鸡FGFR-1重组蛋白疫苗抗小鼠肿瘤血管生成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤血管生成是肿瘤生长与转移的必要条件,抗肿瘤血管生成研究已成为肿瘤研究的一个热点。bFGF是最重要的肿瘤血管生成因子之一,其生物活性主要是通过与高亲和性受体——FGFR-1结合而发挥作用。研究表明,FGFR-1特异表达于肿瘤新生血管的内皮细胞和许多肿瘤细胞中,是肿瘤血管生成的重要调节分子。作为配体结合区的FGFR-1胞外段和配体bFGF结合后发生二聚体化导致自身磷酸化,从而诱导肿瘤血管生成,进而促使肿瘤生长和转移。可见,封闭FGFR-1胞外段就可阻断bFGF/FGFR-1的信号传导通路,阻止肿瘤血管生成,从而抑制肿瘤生长和转移。已有研究证实利用抗FGFR-1单克隆抗体被动免疫治疗在动物模型中具有明显的抗肿瘤作用,但是这种被动免疫治疗方式存在许多不足。此外,研究还表明抗肿瘤血管生成治疗联合低剂量化疗可以提高抗肿瘤血管生成作用,而且没有明显毒副作用。因此,蛋白疫苗主动免疫治疗或者联合低剂量化疗的抗肿瘤血管生成策略展示了良好的临床应用前景。
     本研究设想利用肿瘤血管生成过程中特异表达的FGFR-1分子作为治疗的靶点,利用基因工程技术构建了鸡FGFR-1 (cFR)和小鼠自身FGFR-1 (mFR)胞外段重组蛋白,了解异种同源cFR蛋白是否能够打破小鼠自身免疫耐受,诱导肿瘤模型小鼠产生抗自身FGFR-1的抗体阻止血管生成,从而抑制小鼠肿瘤的生长,并初步探讨其作用机制,为抗肿瘤血管生成治疗提供新途径。为此,我们首先用cFR蛋白质作为疫苗,在CT26结肠腺癌和Meth A纤维肉瘤两个小鼠肿瘤模型中进行实验观察。实验结果发现,用cFR蛋白疫苗主动免疫治疗的小鼠能明显减缓肿瘤的生长并延长荷瘤小鼠的生存时间,且没有发现毒副作用。Western blot和ELISA检测都发现cFR免疫小鼠血清中产生的抗体不仅能识别cFR,而且能识别同种的重组蛋白质mFR。ELISPOT显示cFR免疫后小鼠脾脏中有较多特异性抗cFR或者抗mFR抗体的B淋巴细胞分泌。免疫荧光检测也证实在cFR免疫小鼠肿瘤组织内有内皮细胞性自身抗体沉积。在阻断CD4+T淋巴细胞亚群后,cFR免疫小鼠不能产生自身抗体。用cFR免疫小鼠血清中纯化的免疫球蛋白进行过继性免疫治疗也同样具有抑制肿瘤作用。抗CD31免疫组化结果显示,经cFR免疫治疗后小鼠的肿瘤组织内微血管计数明显减少。接着,我们用cFR蛋白疫苗联合小剂量吉西他滨在CT26肿瘤模型中进行抗肿瘤作用观察。结果发现两者单独治疗均有不同程度的抗肿瘤作用,而联合治疗效果更佳且未发现明显的毒副作用。免疫组化检测结果表明,联合治疗在肿瘤组织微血管密度、细胞调亡和增殖中具有协同作用。Western blot和ELISPOT检测发现联合治疗和单独免疫治疗均能诱导产生抗mFR的抗体,并可检测到分泌特异性抗mFR抗体的B淋巴细胞。
     综上所述,本研究成功构建了鸡和小鼠FGFR-1胞外段原核表达质粒,获得了纯化的重组蛋白质并制备成疫苗。cFR蛋白疫苗主动免疫治疗抗肿瘤的作用可能是疫苗诱导荷瘤小鼠体内产生了特异性抗自身FGFR-1抗体,自身抗体阻断了bFGF与FGFR-1间的信号传导通路,诱导血管内皮细胞调亡、从而抑制肿瘤血管生成的结果。CD4+T淋巴细胞在抗肿瘤特异性免疫反应中发挥重要作用。联合治疗不仅没有影响蛋白疫苗诱导产生特异性免疫反应,而且协同增强了其抗肿瘤作用,亦没有发现明显的毒副作用。这些结果将为抗血管生成的肿瘤治疗提供新的途径,值得进一步深入研究。
It is generally believed that the growth and metastases of a tumor are angiogenesis-dependent and thus that anti-angiogenic therapy, which targets genetically stable endothelial cells as a strategy for cancer therapy, is highly warranted. At present, basic fibroblast growth factor (bFGF) has been shown to be one of the most important angiogenic growth factors for tumor angiogenesis. bFGF conducts its biological function through interaction with its high-affinity receptor, fibroblast growth factor receptor-1(FGFR-1), which is markedly expressed both in active endothelial cell and in many different forms of tumor and plays an important role in tumor angiogenesis and tumor growth. Thus, it is logical to consider using FGFR-1-mediated anti-angiogenesis as a target of immune therapy for tumor treatment, which could suppress angiogenesis and further inhibited tumor growth by block the bFGF/FGFR-1 signal transduction. Studies suggested that passive immunotherapy with a monoclonal antibody FGFR-1-mediated anti-angiogenesis could inhibit tumor growth, but the blocker may be involved some side-effects. Moreover, much recent evidence has also confirmed that xenogeneic homologous molecules can induce cross-reaction against self homologous molecules. Furthermore, other findings have also demonstrated that antiangiogenic therapy combined with chemotherapy could more effectively inhibited tumor growth without overt toxicity than either therapy alone. So the antiangiogenic therapy in solid tumors should be used as a new approach for cancer therapy with active immunity or combined with chemotherapy agents.
