基于荚膜及外毒素的免疫策略防治金黄色葡萄球菌感染效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金黄色葡萄球菌(简称金葡菌)是一种重要的人畜共患病病原菌,荚膜和外毒素是其重要的致病因子,本研究以这两类抗原为靶点寻找有效的免疫学手段以替代抗生素防治感染性疾病。针对奶牛乳房炎,本课题组前期研究发现,特异性卵黄抗体(IgY)具有显著的治疗作用,但是针对荚膜及外毒素的IgY尚未研究。针对人类金黄色葡萄球菌感染,目前尚无有效的疫苗。而糖工程是生产多糖-蛋白生物结合疫苗的全新技术,通过这一手段可将金黄色葡萄球菌荚膜多糖和外毒素交联制成多价疫苗,并最大程度保护其抗原决定簇。本研究考察了荚膜-毒素生物结合疫苗在人类重要感染疾病模型中的预防作用。
     (1)针对奶牛乳房炎,本研究采用5型(CP5)、8型(CP8)和336型(无荚膜)金黄色葡萄球菌全菌疫苗免疫蛋鸡后分离纯化获得IgY (IgY-T5, IgY-T8, IgY-T336),纯度达到80%。ELISA检测结果表明,IgY-T5、 IgY-T8及IgY-T336特异性地结合相应血清型的抗原,三者间无交叉反应,而且都不与酸奶发酵所用保加利亚杆菌结合,故对酸奶生产无不良影响。体外抑菌实验表明,在液体培养基中生长8h期间,15mg/ml的IgY-T5和IgY-T8不能抑制T5和T8荚膜金黄色葡萄球菌的生长,而15mg/ml的IgY-T336可显著抑制(4~8h)T5、T8和T336菌的生长,抑制强度约为2个Log单位,提示抑菌作用主要依赖于IgY与表面蛋白而非荚膜的结合。细菌侵袭实验表明,5mg/ml的IgY-T5, IgY-T8, IgY-T336能够分别抑制5,8和336型金黄色葡萄球菌对奶牛乳腺上皮细胞(MAC-T)的侵袭。以上结果表明,针对荚膜的特异性卵黄抗体在奶牛乳房炎的防治中具有潜在应用价值。
     (2)金黄色葡萄球菌外毒素也是奶牛乳房炎的一个主要致病因子,本研究分离金黄色葡萄球菌V8及RN6390的总外毒素,通过免疫蛋鸡获得特异性抗体(IgY-toxins)乳酸脱氢酶(LDH)释放实验表明,IgY-toxins可有效阻断金黄色葡萄球菌外毒素对MAC-T细胞及嗜中性粒细胞的裂解,此保护作用呈现浓度依赖性。本实验中用表达GFP的336型金黄色葡萄球菌菌株RN6390来评价IgY对金黄色葡萄球菌入侵MAC-T细胞的阻断作用。通过荧光显微镜观察,5mg/ml的IgY-T336可明显阻断RN6390对MAC-T细胞的侵袭,5mg/ml的IgY-T336和0.5mg/ml的IgY-toxins联合使用时能够更好地阻断金黄色葡萄球菌侵袭MAC-T细胞,而且细胞生长形态大大改善。临床型乳房炎实验表明,三种荚膜特异性IgY联合治疗(IgY-T5,IgY-T8及IgY-T336各20mg)5天后,患病奶牛乳液中体细胞计数(SCC)明显降低,使用20mg的IgY-toxins可达到同等效果。如果将三种荚膜特异性IgY(每种20mg)和IgY-toxins (20mg)联合使用两天后,体细胞数就得到显著降低,SCC数降至1~2×104cells/ml,并一直保持到实验的第6天,且最终SCC水平低于抗荚膜或者毒素IgY单独治疗组,疗效与青霉素(100mg)治疗组相当。通过感观评价治疗后第6天奶样发现,所有4个治疗组奶样凝块水平都明显低于对照组,组间无差异。3个IgY治疗组不能显著降低奶样中金黄色葡萄球菌数。结合(1),以上结果提示抗荚膜和毒素特异性IgY联合使用比单独使用更有效,IgY在乳房炎的治疗中应该着眼于中和毒素和抵御金黄色葡萄球菌入侵上皮细胞,而非抑菌作用。
     (3)针对人类的感染疾病,体外功能性实验表明,荚膜多糖-毒素生物结合疫苗免疫所得抗体αCP5-Epa、 αCP5-Hla、αCP8-Epa能特异性地调理5型和8型金黄色葡萄球菌被嗜中性粒细胞杀伤, αCP5-Hla还可有效中和α-毒素的细胞毒作用。提示,糖工程技术可在大肠杆菌中成功表达具有免疫原性和生物学功能的金黄色葡萄球菌结合疫苗。
     (4)金黄色葡萄球菌菌血症是临床上很常见的感染,本研究通过小鼠菌血症模型研究发现,主动免疫0.2μg CP5-2μg Epa可有效预防小鼠菌血症及体重下降、肾脏脓肿。被动免疫1mg的α CP5-Epa可有效预防Reynolds、 USA100及USA200所致的小鼠菌血症。主动免疫2(μg CP5-20μg Hla或被动免疫1mg的α CP5-Hla有效预防小鼠菌血症。对于CP8菌株,主动免疫0.2μg CP8-2μg Epa可预防Reynolds (CP8+)所致菌血症,但是对体重下降、肾脏脓肿没有显著的保护作用。被动免疫1mg的α CP8-Epa可显著预防Reynolds (CP8+)引起的小鼠菌血症。提示CP5和CP8疫苗对系统性感染-菌血症的预防切实有效。
     (5)金黄色葡萄球菌肺炎也是临床上非常严重的感染,致死率很高。本研究通过小鼠模型研究发现,主动免疫2μg CP5-20μg Hla可有效预防由Newman (CP5+)以及两株MRSA菌株LAC(CP-)和ST80(CP8+)所引起的致死性肺炎,同时可有效预防Reynolds(CP5+)所致小鼠菌血症。小鼠免疫CP5-Hla后,利用单克隆抗体将CD4+T细胞和CD8+T细胞剔除,其存活率与不剔除时无显著差异。提示,T细胞在CP5-Hla主动免疫保护过程中不起作用。被动免疫1mg α CP5-Hla可有效预防小鼠的菌血症,而且能够显著延长小鼠在致死性肺炎模型中的存活时间,但是不能提高存活率。分别在攻毒前24h和2h被动免疫1mg的α CP5-Hla可显著预防小鼠死于致死性肺炎。
     (6)金黄色葡萄球菌也能在医疗器械,如导管上定殖,甚至形成生物被膜,从而导致感染。在导管介导的大鼠心内膜炎模型中,α CP5-Hla不能起到稳定的保护作用,对模型相关的心脏瓣膜赘生物的形成、菌血症水平、体重指数、肾脏细菌水平及存活率只是呈现一定的保护趋势。抗体剂量需要进一步摸索。
     以上结果表明,金黄色葡萄球菌荚膜多糖和外毒素是免疫防治策略很好的靶点。因此,针对这两个靶点的IgY可有效治疗临床型金黄色葡萄球菌奶牛乳房炎。利用糖工程方法生产的荚膜-毒素生物结合疫苗可有效预防小鼠菌血症(系统性感染)、肺炎(局部性感染),而且对心内膜炎(外科介入相关感染)有一定的保护趋势。针对金黄色葡萄球菌荚膜及外毒素的免疫策略在人畜共患病的防治中具有很好的应用潜力。
Staphylococcus aureus(S. aureus) is one of the most common pathogens that are responsible for the infections in both human and livestocks. And, the capsule and exotoxins of S. aureus are two major virulent factors in the pathogenisis of these infections. To develop an alternative to antibiotic therapy, this study was conducted to evaluate antibody-based immunotherapies which targeting capsule and exotoxins in bovine mastitis and human infections models, including bacteremia, pneumonia and endocarditis. Our preliminary research indicated that egg yolk antibody (IgY) has great potential to treat bovine mastitis caused by S. aureus. However, IgY targeting capsule and exotoxins were not investigated up to now. And, glycoengineering is a novel technology through which S. aureus capsular polysacharrides (CP) could be conjugated to exotoxin to creat a multivalent vaccine. In this study, the bioconjugate vaccines were evaluated in three infection models induced by multiple strains of S. aureus.
