, 2005.
    [77] Bazaraa M. S., and Shetty C. M., Nonlinear programming theory and algorithms, Chap. 3 in Convex Functions, pp. 80-93, John Wiley and Sons, New York (1979).
    [78] Peressini A. L., Sullivan F. E., and Uhl J. J., The mathematics of nonlinear programming, Chap. 2 in Convex Sets and Concave Functions, pp. 45-58, Springer-Verlag, New York (1988).
    [79] Comaniciu D., Nonparametric robust methods for computer vision, the thesis of Degree of Doctor of Philosophy, New Brunswick, New Jersey, January 2000.
    [80] Silverman B. W., Density estimation for statistics and data analysis, New York: Chapman and Hall, 1986.
    [81] Scott D. W., Multivariate density estimation, Wiley, 1992.
    [82] Wand M. P., and Jones M., Kernel smoothing, Chapman and Hall, 1995.
    [83] Bertsekas D. P., Nonlinear programming, Athena Scientific, 1995.
    [84] Jain A. K., and Dubes R. C., Algorithms for clustering data, Prentice Hall, 1988.
    [85] Okello N. N., and Challa S., Joint sensor registration and track-to-track fusion for distributed trackers, IEEE Transactions on Aerospace and Electronic Systems, 40(3):808-822, 2004.
    [86] Ristic B., and Okello N., Sensor registration in ECEF coordinates using the MLR algorithm, in Proc. of the 6th International Conference on Information Fusion, 2003, pp. 135-142.
    [87] Zheng Z., and Zhu Y., New least squares registration algorithm for data fusion, IEEE Transactions on Aerospace and Electronic Systems, 40(4):1410-1416, 2004.
    [88] Kutluyil Dogancay, Bearings-only target localization using total least squares, Signal Processing 85, pp. 1695–1710, 2005.
    [89] VanTrees H. L., Detection, estimation and modulation theory, Part I, New York: Wiley, 1968.
    [90] Fischer W. L., Muehe C. E., and Cameron A. G., Registration error in a netted surveillance system, MIT Lincoln Lab., 1980.
    [91] Cowley D. C., and Shafai B., Registration in multu-sensor data fusion and tracking, in proceedings of the American control conference, San Francisco, 1993, pp. 875-879.
    [92] Dhar S., Application of a recursive method for registration error correction in tracking with multiple sensors, in proceedings of the American control conference, San Francisco, 1993, pp. 869-874.
    [93] Thomopoulos S. C. A., and Okello N., Distributed and centralised multisensor detection with misaligned errors, Information Sciencies, 77, pp. 293-323, 1994.
    [94] Sokkappa B. G., TOS#16: registration computation for RTQC, the MITRE Corporation, WP-7681, 1971.
    [95] Mulholland R. G., and Stout D. W., Stereographic projection in the national airspace system, IEEE Transactions on Aerospace and Electronic Systems, Vol.18, pp.48-57, 1982.
    [96] Kim K. H., and Smyton P. A., Stereographic projection in netted radar systems, MITRE Corporation Technical Report, No.10296, May, 1988.
    [97] Lainiotis D. G., Katsikas S. K., and Likothanasis S. D. L., Adaptive deconvolution of seismic signals performance, computational analysis, parallelism, IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(1): 1715-1734, 1988.
    [98] Kormylo J., and Mendel J. M., Maximum-likelihood seismic deconvolution, IEEE Transactions on Geoscience Remote Sensing, vol. GE-21, pp. 72-82, 1983.
    [99] Chi C., Mendel J. M., and Hampson D., A computationally fast approach to maximum-likelihood deconvolution, Geophysics, vol.49, no. 5, pp. 500-565, May 1984.
    [100] Lainiotis D. G., Katsikas S. K., and Likothanasis S. D. L., Minimum variance deconvolution, in Proc. Identification Pattern Recognition Conf., Toulouse, France, 1986, pp. 163-182.
    [101] Anagnostou K. E., and Lainiotis D. G., Comparative computational analysis of a new per-sample partitioning filter and of Kalman filter, Int. J. Syst., Sci., vol. 18, no. 2, pp. 351-370, 1987.
    [102]周宏仁,敬忠良,王培德,机动目标跟踪,北京:国防工业出版社. 1991.
    [103] Lin X., Bar-shalom Y., and Kirubarajan T., Multisensor-multitarget bias estimation for general asynchronous sensors, IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 3, pp. 899-921, July 2005.
    [104] Rafati A., Moshiri B., and Rezaei J., A new algorithm for general asynchronous sensor bias estimation in multisensor-multitarget systems, Proceeding of the 10th International Conference on Information Fusion, Québec, Canada, July 2007.
    [105] Hu Y., Duan Z., and Han C., Optimal batch asynchronous fusion algorithm, IEEE International Conference on Vehicular Electronics and Safety, 14-16 Oct. 2005, pp. 237-240.
    [106] Alouani A. T., Gray J. E., and Mccabe D. H., Theory of distributed estimation using multiple asynchronous sensors, IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 2, pp. 717-722, Apr. 2005.