     To test this notion, in the first part, we recombined the extracellular domain of chicken FGFR-1(cFR) protein vaccine and a mouse FGFR-1 (mFR) protein vaccine as a homologous control. We found that immunotherapy with cFR vaccine was effective at both protective and therapeutic antitumor immunization in two mouse tumor models. The tumor volume was significantly smaller and the survival time was significantly longer in cFR-1-immunized group than those in control groups. Auto-antibodies against mouse FGFR-1 were found in sera of mice immunized with cFR in Western blotting analysis and ELISA assay. Anti-FGFR-1 antibody producing B cells (APBCs)were were observed in all cFR-immunized mice, which detectable by ELISPOT. The endothelial deposition of autoantibodies was found within tumor tissues from cFR-immunized mice, which were detected by immunofluorescent staining.The antitumor activity and production of autoantibodies against FGFR-1 could be abrogated by depletion of CD4+T lymphocytes. The antitumor activity was also induced by the adoptive transfer of the purified immunoglobulins was apparently inhibited within the tumors. The microvessel density, which stained with antibodies reactive to CD31, was also significantly less in the cFR-1-immunized mice than in controls.
     In the second part, we evaluated primarily the antitumor activities of low-dose gemcitabine combined with a recombinant cFR vaccine in a mouse colon adenocaicinoma model. We found that low-dose gemcitabine or cFR vaccine treatment resulted in the inhibition of tumor growth to a certain extent. Remarkably, the combination therapy results in apparent decreases in tumor volume, microvessel density and tumor cell proliferation, and an increase in apoptosis without obvious side-effects as compared with either therapy alone or normal control groups. Moreover, the low-dose gemcitabine did not inhibit the host cross-immune response, but it potentiated anti-tumor effects as was demonstrated in the synergistic indexes of tumor volume, MVD, apoptosis and proliferation, and the presence of both auto-antibodies and the APBCs in the cFR-1-immunized mice.
     Taken together, these findings demonstrates that the mechanism of antitumor effects may be related to the autoantibodies against mouse self-FGFR-1 induced by cFR1 immunizaton could block the bFGF/FGFR-1 signal transduction, may involve CD4+ T lymphocytes, and further inhibited tumor growth by mediated anti-angiogenesis. The combination therapy strategy effectively and synergistically suppressed tumor growth via inhibition of tumor angiogenesis without systemic toxicity, which the low-dose gemcitabine did not inhibit the hose immune response. Moreover, no overt toxicity was found in all of the mice. Our study may provide an alternative strategy for treatment of tumor angiogenesis and needs further investigation.
引文
1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285: 1182-1186.
    2. Risau W. Mechanism of angiogenesis. Nature, 1997; 386:671–674.
    3. Marx J. Tumor angiogenesis. Gene expression patterns identified. Science, 2000; 289(5482):1121-1122.
    4. Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med, 1999; 5: 1359–64.
    5. Bellamy WT, Richter L, Grogan TM. Expression of vascular endothelial growth factor and its receptors in haematopoietic malignances. Cancer Res, 1999, 59:728-723.
    6. Perez-Atayde AR., Sallan SE, Tedrow U, et al. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol, 1997, 150: 815.
    7. Vacca A, Ribatti D, Roncali, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Hematology, 1994, 87:503-508.
    8. Folkman J. Angiogenesis-dependent diseases. Semin Oncol, 2001; 28: 536-542
    9. Dankbar B, Padro T, Leck, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interaction in multiple myeloma. Blood, 2001; 95:2030-2036.
    10. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC.Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest. 2001; 108(5):669-678.
    11. Barinaga M. Angiogenesis research. Cancer drugs found to work in new way. Science. 2000; 288 (5464):245.
    12. Rosen L. Antiangiogenic strategies and agents in clinical trials. Oncologist. 2000; 5(Suppl 1): 20-27.
    13. Folkman J, Beckner K. Angiogenesis imaging. Acad Radiol. 2000; 7(10):783-5.
    14. Sivridis E. Angiogenesis and endometrial cancer. Anticancer Res.2001; 21(6B):4383-8.
    15. Bikfalvi A, Bicknell R. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting. Trends Pharmacol Sci, 2002, 23(12): 576-582
    16. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculatrue in mouse model. Science, 1998, 279:377-380
    17. Scappaticci FA. Mechanisms and Future Directions for Angiogenesis-Based Cancer Therapies. J Clin Oncol., 2002, 20(18): 3906-3927
    18. Klint P, Claesson-Welsh L. Signal transduction by fibroblast growth factor receptors. Front Biosci, 1999, 4:165-177
    19. Mason JC, Lidington EA, Ahmad SR, Haskard DO.bFGF and VEGF synergistically enhance endothelial cytoprotection via decay-accelerating factor induction. Am J Physiol Cell Physiol. 2002; 282 (3):C578-587.
    20. Powers CJ, Mcleskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endoc Relat Cancer, 2000,7(3):165-197
    21. Plum SM, Holaday JW, Ruiz A, Madsen JW, Fogler WE, Fortier AH. Administration of a liposomal FGF-2 peptide vaccine leads to abrogation of FGF-2-mediated angiogenesis and tumor development. Vaccine, 2000,19(9-10):1294-1303
    22. Huang, X., C. Yu, C. Jin, M. Kobayashi, C.A. Bowles, F. Wang, and W.L. McKeehan. Ectopic activity of FGFR-1 in hepatocytes accelerates hepatocarcinogenesis by driving proliferation and VEGF-induced angiogenesis. Cancer Res, 2006; 66: 1481-1490.
    23. Zhang Y, Lin Y, Bowles C, Wang F. Direct cell cycle regulation by the fibroblast growth factor feceptor (FGFR) kinase through phosphorylation-dependent release of cks1 from FGFR substrate 2. J Biol Chem, 2004; 279(53): 55348 - 55354.