     (1) Capsule-specific IgY (IgY-T5, IgY-T8and IgY-T336) was obtained by immunizing laying hens with vaccines containing inactivated whole cells of serotypes5,8and336S. aueus and partially purified to80%purity. ELISA indicated that IgY binded the S. aureus cell wall specifically and showed no binding to the cell wall of Lactobacillus bulgarius, a commercially used probiotic for yorgert production. In a growth inhibition assay conducted in Columbia broth,15mg/ml of IgY-T5or IgY-T8were not able to inhibit the growth of Lowenstein or Wright strain during an8h of incubation. However, IgY-T336inhibated the growth of types5,8and336strains by about2log units in CFU. In an internalization assay,5mg/ml of specific IgYs were able to block the invasion of their homogolous strains to MAC-T cells. These results suggest that capsule-specific IgY has great potential in the treatment of bovine mastitis.
     (2) Exotoxins-specific IgY (IgY-toxins) was obtained by immunizing laying hens with the total toxins isolated from culture supernatant of S. aueus V8and RN6390strains. IgY-toxins was shown to protect MAC-T cells and bovine pneutrophils from lysis induced by S. aureus exotoxins, with a dose-dependent mode. And,5mg/ml of IgY-T336markly blocked the invasion of GFP-expressing RN6390to MAC-T cells. Furthermore, IgY-T336provided greater protection when combined with0.5mg/ml of IgY-toxins, at same time, improved the cell growth morphology. Treatment with20mg of IgY-T5, IgY-T8, IgY-T336each or20mg of IgY-toxins for6days significantly reduced the somatic cell counting (SCC) of milk sampled from the cow with clinical mastitis caused by S. aureus. Intramammary infusion with a combination of capsule and exotoxin specific IgYs showed an even lower level of SCC (1~2×104cells/ml), with no difference with the positive control (100mg of penicillin treatment). And, milk samples from the all treatment groups contained significantly lower level of clots compared to the PBS control. However, no difference was observed between all four treatment groups. None of the treatments, with exception of penicillin, significantly reduced the bacterial level in the milk samples. Together, these results suggest that application of IgY in the treatment of mastitis should focus on the toxin neutralizing and cell-invasion blocking activities, but not bacterial growth inhibition activity of IgY.
     (3) Through glycoengineering, CPs were successfully conjugated to Pseudomonas aeruginosa exotoxin A (Epa) or S. aureus a-toxin (Hla). In vitro function studies showed that a CP5-Epa, a CP5-Hla and a CP8-Epa specifically opsonized the types5or8strains for killing by human neutrophils. Besides, a CP5-Hla was able to to protect red blood cells against lysis induced by native α-toxin. These results indicated that glycoengineering effectively produced antigenic capsular polysacharrides and toxin with right epitops of S. aureus.
     (4) S. aureus is one of the most common pathogens responsible for bacterimia in human clinical practice. Mouse model study demonstrated that active immunization with0.2μg CP5-2μg Epa protected mice against bacteremia, body weight loss and renal abscess formation. Passive transfer with1mg of a CP5-Epa significantly reduced the bactereia level induced by S. aureus Reynolds, USA100or USA200. Active immunization with2μg CP5-20μg Hla or passive immunization with1mg of a CP5-Hla protected mice against bacteremia induced by S. aureus Reynolds (CP5+). Active immunization with0.2μg CP8-2μg Epa or passive transfer with1mg of a CP8-Epa protected mice against bacteremia induced by Reynolds (CP8+). These results indicated bioconjugate vaccine targeting CP5and CP8effectively fended off the systemic infection-bacteremia caused by S. aureus.
     (5) Cases of pneumonia caused by S. aureus is reported frequently and characterized with high lethallty rate. Mice immunized with2μg CP5-20μg Hla were protected against lethal pneumonia induced by Newman and MRSA strains LAC (CP-) and ST80(CP8+) and bacteremia induced by Reynolds. Depletion of CD4+or CD8+T cells in mice immunized with2μg CP5-20μg Hla did not affect the survival rate of mice intranally challenged with Newman. Passive transfer of1mg of a CP5-Hla, but not a CP5-Epa, significantly extended the survival time of mice, however, did not improve the survival rate in lethal pneumonia model. Passive immunization with two doses of1mg of a CP5-Hla at24h and2h before challenge significantly protected mice against lethal pneumonia. This phenomenon indicated that antibody, but not T cell, plays an important role in the protection against lethal pneumonia. And, Hla, but not CP, is the major virulent factor in S. aureus pneumonia model.
     (6) S. aureus could colonize on some medical implants, catheter for example, and form biofilm. In catheter-associated endocarditis model, passive transfer of1or15mg of a CP5-Hla showed a trend of, but not significant reduction in bactereial level in aortic valve vegetation, bacteremia, body weight loss, renal bactereial burden and survival rate.
     In conclusion, a combination of IgY targeting capsule and exotins of S. aureus showed great efficacy in the treatment of bovine mastitis. And, CP-toxin bioconjugate vaccines produced by glycoengineering block these two virulent factors and demonstrated protection in bacteremia (systemic infection), pneumonia (local infection) and showed a trend of protection in catheter-associated endocarditis (catheter associated infection). Together, immunotherapies targeting capsules and exotoxins of S. aureus have great potential in the treatment and prevetion of the infectious diseases in human and livestocks.
引文
[1]Ogston A. Classics in infectious diseases. "On abscesses" [J]. Reviews of Infectious Diseases, 1984,6(1):122-128.