    [107] Blair W. D., Rice T. R., Alouani A. T. and Xia P., Asynchronous data fusion for target tracking with a multitasking radar and optical sensor, in Pro. SPIE Conf. Acquisition, Tracking and Pointing V, Orlando, 1991, pp.234-245.
    [108] Blair W. D., Rice T. R., Mcdole B. S. and Sproul E. M., Least-square approach to asynchronous data fusion, in Pro. SPIE Conf Acquisition, Tracking and Pointing VI, Orlando, 1992, pp. 130-141.
    [109] Lahdhiri T., Alouani A. T., Rice T. R. and Blair W. D., On the analytical performance of asynchronous data fusion, in Pro. SPIE Conf Acquisition, Tracking and Pointing VII, Orlando, 1993, pp. 178-188.
    [110] Alouani T. and Rice T. R., On asynchronous data fusion, in Proc. 26th Annu. Southeastern Symp. System Theory, Athens, 1994, pp. 143-146.
    [111] Bar-Shalom Y., Update with out-of-sequence measurements in tracking: exact solution, IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 3, pp. 769-778, Jul. 2002.
    [112] Bar-Shalom Y., Chen H., and Mallick M., One-step solution for the multistep out-of-sequence-measurement problem in tracking, IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 1, pp. 27-37, Jan. 2004.
    [113] Varshney P. K., Distributed detection and data fusion, New York: Springer-Verlag. 1996.
    [114] Fitchek J. J., Lee J. P., and Herring D., A multi-frequency multi-sensor data fusion system, Proceedings of the 1988 tri-service data fusion symposium, 1988, pp. 9-21.
    [115] Conte J. E., and Helmick R. E., Real-time bias estimation and alignment of two asynchronous sensors for track association and fusion, AD 296043, Apr. 1995, USA.
    [116] Saha R. K., Chang K. C., and Kokar M. M., Fusion of synchronous tracks, SPIE Vol. 3068, 1997, USA: 206-217.
    [117] Shahbazian E., et al., Fusion of imaging and non-imaging data for surveillance aircraft, SPIE Vol. 3067, 1997, USA: 179-189.
    [118] Krieg M. L., Asynchronous single platform sensor fusion, DSTO-TN-0084, 1997, USA:1-26.
    [119] Alouani T. and Rice T. R., Performance analysis of an asynchronous track fusion and architecture, SPIE Vol. 3068, 1997, USA: 194-205.
    [120] Shafer G., A mathematical theory of evidence, Princeton University Press, Princeton, 1976.
    [121] Yager R. R., Kacprzyk J., and Fedrizzi M., Advances in the Dempster-Shafer theory of evidence, John Wiley and Sons, INC, 1994.
    [122] WilsonⅢJ. F., A fuzzy logic multisensor association algorithm, SPIE Vol. 3068, 1997, pp. 76-87.
    [123] Tummala M., and Glem I., Multisensor data fusion for the vessel traffic system, NPS EC-96-055, 1996, USA.
    [124] Tummala M., and Midwood S. A., A fuzzy associative data fusion algorithm for vessel traffic system, NPS EC-98-004, 1998, USA.
    [125] Castanon D. A., and Teneketzis D., Distributed estimation algorithm for nonlinear systems, IEEE Transactions on Automatic Control, Vol. 30, No.5, 1985.
    [126]胡洪涛,主/被动目标跟踪研究,上海交通大学博士学位论文, 2005.
    [127]田宏伟,基于小波变换的目标跟踪与数据关联研究,上海交通大学博士学位论文, 2005.
    [128] [JDL] U.S. Department of Defense. Data fusion subpanel of the joint directors of laboratories. Technical Panel for C3, Data fusion lexicon, 1991.
    [129] Bar-Shalom Y., Tse E. Multitarget tracking in a cluttered environment with probabilistic data association. Automatica, 1975, pp. 451-460.
    [130]杨靖宇,战场数据融合技术,北京:兵器工业出版社, 1994.
    [131]康耀红,数据融合理论与应用,西安:西安电子科技大学出版社, 1997.
    [132]刘同明,夏祖勋,解洪成,数据融合技术及其应用,北京:国防工业出版社, 1998.
    [133]杨万海,多传感器数据融合及其应用,西安:西安电子科技大学出版社, 2004.
    [134]李建勋,敬忠良,戴冠中,多传感器多目标状态信息融合,信息与控制, Vol.25, No.5, pp.312-316, 1996.
    [135] Zhu Yunmin and You Zhisheng,On the Equivalence Classes of Fusion Rules for Distributed Multisensor Decision Systems, Control Theory & Applications, Vol.18, No.6, pp.915-918, 2001.
    [136]韩崇昭,周彬,元向辉等,共同杂波环境下多目标量测数据的误差传递与校正,自动化学报, Vol.33, No.7, pp.771-774, 2007.
    [137]辅小荣,姜长生,目标跟踪中的信息融合技术,盐城工学院学报(自然科学版), Vol.17, No.3, pp.10-14, 2004.
    
    [138]李乡儒,吴福朝,胡占义,均值漂移算法的收敛性,软件学报, Vol.16, No.3, pp.365-374, 2005.
    [139]文志强,蔡自兴, Mean Shift算法的收敛性分析,软件学报, Vol.18, No.2, pp.205-212, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700