    24. Chaudhuri MM, Moscatelli D, Basilico C. Involvement of the conserved acidic amino acid domain of FGF receptor 1 in ligand-receptor interactions. J Cell Physiol, 1993,157: 209-216
    25. Cross MJ, Lu L, Magnusson P, Nyqvist D, Holmqvist K, Welsh M, Claesson-Welsh L. The Shb adaptor protein binds to tyrosine 766 in the FGFR-1 and regulates the Ras/MEK/MAPK pathway via FRS2 phosphorylation in endothelial cells. Mol Biol Cell,2002; 13: 2881–2893
    26. B Gowardhan, D A Douglas, M E Mathers, A B McKie, S R C McCracken, C N Robson and H Y Leungv. Evaluation of the fibroblast growth factor system as a potential target for therapy in human prostate cancer. British Journal of Cancer, 2005; 92:320-327.
    27. Hori A, Sasada R,Matsutani E, et al. Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res, 1991;51:6180-4.
    28. B Kwabi-Addo, M Ozen, and M Ittmann. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer, 2004; 11(4): 709 - 724.
    29. Marianne Valesky, Aaron J. Spang, Gregory W. Fisherv, Daniel L. Farkas, Dorothea Becker. Noninvasive dynamic fluorescence Imaging of human melanomas reveals that targeted Inhibition of bFGF or FGFR-1 in melanoma cells blocks tumor growth by apoptosis. Molecular Medicine, 2002; 8(2): 103-111
    30. Wang F, McKeehan K, Yu CD, McKeehan WL. Fibroblast Growth Factor Receptor 1 Phosphotyrosine 766 Molecular Target for Prevention of Progression of Prostate Tumors to Malignancy. Cancer Res,2002; 62(6): 1898-1903
    31. Udayakumar TS, Klein RD, Maliner MS, Nagle RB, Bowden GT. Aberrant expression of fibroblast growth factor receptor-1 in prostate epithelial cells allows induction of promatrilysin expression by fibroblast growth factors. Int J Cancer, 2001, 91(2):187-192
    32. Boon T, Coulie PG, Van den Eynde B. Tumor antigens recognized by T cells. Immunol Today. 1997 ; 18(6):267-268.
    33. Rosenberg SA. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today. 1997; 18(4):175-182.
    34. Houghton AN, Scheinberg DA. Monoclonal antibody therapies-a 'constant' threat to cancer. Nat Med. 2000;6(4):373-374.
    35. Haupt K, Roggendorf M, Mann K.The potential of DNA vaccination against tumor-associated antigens for antitumor therapy. Exp Biol Med (Maywood). 2002 ;227(4):227-37.
    36. Zhu D, Stevenson FK.DNA gene fusion vaccines against cancer. Curr Opin Mol Ther. 2002;4(1):41-8
    37. Grossman Z, Paul WE. Self-tolerance: context dependent tuning of T cell antigen recognition. Semin Immunol.;12 (3):197-203; discussion 257-344.
    38. Mor G, Eliza M. Plasmid DNA vaccines. Immunology, tolerance, and autoimmunity. Mol Biotechnol. 2001; 19 (3):245-50.
    39. Anderton SM, Viner NJ, Matharu P, Lowrey PA, Wraith DC. Influence of a dominant cryptic epitope on autoimmune T cell tolerance. Nat Immunol. 2002; 3(2):175-81.
    40. Sigmund K, Nowak MA. Tides of tolerance. Nature. 2001;414 (6862):403, 405.
    41. Shortman K, Heath WR. Immunity or tolerance? That is the question for dendritic cells. Nat Immunol. 2001;2(11):988-9.
    42. CranmeLD r, Trevor KT, Hersh EM. Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol Immunother, 2004; 53(4): 275-306.
    43. Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med, 2000; 6(3): 332-336.
    44. Steinman RM, Pope M. Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest, 2002; 109: 1519-1526.
    45. Morisaki T, Matsumoto K, Onishi H, et al. Dendritic cell-based combined immunotherapy with autologous tumor-pulsed dendritic cell vaccine and activated Tcells for cancer patients: rationale, current progress, and perspectives. Hum Cell, 2003; 16(4): 175-182.
    46. CY Wang, AM Walfield, X Fang, B Hammerberg, J Ye, ML LI, F shen, M shen, et al. Synthetic IgE peptide vaccine for immunotherapy of allergy. Vaccine, 2003; 21(15): 1580-1590.
    47. C Alexander, AB Kay, and M Larche. Peptide-based vaccines in the treatment of specific allergy. Curr Drug Targets Inflamm Allergy, 2002; 1(4): 353-361.
    48. AW Zuercher, SM Miescher, M Vogel, MP Rudolf, MB stadler, and BM Stadler. Oral anti-IgE immunization with epitope-displaying phage. Eur J immunol, 2000; 30(1): 128-135.
    49. Kornberg TB, Krasnow MA. The Drosophila genome sequence: implications for biology and medicine. Science, 2000, 287:2218-2220.
    50. Gregor PD, Wolchok JD, Turaga V, Latouche JB, Sadelain M, Bacich D, Heston WD, Houghton AN, Scher HI. Induction of auto-antibodies to syngeneic prostate-specific membrane antigen by xenogeneic vaccination. Int J Cancer, 2005; 116(3): 415-421
    51. Roopa S, Jedd DW. Tumor antigens for cancer immunotherapy: therapeutic potential of xenogeneic DNA vaccines. J Transl Med, 2004, 2(1): 12-23
    52. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel1 RS. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000; 105: 15-18
    53. Bocci G, Nicolaou KC, Kerbel RS. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective anti-angiogenic window for various chemotherapeutic drugs. Cancer Res 2002; 62: 6938-6943
    54. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O'Reilly MS, Folkman J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res , 2000; 60: 1878-1886
    55. Sweeney CJ, Miller KD, Sissons SE, Nozaki S, Heiman DK, Shen J, Sledge GW. Theantiangiogenic property of docetaxel is synergistic wtih a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxysetradiol but antagonized by endothelial growth factors. Cancer Res, 2001; 61: 3369–3372
    56. Bruns CJ, Shrader M, Harbison MT, Portera C, Solorzano CC, Jauch KW, Hicklin DJ, Radinsky R, Ellis LM. Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int J Cancer. 2002;102: 101-108
    57. J.萨姆布鲁克, E.F.弗里奇, T.曼尼阿蒂斯著.金冬雁,等,译.分子克隆实验指南(第二版).北京:科学出版社,1999年
    58. Fischer B, Sumner I. Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in E.coli as inclusion bodies. Biotech Bioeng,1993; 41(1):96-101.