    [2]Kluytmans, J., van Belkum, A., Verbrugh, H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks [J]. Clinical Microbiology Reviews, 1997,10 (3):505-520.
    [3]Djotyan, G. P., Soong, H. K., Mian, S. et al. Finite-element modeling of posterior lamellar keratoplasty:construction of theoretical nomograms for induced refractive errors [J]. Ophthalmic Research,2006,38 (6):329-334.
    [4]Lowy, F. D. Staphylococcus aureus infections [J]. The New England Journal of Medicine,1998, 339 (8):520-532.
    [5]Adlam, C., Ward, P. D., McCartney, A. C. et al. Effect immunization with highly purified alpha-and beta-toxins on staphylococcal mastitis in rabbits [J]. Infection and Immunity,1977,17 (2): 250-256.
    [6]Waage, S., Mork, T., Roros, A. et al. Bacteria associated with clinical mastitis in dairy heifers [J]. Journal of Dairy Science,1999,82 (4):712-719.
    [7]Gilbert, I. Dissociation in an encapsulated Staphylococcus [J]. Journal of Bacteriology,1931,21 (3):157-160.
    [8]Conn, Z. A. Determinants of infection in the peritoneal cavity. I. Response to and fate of Staphylococcus aureus and Staphylococcus albus in the mouse [J]. The Yale Journal of Biology and Medicine,1962,35:12-28.
    [9]Wiley, B. B., Maverakis, N. H. Capsule production and virulence among strains of Staphylococcus aureus [J]. Annals of the New York Academy of Sciences,1974,236:221-232.
    [10]Karakawa W W, Vann. W. F. Capsular polysaccharides of Staphylococcus aureus [J]. Seminars in Pediatric Infectious Diseases,1982,4:285-293.
    [11]Arbeit, R. D., Karakawa, W. W., Vann, W. F. et al. Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus [J]. Diagnostic Microbiology and Infectious Disease,1984,2 (2):85-91.
    [12]Sompolinsky, D., Samra, Z., Karakawa, W. W. et al. Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types [J]. Journal of Clinical Microbiology,1985,22 (5):828-834.
    [13]Albus, A., Fournier, J. M., Wolz, C. et al. Staphylococcus aureus capsular types and antibody response to lung infection in patients with cystic fibrosis [J]. Journal of Clinical Microbiology, 1988,26 (12):2505-2509.
    [14]Hochkeppel, H. K., Braun, D. G., Vischer, W. et al. Serotyping and electron microscopy studies of Staphylococcus aureus clinical isolates with monoclonal antibodies to capsular polysaccharide types 5 and 8 [J]. Journal of Clinical Microbiology,1987,25 (3):526-530.
    [15]Daum, R. S., Fattom, A., Freese, S. et al. Capsular polysaccharide serotypes of coagulase-positive staphylococci associated with tenosynovitis, osteomyelitis, and other invasive infections in chickens and turkeys:evidence for new capsular types [J]. Avian Diseases,1994,38 (4):762-771.
    [16]Guidry, A., Fattom, A., Patel, A. et al. Prevalence of capsular serotypes among Staphylococcus aureus isolates from cows with mastitis in the United States [J]. Veterinary Microbiology,1997, 59 (1):53-58.
    [17]Poutrel, B., Sutra, L. Type 5 and 8 capsular polysaccharides are expressed by Staphylococcus aureus isolates from rabbits, poultry, pigs, and horses [J]. Journal of Clinical Microbiology,1993, 31 (2):467-469.
    [18]Sordelli, D. O., Buzzola, F. R., Gomez, M. I. et al. Capsule expression by bovine isolates of Staphylococcus aureus from Argentina:genetic and epidemiologic analyses [J]. Journal of Clinical Microbiology,2000,38 (2):846-850.
    [19]Tollersrud, T., Kenny, K., Reitz, A. J., Jr. et al. Genetic and serologic evaluation of capsule production by bovine mammary isolates of Staphylococcus aureus and other Staphylococcus spp. from Europe and the United States [J]. Journal of Clinical Microbiology,2000,38 (8): 2998-3003.
    [20]张捷,乐威,陈家宽.我国奶牛乳房炎致病性金黄色葡萄球菌血清型分布[J].氨基酸和生物资源,2006,28(4):66-67.
    [21]von Eiff, C., Taylor, K. L., Mellmann, A. et al. Distribution of capsular and surface polysaccharide serotypes of Staphylococcus aureus [J]. Diagnostic Microbiology and Infectious Disease,2007,58 (3):297-302.
    [22]Verdier, I., Durand, G., Bes, M. et al. Identification of the capsular polysaccharides in Staphylococcus aureus clinical isolates by PCR and agglutination tests [J]. Journal of Clinical Microbiology,2007,45 (3):725-729.
    [23]Fournier, J. M., Hannon, K., Moreau, M. et al. Isolation of type 5 capsular polysaccharide from Staphylococcus aureus [J]. Annales de I' Institut Pasteur. Microbiology,1987,138 (5):561-567.
    [24]Fournier, J. M., Vann, W. F., Karakawa, W. W. Purification and characterization of Staphylococcus aureus type 8 capsular polysaccharide [J]. Infection and Immunity,1984,45 (1): 87-93.
    [25]Watts, A., Ke, D., Wang, Q. et al. Staphylococcus aureus strains that express serotype 5 or serotype 8 capsular polysaccharides differ in virulence [J]. Infection and Immunity,2005,73 (6): 3502-3511.
    [26]Albus, A., Arbeit, R. D., Lee, J. C. Virulence of Staphylococcus aureus mutants altered in type 5 capsule production [J]. Infection and Immunity,1991,59 (3):1008-1014.
    [27]Thakker, M., Park, J. S., Carey, V. et al. Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model [J]. Infection and Immunity,1998,66 (11):5183-5189.
    [28]Nilsson, I. M., Lee, J. C., Bremell, T. et al. The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis [J]. Infection and Immunity,1997,65 (10):4216-4221.
    [29]Portoles, M., Kiser, K. B., Bhasin, N. et al. Staphylococcus aureus Cap5O has UDP-ManNAc dehydrogenase activity and is essential for capsule expression [J]. Infection and Immunity,2001, 69 (2):917-923.
    [30]Baddour, L. M., Lowrance, C., Albus, A. et al. Staphylococcus aureus microcapsule expression attenuates bacterial virulence in a rat model of experimental endocarditis [J]. The Journal of Infectious Diseases,1992,165 (4):749-753.
    [31]Gibson, R. L., Lee, M. K., Soderland, C. et al. Group B streptococci invade endothelial cells:type III capsular polysaccharide attenuates invasion [J]. Infection and Immunity,1993,61 (2): 478-485.
    [32]Pohlmann-Dietze, P., Ulrich, M., Kiser, K. B. et al. Adherence of Staphylococcus aureus to endothelial cells:influence of capsular polysaccharide, global regulator agr, and bacterial growth phase [J]. Infection and Immunity,2000,68 (9):4865-4871.