    59. Weltzin R, Guy B,Thomas WD Jr, Giannasca PJ, Monath TP. Parenteral adjuvant activities of Escherichia coli heat-labile toxin and its B subunit for immunization of mice against gastric Helicobacter pylori infection. Infect Immun, 2000,68(5): 2775-2782
    60. Blezinger P, Wang J, Gondo M, Quezada A, Mehrens D, French M, Singhal A, Sullivan S, Rolland A, Ralston R, Min W. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat Biotechnol,1999; 17: 343–348.
    61. Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods. 1983; 65: 109-121.
    62. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature, 1994, 367:576-579.
    63. Marin V, Kaplanski G, Gres S, Farnarier C, Bongrand P. Endothelial cell culture:protocol to obtain and cultivate human umbilical endothelial cells. J Immunol Methods, 2001. 254: 183-190.
    64. Wild R, Ramakrishnan S, Sedgewick J, Griffioen AW. Quantitative assessment of angiogenesis and tumor vessel architecture by computerassisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density. Microvasc Res, 2000; 59: 368-376
    65. Dings RP, Yokoyama Y, Ramakrishnan S, Griffioen AW, Mayo KH. The designed angiostatic peptide anginex synergistically improves chemotherapy and antiangiogenesis therapy with angiostatin. Cancer Res, 2003; 63:382–385.
    66. Schwartz RH. T cell clonal anergy. Curr Opin Immunol, 1997, 9 : 351-357.
    67. Romagnani S. The Th1/Th2 paradigm. Immunol Today; 1997, 18: 263-266.
    68. De Silva HD, Van Driel IR, La Gruta N, et al. CD4+T cells, but not CD8+T cells, are required for the development of experimental autoimmune gastritis. Immunology, 1998; 93: 405-408.
    69. Pardoll DM. Inducing autoimmune disease to treat cancer. Proc Natl Acad Sci U S A, 1999; 96(10):5340-5342
    70. Overwijk WW, Lee DS, Surman DR, et al. Vaccination with a recombinant vaccinia virus encoding a "self" antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4 (+) T lymphocytes. Proc Natl Acad Sci USA, 1999;96: 2982-2987.
    71. Kumar V, Stellrecht K, Sercarz E. Inactivation of T cell receptor peptide-specific CD4 regulatory T cells induces chronic experimental autoimmune encephalomyelitis (EAE). J Exp Med,1996 , 184: 1609-1617.
    72. Hertel LW, Boder GB, Kroin JS, Rinzel SM, Poore GA, Todd GC, G rindey GB. Evaluation of the antitumor activity of gemcitabine (2-2-difluoro-2-deoxycytidine). Cancer Res, 1990; 50: 4417-4422
    73. Jiang PH, Sawabu N. Effect of gemcitabine on the expression of apoptosis-relatedgenes in human pancreatic cancer cells. World J Gastroenterol, 2006; 12: 1597-1602
    74. Van Moorsel CJA, Peters GJ, Pinedo HM. Gemcitabine: Future Prospects of Single-Agent and Combination Studies .The Oncologist, 1997;2:127–134.
    75. Van Moorsel CJA, Pinedo HM, Veerman G, Vermorken JB, Postmus PE, Peters GJ. Scheduling of gemcitabine and cisplatin in Lewis lung tumour bearing mice. Eur J Cancer, 1999;35:808-814
    1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285: 1182-1186.
    2. Risau W. Mechanism of angiogenesis. Nature,1997 ; 386:671–674.
    3. Marx J. Tumor angiogenesis. Gene expression patterns identified. Science, 2000; 289(5482):1121-1122.
    4. Frank AS. Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol, 2002, 20: 3906~3927
    5. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest. 2001;108(5):669-678.
    6. Barinaga M. Angiogenesis research. Cancer drugs found to work in new way. Science. 2000; 288 (5464):245.
    7. Rosen L. Antiangiogenic strategies and agents in clinical trials. Oncologist. 2000; 5(Suppl 1): 20-27.
    8. Folkman J, Beckner K. Angiogenesis imaging. Acad Radiol. 2000; 7(10):783-5.
    9. Sivridis E. Angiogenesis and endometrial cancer. Anticancer Res.2001; 21(6B):4383-8.
    10. Bikfalvi A, Bicknell R. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting. Trends Pharmacol Sci, 2002, 23(12): 576-582
    11. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculatrue in mouse model. Science, 1998, 279:377-380
    12. Scappaticci FA. Mechanisms and Future Directions for Angiogenesis-Based Cancer Therapies. J Clin Oncol., 2002, 20(18): 3906-3927
    13. Klint P, Claesson-Welsh L. Signal transduction by fibroblast growth factor receptors. Front Biosci, 1999, 4:165-177
    14. Mason JC, Lidington EA, Ahmad SR, Haskard DO. bFGF and VEGF synergistically enhance endothelial cytoprotection via decay-accelerating factor induction. Am J Physiol Cell Physiol. 2002; 282 (3):C578-587.
    15. Powers CJ, Mcleskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endoc Relat Cancer, 2000,7(3):165-197
    16. Plum SM, Holaday JW, Ruiz A, Madsen JW, Fogler WE, Fortier AH. Administration of a liposomal FGF-2 peptide vaccine leads to abrogation of FGF-2-mediated angiogenesis and tumor development. Vaccine, 2000,19(9-10):1294-1303
    17. L.M. Ellis, W. Liu, S.A. Ahmad, F. Fan, Y.D. Jung, R.M. Shaheen, N. Reinmuth. Overview of angiogenesis: biologic implications for antiangiogenic therapy. Semin Oncol. 2001.28:94-104.
    18. I.F. Lissbrant, E. Lissbrant, J.E. Damber, A. Bergh.Blood vessels are regulators of growth, diagnostic markers and therapeutic targets in prostate cancer. Scand J Urol Nephrol. 2001; 35: 437-452.
    19. Skoldenberg EG, Christiansson J, Sandstedt B, Larsson A, Lackgren G, Christofferson R. Angiogenesis and angiogenic growth factors in Wilms tumor. J Urol. 2001; 165: 2274-2279.
    20. H.Saito, S. Tsujitani. Angiogenesis, angiogenic factor expression and prognosis of gastric carcinoma. Anticancer Res. 2001. 21:4365-6372.
    21. Huang, X., C. Yu, C. Jin, M. Kobayashi, C.A. Bowles, F. Wang, and W.L. McKeehan. Ectopic activity of FGFR-1 in hepatocytes accelerates hepatocarcinogenesis by driving proliferation and VEGF-induced angiogenesis. Cancer Res, 2006; 66: 1481-1490.
    22. Zhang Y, Lin Y, Bowles C, Wang F. Direct cell cycle regulation by the fibroblast growth factor feceptor (FGFR) kinase through phosphorylation-dependent release of cks1 from FGFR substrate 2. J Biol Chem, 2004; 279(53): 55348 - 55354.
    23. Okada-Ban M, Thiery JP, Jouanneau J, et al. Fibroblast growth factor-2. Int Biochem, 2000, 32(3): 263-267
    24. Zhang Y, Lin Y, Bowles C, Wang F. Direct cell cycle regulation by the fibroblast growth factor feceptor (FGFR) kinase through phosphorylation-dependent release of cks1 from FGFR substrate 2. J Biol Chem, 2004; 279(53): 55348 - 55354.
    25. Chaudhuri MM, Moscatelli D, Basilico C. Involvement of the conserved acidic amino acid domain of FGF receptor 1 in ligand-receptor interactions. J Cell Physiol, 1993, 157: 209-216
    26. Cross MJ, Lu L, Magnusson P, Nyqvist D, Holmqvist K, Welsh M, Claesson-Welsh L. The Shb adaptor protein binds to tyrosine 766 in the FGFR-1 and regulates the Ras/MEK/MAPK pathway via FRS2 phosphorylation in endothelial cells. Mol Biol Cell,2002; 13: 2881–2893
    27. B Gowardhan, D A Douglas, M E Mathers, A B McKie, S R C McCracken, C N Robson and H Y Leungv. Evaluation of the fibroblast growth factor system as a potential target for therapy in human prostate cancer. British Journal of Cancer, 2005; 92:320-327.
    28. J. Partanen, S. Vainikka, K. Alitalo. Structural and functional specificity of FGF receptors. Biol. Sci. 1993. 340: 297-303.
    29. Plothikov AN, Schlessinger J, Hubbard SR, et al. Structural basis for FGF receptor dimerization and activation. Cell,1999; 98 : 641.
    30. Anne Hanneken. Structural Characterization of the circulating souble FGF receptors reveals multiple isoforms generated by secretion and ectodomain shedding. FEBS Letters, 2001, 489 :176.
    31. Lee PL, Johnson DE, Cousens LS, Fried VA, Williams LT. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science, 1989. 245: 57-60
    32. Hubbard SR. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 1997.16:5572-5581
    33. Hagedorn M, Bikfalvi A. Target molecules for anti-angiogenic therapy: from basicresearch to clinical trials. Crit Rev Oncol:Hematol. 2000, 34: 89~110
    34. Terracio L, Ronnstrand L, Tingstrom A, et al. Induction of platelet-derived growth factor receptor expression in smooth muscle cells and fibroblasts upon tissue culturing. J. Cell. Biol. 1998;107: 1947-1957
    35. K. G. Peters, S. Werner, G. Chen, L.T. Williams. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 1992. 114: 233-243.
    36. Mohammadi M, Dionne CA, Li W, Li N, Spivac T, Honegger AM, Jaye M, Schlessinger J. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 1992.358: 681-684
    37. Huang J, Mohammadi M, Rodrigues G.A, et al. Reduced activation of RAF1 and MAP kinase by a fibroblast growth factor receptor mutant deficient in stimulation of phosphatidylinositol hydrolysis. J Biol Chem. 1995.270: 5065-5072
    38. X. Zhan, C. Plourde, X. Hu, R. Friesel, T. Maciag. Association of fibroblast growth factor receptor1 with c-Src correlates with association between c-Src and cortactin. J Biol Chem, 1994.269: 20221-20224
    39. Kouhara H, Hadari YR, Spivak-Kroizman T, et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997.89: 693-702
    40. H. Xu, K. W. Lee, M. Goldfarb. Novel recognition motif on fibroblast growth factor receptor mediates direct association and activation of SNT adapter proteins. J Biol Chem,1998.273:17987-17990
    41. Goh KC, Lim YP, Ong SH, Siak CB, Cao X, Tan YH, Guy GR. Identi-fication of p90, a prominent tyrosine-phosphorylated protein in fibroblast growth factor-stimulated cells, as 80K-H. J Biol Chem. 1996. 271: 5832-5838
    42. C. J. Marshall. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1998. 80:179-185
    43. van Weering DH, de Rooij J, Marte B, Downward J, Bos JL, Burgering BM. Protein kinase B activation and lamellipodium formation are independent phosphoinositide 3-kinase-mediated events differentially regulated by endogenous Ras. Mol. Cell. Biol. 1998.18: 1802-1811
    44. Saxton TM, Henkemeyer M, Gasca S, et al. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp2. EMBO J. 1999.16: 2352-2364
    45. Plopper G.E, McNamee HP, Dike LE, Bojanowski K, Ingber DE. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell, 1995. 6:1349-1365
    46. Schlessinger J. Regulation of growth factor activation by proteoglycans: What is the role of the low affinity receptors? Cell.1995. 83: 357-360
    47. Guimond SE, Jeremy E , Turnbull. Fibroblast growth factor receptor signaling is dictated by specific heparan sulphate saccharides. Current Biology,1999, 9 :1343.