    [33]Kampen, A. H., Tollersrud, T., Lund, A. Staphylococcus aureus capsular polysaccharide types 5 and 8 reduce killing by bovine neutrophils in vitro [J]. Infection and Immunity,2005,73 (3): 1578-1583.
    [34]Fattom, A., Schneerson, R., Watson, D. C. et al. Laboratory and clinical evaluation of conjugate vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides bound to Pseudomonas aeruginosa recombinant exoprotein A [J]. Infection and Immunity,1993,61 (3): 1023-1032.
    [35]Gilbert, F. B., Poutrel, B., Sutra, L. Immunogenicity in cows of Staphylococcus aureus type 5 capsular polysaccharide-ovalbumin conjugate [J]. Vaccine,1994,12 (4):369-374.
    [36]Fattom, A., Schneerson, R., Szu, S. C. et al. Synthesis and immunologic properties in mice of vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides conjugated to Pseudomonas aeruginosa exotoxin A [J]. Infection and Immunity,1990,58 (7): 2367-2374.
    [37]Fattom, A. I., Sarwar, J., Ortiz, A. et al. A Staphylococcus aureus capsular polysaccharide (CP) vaccine and CP-specific antibodies protect mice against bacterial challenge [J]. Infection and Immunity,1996,64(5):1659-1665.
    [38]Lee, J. C., Park, J. S., Shepherd, S. E. et al. Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats [J]. Infection and Immunity,1997,65 (10):4146-4151.
    [39]Nemeth, J., Lee, J. C. Antibodies to capsular polysaccharides are not protective against experimental Staphylococcus aureus endocarditis [J]. Infection and Immunity,1995,63 (2): 375-380.
    [40]Bayer, A. S., Li, M., Kim, E. Proceedings of the 36th Conference on Antimicrobial Agents and Chemotherapy. New Orleans,1996 [C]:G-096.
    [41]Bhakdi, S., Tranum-Jensen, J. Alpha-toxin of Staphylococcus aureus [J]. Microbiological Reviews,1991,55 (4):733-751.
    [42]O'Reilly, M., de Azavedo, J. C., Kennedy, S. et al. Inactivation of the alpha-haemolysin gene of Staphylococcus aureus 8325-4 by site-directed mutagenesis and studies on the expression of its haemolysins [J]. Microbial Pathogenesis,1986,1 (2):125-138.
    [43]Menzies, B. E., Kernodle, D. S. Passive immunization with antiserum to a nontoxic alpha-toxin mutant from Staphylococcus aureus is protective in a murine model [J]. Infection and Immunity, 1996,64(5):1839-1841.
    [44]Gouaux, E., Hobaugh, M., Song, L. alpha-Hemolysin, gamma-hemolysin, and leukocidin from Staphylococcus aureus:distant in sequence but similar in structure [J]. Protein Science:a Publication of the Protein Society,1997,6 (12):2631-2635.
    [45]McElroy, M. C., Harty, H. R., Hosford, G. E. et al. Alpha-toxin damages the air-blood barrier of the lung in a rat model of Staphylococcus aureus-induced pneumonia [J]. Infection and Immunity, 1999,67 (10):5541-5544.
    [46]Bubeck Wardenburg, J., Patel, R. J., Schneewind, O. Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia [J]. Infection and Immunity,2007,75 (2):1040-1044.
    [47]Patel, A. H., Nowlan, P., Weavers, E. D. et al. Virulence of protein A-deficient and alpha-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement [J]. Infection and Immunity,1987,55 (12):3103-3110.
    [48]Kennedy, A. D., Bubeck Wardenburg, J., Gardner, D. J. et al. Targeting of alpha-hemolysin by active or passive immunization decreases severity of US A300 skin infection in a mouse model [J]. The Journal of Infectious Diseases,2010,202 (7):1050-1058.
    [49]Brady, R. A., Mocca, C. P., Prabhakara, R. et al. Evaluation of genetically inactivated alpha toxin for protection in multiple mouse models of Staphylococcus aureus infection [J]. PloS one,2013,8 (4):e63040.
    [50]Adhikari, R. P., Karauzum, H., Sarwar, J. et al. Novel structurally designed vaccine for S. aureus alpha-hemolysin:protection against bacteremia and pneumonia [J]. PloS one,2012,7 (6): e38567.
    [51]Inoshima,I., Inoshima, N., Wilke, G. A. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM 10 to cause lethal infection in mice [J]. Nature Medicine,2011,17 (10):1310-1314.
    [52]Gillet, Y., Issartel, B., Vanhems, P. et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients [J]. Lancet,2002,359 (9308):753-759.
    [53]Genestier, A. L., Michallet, M. C., Prevost, G. et al. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils [J]. The Journal of Clinical Investigation,2005,115 (11):3117-3127.
    [54]Labandeira-Rey, M., Couzon, F., Boisset, S. et al. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia [J]. Science,2007,315 (5815):1130-1133.
    [55]Karauzum, H., Adhikari, R. P., Sarwar, J. et al. Structurally designed attenuated subunit vaccines for S. aureus LukS-PV and LukF-PV confer protection in a mouse bacteremia model [J]. PloS one,2013,8(6):e65384.
    [56]Fox, L. K., Shook, G. E., Schultz, L. H. Factors related to milk loss in quarters with low somatic cell counts [J]. Journal of Dairy Science,1985,68 (8):2100-2107.
    [57]Jones, G. M., Pearson, R.E., Clabaugh, G.A., et al. Relationships between somatic cell counts and milk production [J]. Journal of Dairy Science,1984,67 (8):1823-1831.
    [58]Wilson, D. J., Gonzalez, R. N., Das, H. H. Bovine mastitis pathogens in New York and Pennsylvania:prevalence and effects on somatic cell count and milk production [J]. Journal of Dairy Science,1997,80 (10):2592-2598.
    [59]Bramley, A. J., Patel, A. H., O'Reilly, M. et al. Roles of alpha-toxin and beta-toxin in virulence of Staphylococcus aureus for the mouse mammary gland [J]. Infection and Immunity,1989,57 (8): 2489-2494.
    [60]Barrio, M. B., Rainard, P., Prevost, G. LukM/LukF'-PV is the most active Staphylococcus aureus leukotoxin on bovine neutrophils [J]. Microbes and Infection/Institut Pasteur,2006,8 (8): 2068-2074.
    [61]Sears, P. M., Fettinger, M., Marsh-Salin, J. Isolation of L-form variants after antibiotic treatment in Staphylococcus aureus bovine mastitis [J]. Journal of the American Veterinary Medical Association,1987,191 (6):681-684.
    [62]Leitner, G., Lubashevsky, E., Glickman, A. et al. Development of a Staphylococcus aureus vaccine against mastitis in dairy cows. Ⅰ. Challenge trials [J]. Veterinary Immunology and Immunopathology,2003,93 (1-2):31-38.