    48. Landgren E, Klint P, Yokote K, Claesson-Welsh L. Fibroblast growth factor receptor1 mediates chemotaxis independently of direct SH2-domain protein binding. Oncogene, 1998. 17: 283-291
    49. Carl-Henrik Heldin. Dimerization of Cell Surface Receptors in signal transduction. Cell ,1995 ,80 :213
    50. Pascal SM, Singer AU, Gish G, et al. Nuclear Magnetic Resonance Structure of an SH2 Domain of Phospholipase C-γ1 Complexed with a High Affinity Binding Peptide. Cell, 1994, 77 :461.
    51. Vainikka S, Joukov V, Klint P, et al. Association of a 85-kDa serine kinase with activated fibroblast growth factor receptor 4. J Biol Chem, 1996. 271: 1270-1273
    52. Boilly B, Vercoutter-Edouart AS, H Hondermarck, et al. FGF signals for cell proliferation and migration through different pathways. Cytokine & Growth Factor Reviews, 2000, 2 :295.
    53. Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases. Cell, 2000,103 :211.
    54. Kisseleva T, Bhattacharya B, Braunstein J, et al. Signaling through the JAK/ STAT pathway , recent advances and future challenges. Gene, 2002,285 :1.
    55. Maciag T, Friesel RE. Molecular mechanisms of fibroblast growth factor1 traffick, signaling and release. Thromb. Haemost. 1995.74: 411-414
    56. Sutherland D, Samakovlis C, Krasnov MA: branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell .1998.87:1091-1101.
    57. LaVallee TM, Prudovsky IA, McMahon G.A, Hu X, Maciag T. Activation of the MAP kinase pathway by FGF1 correlates with cell proliferation induction while activation of the Src pathway correlates with migration. J Cell Biol,1998.141: 1647-1658
    58. Lin HY, Xu J, Ischenko I, et al. Identification of the cytoplasmic regions of fibroblast growth factor (FGF) receptor 1 which plays important roles in induction of meurite outgrowth in PC12 cells by FGF1. Mol. Cell. Biol. 1998.18: 3762-3770.
    59. Deng CX, Wynshaw-Boris A, Shen MM, et al. Leder. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev. 1994. 8: 3045-3057
    60. Deng C, Bedford M, Li C, Xu X, Yang X, Dunmore J, Leder P. Fibroblast growth factor receptor1 (FGFR-1) is essential for normal neural tube and limb development. Dev. Biol. 1997.185: 42-54.
    61. Arman E, Haffner-Krauz R, Chen Y, Heath JK, Lonai P. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc. Natl. Acad. Sci USA 1998. 95: 5082-5087.
    62. Werner S, Weinberg W, Liao X, et al. Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and diferentiation. EMBO J, 1993.12 2635-2643.
    63. Celli G., LaRochelle WJ, Mackem S, et al. Soluble dominant-negative receptoruncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO.J .1998. 17: 1642-1655
    64. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000.407:249-257.
    65. Simon R, Richter J, Wagner U. High-throughput tissue microarray analysis of 3p25 (RAF1) and 8p12 (FGFR-1) copy number alterations in urinary bladder cance. Cancer Res. 2001; 61:4514-4519.
    66. B Kwabi-Addo, M Ozen, and M Ittmann. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer, 2004; 11(4): 709 - 724.
    67. Wang F, McKeehan K, Yu CD, McKeehan WL. Fibroblast Growth Factor Receptor 1 Phosphotyrosine 766 Molecular Target for Prevention of Progression of Prostate Tumors to Malignancy. Cancer Res,2002; 62(6): 1898-1903
    68. Udayakumar TS, Klein RD, Maliner MS, Nagle RB, Bowden GT. Aberrant expression of fibroblast growth factor receptor-1 in prostate epithelial cells allows induction of promatrilysin expression by fibroblast growth factors. Int J Cancer, 2001, 91(2):187-192
    69.许会彬,张代民,曹英林.碱性成纤维细胞生长因子及受体与肿瘤的关系的研究进展.国外医学(临床生物化学与检验学分册). 2005 , 26(9):635-637,640
    70. Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M. Crystal structures of two FGF-FGFR complexes reveal the determinans of ligand receptor specificity. Cell, 2000;101:413-424
    71. Doukas J, Blease K, Cralg D. Delivery of FGF Genes to Wound Repair Cell Enhances Arteriogenesis and Myogenesis in Skeletal Muscle. Molecular Therapy, 2002 , 5 (5) : 517.
    72. Frank AS. The therapeutic potential of novel antiangiogenic therapies. Expert Opin Investig Drugs, 2003, 6:923~932
    73. Rosenberg SA. Progress in human tumor immunology and immunotherapy. Nature,2001, 411: 380–384
    74. Aigner A, Renneberg H, Bojunga J. Ribozyme-targeting of a secreted FGF-binding protein (FGF-BP) inhibits proliferation of prostate cancer cells in vitro and in vivo. Oncogene, 2002, 21(37): 5733-5742.
    75. Linderholm BK, Lindh B, Beckman L. Prognostic correlation of basic fibroblast growth factor and vascular endothelial growth factor in 1307 primary breast cancers. Clin Breast Cancer, 2003, 4(5):340-347.
    76. Huang X., Yu C, Jin C, Kobayashi M, Bowles CA, Wang F, McKeehan WL. Ectopic activity of FGFR-1 in hepatocytes accelerates hepatocarcinogenesis by driving proliferation and VEGF-induced angiogenesis. Cancer Res, 2006; 66: 1481-1490.
    1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285: 1182-1186.