    [63]Leitner, G., Yadlin, N., Lubashevsy, E. et al. Development of a Staphylococcus aureus vaccine against mastitis in dairy cows. Ⅱ. Field trial [J]. Veterinary Immunology and Immunopathology, 2003,93(3-4):153-158.
    [64]Leitner, G., Krifucks, O., Kiran, M. D. et al. Vaccine development for the prevention of staphylococcal mastitis in dairy cows [J]. Veterinary Immunology and Immunopathology,2011, 142 (1-2):25-35.
    [65]Prenafeta, A., March, R., Foix, A. et al. Study of the humoral immunological response after vaccination with a Staphylococcus aureus biofilm-embedded bacterin in dairy cows:possible role of the exopolysaccharide specific antibody production in the protection from Staphylococcus aureus induced mastitis [J]. Veterinary Immunology and Immunopathology,2010,134 (3-4): 208-217.
    [66]Middleton, J. R., Ma, J., Rinehart, C. L. et al. Efficacy of different Lysigin formulations in the prevention of Staphylococcus aureus intramammary infection in dairy heifers [J]. The Journal of Dairy Research,2006,73 (1):10-19.
    [67]Luby, C. D., Middleton, J. R., Ma, J. et al. Characterization of the antibody isotype response in serum and milk of heifers vaccinated with a Staphylococcus aureus bacterin (Lysigin) [J]. The Journal of Dairy Research,2007,74 (2):239-246.
    [68]Middleton, J. R., Luby, C. D., Adams, D. S. Efficacy of vaccination against staphylococcal mastitis:a review and new data [J]. Veterinary Microbiology,2009,134 (1-2):192-198.
    [69]Watson, D. L., Lee, C. G. Immunity to experimental staphylococcal mastitis-comparison of live and killed vaccines [J]. Australian Veterinary Journal,1978,54 (8):374-378.
    [70]Watson, D. L. Virulence of Staphylococcus aureus grown in vitro or in vivo [J]. Research in Veterinary Science,1982,32 (3):311-315.
    [71]Watson, D. L. Vaccination against experimental staphylococcal mastitis in ewes [J]. Research in Veterinary Science,1988,45 (1):16-21.
    [72]Watson, D. L. Ovine opsonins for Staphylococcus aureus cell wall and pseudocapsule [J]. Research in Veterinary Science,1989,46 (1):84-89.
    [73]Nickerson, S. C., Owens, W. E., Boddie, R. L. Effect of a Staphylococcus aureus bacterin on serum antibody, new infection, and mammary histology in nonlactating dairy cows [J]. Journal of Dairy Science,1993,76 (5):1290-1297.
    [74]Lee, J. W., O'Brien, C. N., Guidry, A. J. et al. Effect of a trivalent vaccine against Staphylococcus aureus mastitis lymphocyte subpopulations, antibody production, and neutrophil phagocytosis [J]. Canadian Journal of Veterinary Research,2005,69 (1):11-18.
    [75]O'Brien, C. N., Guidry, A. J., Fattom, A. et al. Production of antibodies to Staphylococcus aureus serotypes 5,8, and 336 using poly(DL-lactide-co-glycolide) microspheres [J]. Journal of Dairy Science,2000,83 (8):1758-1766.
    [76]Warr, G. W., Magor, K. E., Higgins, D. A. IgY:clues to the origins of modern antibodies [J]. Immunology Today,1995,16 (8):392-398.
    [77]Schade, R., Calzado, E. G., Sarmiento, R. et al. Chicken egg yolk antibodies (IgY-technology):a review of progress in production and use in research and human and veterinary medicine [J]. Alternatives to Laboratory Animals:ATLA,2005,33 (2):129-154.
    [78]Kovacs-Nolan, J., Mine, Y. Egg yolk antibodies for passive immunity [J]. Annual Review of Food Science and Technology,2012,3:163-182.
    [79]Jin, L. Z., Baidoo, S. K., Marquardt, R. R. et al. In vitro inhibition of adhesion of enterotoxigenic Escherichia coli K88 to piglet intestinal mucus by egg-yolk antibodies [J]. FEMS Immunology and Medical Microbiology,1998,21 (4):313-321.
    [80]Wang, L. H., Li, X. Y., Jin, L. J. et al. Characterization of chicken egg yolk immunoglobulins (IgYs) specific for the most prevalent capsular serotypes of mastitis-causing Staphylococcus aureus [J]. Veterinary Microbiology,2011,149 (3-4):415-421.
    [81]Trivier, D., Davril, M., Houdret, N. et al. Influence of iron depletion on growth kinetics, siderophore production, and protein expression of Staphylococcus aureus [J]. FEMS Microbiology Letters,1995,127(3):195-199.
    [82]Varrone, J. J., Li, D., Daiss, J. L. et al. Anti-glucosaminidase monoclonal antibodies as a passive immunization for methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic infections [J]. Bonekey Osteovision,2011,8:187-194.
    [83]Zhen, Y. H., Jin, L. J., Guo, J. et al. Characterization of specific egg yolk immunoglobulin (IgY) against mastitis-causing Staphylococcus aureus [J]. Journal of Applied Microbiology,2008,105 (5):1529-1535.
    [84]Zhen, Y. H., Jin, L. J., Guo, J. et al. Characterization of specific egg yolk immunoglobulin (IgY) against mastitis-causing Escherichia coli [J]. Veterinary Microbiology,2008,130(1-2):126-133.
    [85]Zhen, Y. H., Jin, L. J., Li, X. Y. et al. Efficacy of specific egg yolk immunoglobulin (IgY) to bovine mastitis caused by Staphylococcus aueus [J]. Veterinary Microbiology,2009,133 (4): 317-322.
    [86]Yokoyama, H., Peralta, R. C., Diaz, R. et al. Passive protective effect of chicken egg yolk immunoglobulins against experimental enterotoxigenic Escherichia coli infection in neonatal piglets [J]. Infection and Immunity,1992,60 (3):998-1007.
    [87]You, J., Xu, Y., He, M. et al. Protection of mice against enterotoxigenic E. coli by immunization with a polyvalent enterotoxin comprising a combination of LTB, STa, and STb [J]. Applied Microbiology and Biotechnology,2011,89 (6):1885-1893.
    [88]Vega, C. G., Bok, M., Vlasova, A. N. et al. IgY antibodies protect against human Rotavirus induced diarrhea in the neonatal gnotobiotic piglet disease model [J]. PloS one,2012,7 (8): e42788.
    [89]Kuroki, M., Ikemori, Y., Yokoyama, H. et al. Passive protection against bovine rotavirus-induced diarrhea in murine model by specific immunoglobulins from chicken egg yolk [J]. Veterinary Microbiology,1993,37 (1-2):135-146.
    [90]Ikemori, Y., Ohta, M., Umeda, K. et al. Passive protection of neonatal calves against bovine coronavirus-induced diarrhea by administration of egg yolk or colostrum antibody powder [J]. Veterinary Microbiology,1997,58(2-4):105-111.