    2. Risau W. Mechanism of angiogenesis. Nature, 1997; 386:671–674.
    3. Marx J. Tumor angiogenesis. Gene expression patterns identified. Science, 2000; 289(5482):1121-1122.
    4. Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med, 1999; 5: 1359–64.
    5. Bellamy WT, Richter L, Grogan TM. Expression of vascular endothelial growth factor and its receptors in haematopoietic malignances. Cancer Res, 1999, 59:728-723.
    6. Perez-Atayde AR., Sallan SE, Tedrow U, et al. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol, 1997, 150: 815.
    7. Vacca A, Ribatti D, Roncali, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Hematology, 1994, 87:503-508.
    8. Folkman J. Angiogenesis-dependent diseases. Semin Oncol, 2001; 28: 536-542
    9. Dankbar B, Padro T, Leck, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interaction in multiple myeloma. Blood, 2001; 95:2030-2036.
    10. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC.Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest. 2001; 108(5):669-678.
    11. Barinaga M. Angiogenesis research. Cancer drugs found to work in new way. Science. 2000; 288 (5464):245.
    12. Rosen L. Antiangiogenic strategies and agents in clinical trials. Oncologist. 2000; 5(Suppl 1): 20-27.
    13. Folkman J, Beckner K. Angiogenesis imaging. Acad Radiol. 2000; 7(10):783-785.
    14. Sivridis E. Angiogenesis and endometrial cancer. Anticancer Res 2001; 21(6B):4383-4388.
    15. Huang X, Wong MK, Yi H, et al. Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, and the immunostimulator B7.2-IgG fusion protein. Cancer Res 2002 ,62(20) :572725735.
    16. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel1 RS. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000; 105: 15-18
    17. Bocci G, Nicolaou KC, Kerbel RS. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective anti-angiogenic window for various chemotherapeutic drugs. Cancer Res 2002; 62: 6938-6943
    18. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O'Reilly MS, Folkman J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res , 2000; 60: 1878-1886
    19. Sweeney CJ, Miller KD, Sissons SE, Nozaki S, Heiman DK, Shen J, Sledge GW. The antiangiogenic property of docetaxel is synergistic wtih a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxysetradiol but antagonized by endothelial growth factors. Cancer Res, 2001; 61: 3369–3372
    20. Bruns CJ, Shrader M, Harbison MT, Portera C, Solorzano CC, Jauch KW, Hicklin DJ, Radinsky R, Ellis LM. Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int J Cancer. 2002;102: 101-108
    21. Kim KJ, Li B, Houck K, et al. The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Fact 1992, 7: 53~64
    22. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature1993, 362(6423): 841~844
    23. Asano M, Yukita A, Suzuki H. Wide spectrum of antitumor activity of a neutralizing monoclonal antibody to human vascular endothelial growth factor. Jpn J Cancer Res 1999, 90: 93~100
    24. Koichi T, Hikaru U, Yoichi N, et al. Suppression of tumor angiogenesis and growth by gene transfer of a soluble form of vascular endothelial growth factor receptor into a remote organ. Cancer Res 2000, 60: 2169~2177
    25. Lin P L, Jake A B, Ann A, et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc. Natl. Acad. Sci. USA 1998, 95:8829~8834
    26. Okada-Ban M, Thiery JP, Jouanneau J, et al. Fibroblast growth factor-2. Int Biochem, 2000, 32(3): 263-267
    27. Zhang Y, Lin Y, Bowles C, Wang F. Direct cell cycle regulation by the fibroblast growth factor feceptor (FGFR) kinase through phosphorylation-dependent release of cks1 from FGFR substrate 2. J Biol Chem, 2004; 279(53): 55348 - 55354.
    28. Chaudhuri MM, Moscatelli D, Basilico C. Involvement of the conserved acidic amino acid domain of FGF receptor 1 in ligand-receptor interactions. J Cell Physiol, 1993, 157: 209-216
    29. Cross MJ, Lu L, Magnusson P, Nyqvist D, Holmqvist K, Welsh M, Claesson-Welsh L. The Shb adaptor protein binds to tyrosine 766 in the FGFR-1 and regulates the Ras/MEK/MAPK pathway via FRS2 phosphorylation in endothelial cells. Mol Biol Cell,2002; 13: 2881–2893
    30. Gowardhan B, Douglas DA, Mathers ME, McKie AB, McCracken SRC, Robson CN, Leungv HY. Evaluation of the fibroblast growth factor system as a potential target for therapy in human prostate cancer. British Journal of Cancer, 2005; 92:320-327.