    [91]Ikemori, Y., Kuroki, M., Peralta, R. C. et al. Protection of neonatal calves against fatal enteric colibacillosis by administration of egg yolk powder from hens immunized with K99-piliated enterotoxigenic Escherichia coli [J]. American Journal of Veterinary Research,1992,53 (11): 2005-2008.
    [92]Chu, V. H., Crosslin, D. R., Friedman, J. Y. et al. Staphylococcus aureus bacteremia in patients with prosthetic devices:costs and outcomes [J]. The American Journal of Medicine,2005,118 (12):1416.
    [93]Wang, A., Athan, E., Pappas, P. A. et al. Contemporary clinical profile and outcome of prosthetic valve endocarditis [J]. JAMA:The Journal of the American Medical Association,2007,297 (12): 1354-1361.
    [94]Kollef, M. H., Shorr, A., Tabak, Y. P. et al. Epidemiology and outcomes of health-care-associated pneumonia:results from a large US database of culture-positive pneumonia [J]. Chest,2005,128 (6):3854-3862.
    [95]Witte, W., Strommenger, B., Stanek, C. et al. Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe [J]. Emerging Infectious Diseases,2007,13 (2):255-258.
    [96]Adam, H., McGeer, A., Simor, A. Fatal case of post-influenza, community-associated MRS A pneumonia in an Ontario teenager with subsequent familial transmission [J]. Canada Communicable Disease Report,2007,33 (4):45-48.
    [97]Kaye, M. G., Fox, M. J., Bartlett, J. G. et al. The clinical spectrum of Staphylococcus aureus pulmonary infection [J]. Chest,1990,97 (4):788-792.
    [98]Schaffer, A.C., Lee, J.C. Vaccine-based Strategies for Prevention of Staphylococcus aureus Infection [M]. Kent, B. C., Kimberly, K. J., Gordon, L. A., Vance, G. F. Jr. Staphylococci in Human Disease,2nd Edition. Oxford, UK:Blackwell Publishing,2009:594-611.
    [99]O'Riordan, K., Lee, J. C. Staphylococcus aureus capsular polysaccharides [J]. Clinical Microbiology Reviews,2004,17 (1):218-234.
    [100]Shinefield, H., Black, S., Fattom, A. et al. Use of & Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis [J]. The New England Journal of Medicine,2002,346 (7): 491-496.
    [101]Robbins, J. B., Schneerson, R., Horwith, G. et al. Staphylococcus aureus types 5 and 8 capsular polysaccharide-protein conjugate vaccines [J]. American Heart Journal,2004,147 (4):593-598.
    [102]Montgomery, C. P., Boyle-Vavra, S., Adem, P. V. et al. Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia [J]. The Journal of Infectious Diseases,2008,198 (4): 561-570.
    [103]Skaar, E. P., Schneewind, O. Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme [J]. Microbes and Infection/Institut Pasteur,2004,6 (4):390-397.
    [104]Kuklin, N. A., Clark, D. J., Secore, S. et al. A novel Staphylococcus aureus vaccine:iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model [J]. Infection and Immunity,2006,74 (4):2215-2223.
    [105]Ebert, T., Smith, S., Pancari, G. et al. A fully human monoclonal antibody to Staphylococcus aureus iron regulated surface determinant B (IsdB) with functional activity in vitro and in vivo [J]. Human Antibodies,2010,19 (4):113-128.
    [106]Harro, C., Betts, R., Orenstein, W. et al. Safety and immunogenicity of a novel Staphylococcus aureus vaccine:results from the first study of the vaccine dose range in humans [J]. Clinical and Vaccine Immunology,2010,17(12):1868-1874.
    [107]Fowler, V. G., Allen, K. B., Moreira, E. D. et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery:a randomized trial [J]. JAMA:The Journal of the American Medical Association,2013,309 (13):1368-1378.
    [108]Spellberg, B., Ibrahim, A. S., Yeaman, M. R. et al. The antifungal vaccine derived from the recombinant N terminus of Als3p protects mice against the bacterium Staphylococcus aureus [J]. Infection and Immunity,2008,76 (10):4574-4580.
    [109]Lin, L., Ibrahim, A. S., Baquir, B. et al. Immunological surrogate marker of rAls3p-N vaccine-induced protection against Staphylococcus aureus [J]. FEMS Immunology and Medical Microbiology,2009,55 (3):293-295.
    [110]Lin, L., Ibrahim, A. S., Xu, X. et al. Thl-Thl7 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice [J]. PLoS Pathogens,2009,5 (12): e1000703.
    [111]Sullam, P. M., Bayer, A. S., Foss, W. M. et al. Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis [J]. Infection and Immunity,1996,64 (12):4915-4921.
    [112]Josefsson, E., Hartford, O., O'Brien, L. et al. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant [J]. The Journal of Infectious Diseases,2001,184(12):1572-1580.
    [113]Vernachio, J. H., Bayer, A. S., Ames, B. et al. Human immunoglobulin G recognizing fibrinogen-binding surface proteins is protective against both Staphylococcus aureus and Staphylococcus epidermidis infections in vivo [J]. Antimicrobial Agents and Chemotherapy,2006, 50 (2):511-518.
    [114]Bloom, B., Schelonka, R., Kueser, T. et al. Multicenter study to assess safety and efficacy of INH-A21, a donor-selected human staphylococcal immunoglobulin, for prevention of nosocomial infections in very low birth weight infants [J]. The Pediatric Infectious Disease Journal,2005,24 (10):858-866.
    [115]Patti, J. M. A humanized monoclonal antibody targeting Staphylococcus aureus [J]. Vaccine, 2004,22Suppl1:S39-43.
    [116]Rupp, M. E., Holley, H. P., Jr., Lutz, J. et al. Phase Ⅱ, randomized, multicenter, double-blind, placebo-controlled trial of a polyclonal anti-Staphylococcus aureus capsular polysaccharide immune globulin in treatment of Staphylococcus aureus bacteremia [J]. Antimicrobial Agents and Chemotherapy,2007,51 (12):4249-4254.
    [117]Burnie, J. P., Matthews, R. C., Carter, T. et al. Identification of an immunodominant ABC transporter in methicillin-resistant Staphylococcus aureus infections [J]. Infection and Immunity, 2000,68 (6):3200-3209.
    [118]Weisman, L. E., Thackray, H. M., Garcia-Prats, J. A. et al. Phase 1/2 double-blind, placebo-controlled, dose escalation, safety, and pharmacokinetic study of pagibaximab (BSYX-Al10), an antistaphylococcal monoclonal antibody for the prevention of staphylococcal bloodstream infections, in very-low-birth-weight neonates [J]. Antimicrobial Agents and Chemotherapy,2009,53 (7):2879-2886.
    [119]Honeyman, A., Friedman, H., Bendinelli, M. Staphylococcus aureus infection and disease [M]. New Yolk:Kluwer Academic Publishers,2002.
    [120]Jansen, K. U., Girgenti, D. Q., Scully, I. L. et al. Vaccine review:" Staphyloccocus aureus vaccines:problems and prospects" [J]. Vaccine,2013,31 (25):2723-2730.
    [121]Bradley, A. Bovine mastitis:an evolving disease [J]. Veterinary Journal,2002,164 (2):116-128.
    [122]Han, H. R., Pak, S. I., Kang, S. W. et al. Capsular polysaccharide typing of domestic mastitis-causing Staphylococcus aureus strains and its potential exploration of bovine mastitis vaccine development. I. Capsular polysaccharide typing, isolation and purification of the strains [J]. Journal of Veterinary Science,2000,1 (1):53-60.
    [123]Poutrel, B., Boutonnier, A., Sutra, L. et al. Prevalence of capsular polysaccharide types 5 and 8 among Staphylococcus aureus isolates from cow, goat, and ewe milk [J]. Journal of Clinical Microbiology,1988,26 (1):38-40.
    [124]Sandholm, M., Kaartinen, L., Pyorala, S. Bovine mastitis-why does antibiotic therapy not always work? An overview [J]. Journal of Veterinary Pharmacology and Therapeutics,1990,13 (3): 248-260.
    [125]Melchior, M. B., Vaarkamp, H., Fink-Gremmels, J. Biofilms:a role in recurrent mastitis infections? [J]. Veterinary Journal,2006,171 (3):398-407.
    [126]Mellenberger, R. W. Vaccination against mastitis [J]. Journal of Dairy Science,1977,60 (6): 1016-1021.
    [127]Xu, Y., Li, X., Jin, L. et al. Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases:a review [J]. Biotechnology Advances,2011,29 (6): 860-868.
    [128]Karakawa, W. W., Founier, J. M., Vann, W. F. et al. Method for the serological typing of the capsular polysaccharides of Staphylococcus aureus [J]. Journal of Clinical Microbiology,1985, 22 (3):445-447.
    [129]Lee, E. N., Sunwoo, H. H., Menninen, K. et al. In vitro studies of chicken egg yolk antibody (IgY) against Salmonella enteritidis and Salmonella typhimurium [J]. Poultry Science,2002,81 (5):632-641.
    [130]Akita, E., Nakai, S. Immunoglobulins from egg yolk:isolation and purification [J]. Journal of Food Science,1992,57 (3):629-634.
    [131]Bayles, K. W., Wesson, C. A., Liou, L. E. et al. Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells [J]. Infection and Immunity,1998,66 (1): 336-342.
    [132]Baselga, R., Albizu, I., Amorena, B. Staphylococcus aureus capsule and slime as virulence factors in ruminant mastitis. A review [J]. Veterinary Microbiology,1994,39 (3-4):195-204.
    [133]Kronvall, G., Seal, U. S., Svensson, S. et al. Phylogenetic aspects of staphylococcal protein A-reactive serum globulins in birds and mammals [J]. Acta pathologica et microbiologica Scandinavica. Section B:Microbiology and Immunology,1974,82 (1):12-18.
    [134]Hensen, S. M., Pavicic, M. J., Lohuis, J. A. et al. Location of Staphylococcus aureus within the experimentally infected bovine udder and the expression of capsular polysaccharide type 5 in situ [J]. Journal of Dairy Science,2000,83 (9):1966-1975.
    [135]Mine, Y., Kovacs-Nolan, J. Chicken egg yolk antibodies as therapeutics in enteric infectious disease:a review [J]. Journal of Medicinal Food,2002,5 (3):159-169.
    [136]Torres, V. J., Pishchany, G., Humayun, M. et al. Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization [J]. Journal of Bacteriology,2006,188 (24): 8421-8429.
    [137]Sugita-Konishi, Y., Shibata, K., Yun, S. S. et al. Immune functions of immunoglobulin Y isolated from egg yolk of hens immunized with various infectious bacteria [J]. Bioscience, Biotechnology, and Biochemistry,1996,60 (5):886-888.
    [138]Buzzola, F. R., Alvarez, L. P., Tuchscherr, L. P. et al. Differential abilities of capsulated and noncapsulated Staphylococcus aureus isolates from diverse agr groups to invade mammary epithelial cells [J]. Infection and Immunity,2007,75 (2):886-891.
    [139]Sutra, L., Poutrel, B. Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus [J]. Journal of Medical Microbiology,1994,40 (2): 79-89.
    [140]Jonsson, P., Lindberg, M., Haraldsson, I. et al. Virulence of Staphylococcus aureus in a mouse mastitis model:studies of alpha hemolysin, coagulase, and protein A as possible virulence determinants with protoplast fusion and gene cloning [J]. Infection and Immunity,1985,49 (3): 765-769.
    [141]Loeffler, D. A., Norcross, N. L. Use of enzyme-linked immunosorbent assay to measure bovine milk and serum antibodies to alpha toxin, beta toxin, and capsular antigens of Staphylococcus aureus [J]. Veterinary Immunology and Immunopathology,1987,14(2):145-156.
    [142]Rainard, P., Corrales, J. C., Barrio, M. B. et al. Leucotoxic activities of Staphylococcus aureus strains isolated from cows, ewes, and goats with mastitis:importance of LukM/LukF'-PV leukotoxin [J]. Clinical and Diagnostic Laboratory Immunology,2003,10 (2):272-277.
    [143]Paape, M. J., Bannerman, D. D., Zhao, X. et al. The bovine neutrophil:structure and function in blood and milk [J]. Veterinary Research,2003,34 (5):597-627.
    [144]Allard, M., Ster, C., Jacob, C. L. et al. The expression of a putative exotoxin and an ABC transporter during bovine intramammary infection contributes to the virulence of Staphylococcus aureus [J]. Veterinary Microbiology,2013,162 (2-4):761-770.
    [145]Gladstone, G. P., Van Heyningen, W. E. Staphylococcal leucocidins [J]. British Journal of Experimental Pathology,1957,38(2):123-137.
    [146]Li, X. Y., Jin, L. J., McAllister, T. A. et al. Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY) [J]. Journal of Agricultural and Food Chemistry,2007,55 (8): 2911-2917.
    [147]Riding, G. A., Willadsen, P. Simultaneous isolation of bovine eosinophils and neutrophils on gradients of Percoll [J]. Journal of Immunological Methods,1981,46 (1):113-119.
    [148]Kahl, B. C., Goulian, M., van Wamel, W. et al. Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line [J]. Infection and Immunity,2000,68 (9): 5385-5392.
    [149]Lauzon, K., Zhao, X., Bouetard, A. et al. Antioxidants to prevent bovine neutrophil-induced mammary epithelial cell damage [J]. Journal of Dairy Science,2005,88 (12):4295-4303.
    [150]Howard, M. D., Boone, J. H., Buechner-Maxwell, V. et al. Inhibition of bovine macrophage and polymorphonuclear leukocyte superoxide anion production by Haemophilus somnus [J]. Microbial Pathogenesis,2004,37 (5):263-271.
    [151]Banffer, J. R., Franken, J. F. Immunization with leucocidin toxoid against staphylococcal infection [J]. Pathologia et microbiologia,1967,30 (2):166-174.
    [152]Prevost, G., Cribier, B., Couppie, P. et al. Panton-Valentine leucocidin and gamma-hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities [J]. Infection and Immunity,1995,63 (10):4121-4129.
    [153]Cheung, A. L., Ying, P. Regulation of alpha-and beta-hemolysins by the sar locus of Staphylococcus aureus [J]. Journal of Bacteriology,1994,176 (3):580-585.
    [154]Cifrian, E., Guidry, A. J., Bramley, A. J. et al. Effect of staphylococcal beta toxin on the cytotoxicity, proliferation and adherence of Staphylococcus aureus to bovine mammary epithelial cells [J]. Veterinary Microbiology,1996,48 (3-4):187-198.
    [155]Paape, M., Mehrzad, J., Zhao, X. et al. Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes [J]. Journal of Mammary Gland Biology and Neoplasia,2002,7 (2):109-121.
    [156]Griesbeck-Zilch, B., Meyer, H. H., Kuhn, C. H. et al. Staphylococcus aureus and Escherichia coli cause deviating expression profiles of cytokines and lactoferrin messenger ribonucleic acid in mammary epithelial cells [J]. Journal of Dairy Science,2008,91 (6):2215-2224.
    [157]Wellnitz, O., Reith, P., Haas, S. et al. Immune relevant gene expression of mammary epithelial cells and their influence on leukocyte chemotaxis in response to different mastitis pathogens [J]. Veterinarni Medicina,2006,51 (4):125.
    [158]Zhao, X., Lacasse, P. Mammary tissue damage during bovine mastitis:causes and control [J]. Journal of Animal Science,2008,86 (13 Suppl):57-65.
    [159]Harmon, R. J. Physiology of mastitis and factors affecting somatic cell counts [J]. Journal of Dairy Science,1994,77 (7):2103-2112.
    [160]Carlander, D., Kollberg, H., Wejaker, P. E. et al. Peroral immunotherapy with yolk antibodies for the prevention and treatment of enteric infections [J]. Immunologic Research,2000,21 (1):1-6.
    [161]Hawkins, J., Kodali, S., Matsuka, Y. V. et al. A recombinant clumping factor A-containing vaccine induces functional antibodies to Staphylococcus aureus that are not observed after natural exposure [J]. Clinical and Vaccine Immunology,2012,19 (10):1641-1650.
    [162]Bubeck Wardenburg, J., Schneewind, O. Vaccine protection against Staphylococcus aureus pneumonia [J]. The Journal of Experimental Medicine,2008,205 (2):287-294.
    [163]Avci, F. Y., Li, X., Tsuji, M. et al. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design [J]. Nature Medicine,2011,17 (12):1602-1609.
    [164]Kennedy, M., Bates, D. W., Wright, S. B. et al. Do emergency department blood cultures change practice in patients with pneumonia? [J]. Annals of Emergency Medicine,2005,46 (5):393-400.
    [165]Lindblad, E. B. Aluminium compounds for use in vaccines [J]. Immunology and Cell Biology, 2004,82 (5):497-505.
    [166]Mata-Haro, V., Cekic, C., Martin, M. et al. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4 [J]. Science,2007,316 (5831):1628-1632.
    [167]Fransen, F., Boog, C. J., van Putten, J. P. et al. Agonists of Toll-like receptors 3,4,7, and 9 are candidates for use as adjuvants in an outer membrane vaccine against Neisseria meningitidis serogroup B [J]. Infection and Immunity,2007,75 (12):5939-5946.
    [168]Bubeck Wardenburg, J., Bae, T., Otto, M. et al. Poring over pores:alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia [J]. Nature Medicine,2007,13 (12):1405-1406.
    [169]Higgins, S. C., Jarnicki, A. G., Lavelle, E. C. et al. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis:role of IL-17-producing T cells [J]. Journal of Immunology,2006,177 (11):7980-7989.
    [170]Moffitt, K. L., Gierahn, T. M., Lu, Y. J. et al. T(H)17-based vaccine design for prevention of Streptococcus pneumoniae colonization [J]. Cell Host and Microbe,2011,9(2):158-165.
    [171]Joshi, A., Pancari, G., Cope, L. et al. Immunization with Staphylococcus aureus iron regulated surface determinant B (IsdB) confers protection via Thl7/IL17 pathway in a murine sepsis model [J]. Human Vaccines and Immunotherapeutics,2012,8 (3):336-346.
    [172]Niebuhr, M., Gathmann, M., Scharonow, H. et al. Staphylococcal alpha-toxin is a strong inducer of interleukin-17 in humans [J]. Infection and Immunity,2011,79 (4):1615-1622.
    [173]Ragle, B. E., Bubeck Wardenburg, J. Anti-alpha-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia [J]. Infection and Immunity,2009,77 (7): 2712-2718.
    [174]Malley, R., Trzcinski, K., Srivastava, A. et al. CD4+T cells mediate antibody-independent acquired immunity to pneumococcal colonization [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102 (13):4848-4853.
    [175]Fowler, V. G., Jr., Miro, J. M., Hoen, B. et al. Staphylococcus aureus endocarditis:a consequence of medical progress [J]. JAMA:The Journal of the American Medical Association,2005,293 (24):3012-3021.
    [176]Entenza, J. M., Moreillon, P., Senn, M. M. et al. Role of sigma B in the expression of Staphylococcus aureus cell wall adhesins ClfA and FnbA and contribution to infectivity in a rat model of experimental endocarditis [J]. Infection and Immunity,2005,73 (2):990-998.
    [177]Risley, A. L., Loughman, A., Cywes-Bentley, C. et al. Capsular polysaccharide masks clumping factor A-mediated adherence of Staphylococcus aureus to fibrinogen and platelets [J]. The Journal of Infectious Diseases,2007,196 (6):919-927.
    [178]Bayer, A. S., Ramos, M. D., Menzies, B. E. et al. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis:a host defense role for platelet microbicidal proteins [J]. Infection and Immunity,1997,65 (11): 4652-4660.
    [179]Siboo, I. R., Cheung, A. L., Bayer, A. S. et al. Clumping factor A mediates binding of Staphylococcus aureus to human platelets [J]. Infection and Immunity,2001,69 (5):3120-3127.
    [180]Donlan, R. M. Biofilms and device-associated infections [J]. Emerging Infectious Diseases,2001, 7 (2):277-281.
    [181]Taborda, C. P., Rivera, J., Zaragoza, O. et al. More is not necessarily better:prozone-like effects in passive immunization with IgG [J]. Journal of Immunology,2003,170 (7):3621-3630.
    [182]Miller, L. S., Cho, J. S. Immunity against Staphylococcus aureus cutaneous infections [J]. Nature Reviews. Immunology,2011,11 (8):505-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700