    31. Plum SM, Holaday JW, Ruiz A, et al. Administration of a liposomal FGF-2 peptidevaccine leads to abrogation of FGF-2-mediated angiogenesis and tumor development. Vaccine 2000, 19: 1294~1303
    32. Ferrara N, and Terri DS. The biology of vascular endothelial growth factor. Endocr Rev1997, 18: 4~25
    33. Marie P, James H, Li Y W, et al. Antivascular endothelial growth factor receptor (Fetal Liver Kinase 1)monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 1999, 59: 5209~5218
    34. Niederman TMJ, Ghogawala Z, Carter BS, et al. Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proc Natl Acad Sci USA 2002, 99(10): 7009~7014
    35. Valesky M, Spang AJ, Fisherv GW, Farkas DL, Becker D. Noninvasive dynamic fluorescence Imaging of human melanomas reveals that targeted Inhibition of bFGF or FGFR-1 in melanoma cells blocks tumor growth by apoptosis. Molecular Medicine, 2002; 8(2): 103-111
    36. Wang F, McKeehan K, Yu CD, McKeehan WL. Fibroblast Growth Factor Receptor 1 Phosphotyrosine 766 Molecular Target for Prevention of Progression of Prostate Tumors to Malignancy. Cancer Res,2002; 62(6): 1898-1903
    37. Udayakumar TS, Klein RD, Maliner MS, Nagle RB, Bowden GT. Aberrant expression of fibroblast growth factor receptor-1 in prostate epithelial cells allows induction of promatrilysin expression by fibroblast growth factors. Int J Cancer, 2001, 91(2):187-192
    38. Hackel PO, Zwick E, Prenzel N, et al. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 1999, 11:184~189
    39. Gleave ME, Hsieh JT, Wu HC, et al. Epidermal growth factor receptor-mediated autocrine and paracrine stimulation of human transitional cell carcinoma. Cancer Res 1993, 53: 5300~5307
    40. Takashi K, Paul S, Joel W S, et al. Inhibition of angiogenesis by the antiepidermalgrowth factor receptor antibody ImClone C225 in androgen-independent prostate cancer growing orthotopically in nude mice. Clini Cancer Res 2002, 8: 1253~1264
    41. Brooks PC, Stromblad S, Klemke R, et al. Anti-integrinαvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995, 96(4):1815~1822
    42. Friedlander M, Brooks PC, Shaffer RW, et al. Definition of two angiogenic pathways by distinct a v integrins. Science1995, 270(5241):1500~1502
    43. Brooks PC, Stromblad S, Sanders LC, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrinαvβ3. Cell 1996, 85(5): 683~693
    44. John CG, Thomas NC, Paul RP, et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrinαvβ3. Clin Cancer Res 2000, 6: 3056~3061
    45. Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 1996, 61: 514~523
    46. Liao F, Li Y, O’Connor W, et al. Monoclonal antibody to vascular endothelial (VE)-cadherin is a potent inhibitor of angiogenesis, tumor growth and metastasis. Cancer Res2000, 60: 6805~6810
    47. Monica C, Lucia Z, Fabrizio O, et al. A monoclonal antibody to vascular endothelial–cadherin inhibits tumor angiogenesis without side effects on endothelial permeability.Blood 2002, 100: 905~911
    48. Chiarug V, Ruggiero M, Magnelli L. Angiogenesis and the unique nature of tumor matrix. Mol Biotechnol 2002 ,21 (1) :85.
    49. Yokoyama M, Ochi K, Ichimura M, et al . Matrix metalloproteinase22 in pancreatic juice for diagnosis of pancreatic cancer. Pancreas 2002 ,24 (4) :344.
    50. 0’Reilly MS, Boehm T, Shing Y, et al. Endostatin:an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997, 88 (2) :277-285.
    51. Hohenester E, Sasaki T ,Olsen BR, et al . Crystal structure of angiogenesis inhibitorendostatin at 1.5A resolution. EMB0 J 1988, 17 ( 6) :1656.
    52. Dhanabal M, Ram chandran R ,Waterm an MJ ,et al . Endostatin induces endothelial cell apotosis. J Biol Chem 1999, 274 ( 17) : 11721-11726.
    53. Dixelius J, Larsson H, Sasaki T, et al . Endostatin induced tyrosine kinase signaling through the adaptor protein in requlates endothelial cell apoptosis.Blood 2000,95 (11) :3403-3411.
    54. Perletti A, Concari P, Giardini R, et al . Antitumor activity of endostatin against carcinogen-induced rat primary mammary tumors.CancerRes 2000, 60(7) :1793-1796.
    55. Nishinmoli H, Shiratsuchi T, Urano T, et al. A novel brain-specific p53 target gene, BAIl, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 1997, 15(18) :2145-2150.
    56. Zhihua W, Zhiqing Z. Expression and anti-angiogenesis of BAIl gene in intestine cancer cells. Journal of practical oneology 2003 ,17(l) :18-20
    57. Grossman Z, Paul WE. Self-tolerance: context dependent tuning of T cell antigen recognition. Semin Immunol.;12 (3):197-203; discussion 257-344.
    58. Mor G, Eliza M. Plasmid DNA vaccines. Immunology, tolerance, and autoimmunity. Mol Biotechnol. 2001; 19 (3):245-50.
    59. Anderton SM, Viner NJ, Matharu P, Lowrey PA, Wraith DC. Influence of a dominant cryptic epitope on autoimmune T cell tolerance. Nat Immunol. 2002; 3(2):175-81.
    60. Sigmund K, Nowak MA. Tides of tolerance. Nature. 2001;414 (6862):403, 405.
    61. Shortman K, Heath WR. Immunity or tolerance? That is the question for dendritic cells. Nat Immunol. 2001;2(11):988-9.
    62. Boon T, Coulie PG, Van den Eynde B. Tumor antigens recognized by T cells. Immunol Today. 1997 ;18(6):267-268.
    63. Rosenberg SA. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today. 1997;18(4):175-182.
    64. Houghton AN, Scheinberg DA. Monoclonal antibody therapies-a 'constant' threat tocancer. Nat Med. 2000;6(4):373-374.
    65. Haupt K, Roggendorf M, Mann K.The potential of DNA vaccination against tumor-associated antigens for antitumor therapy. Exp Biol Med (Maywood). 2002 ;227(4):227-37.
    66. Cranme LD, Trevor KT, Hersh EM. Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol Immunother, 2004; 53(4): 275-306.
    67. Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med, 2000; 6(3): 332-336.
    68. Steinman RM, Pope M. Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest, 2002; 109: 1519-1526.
    69. Morisaki T, Matsumoto K, Onishi H, et al. Dendritic cell-based combined immunotherapy with autologous tumor-pulsed dendritic cell vaccine and activated T cells for cancer patients: rationale, current progress, and perspectives. Hum Cell, 2003; 16(4): 175-182.
    70. CY Wang, AM Walfield, X Fang, B Hammerberg, J Ye, ML LI, F shen, M shen, et al. Synthetic IgE peptide vaccine for immunotherapy of allergy. Vaccine, 2003; 21(15): 1580-1590.
    71. Alexander C, Kay AB, Larche M. Peptide-based vaccines in the treatment of specific allergy. Curr Drug Targets Inflamm Allergy, 2002; 1(4): 353-361.
    72. Zuercher AW, Miescher SM, Vogel M, Rudolf MP, stadler MB, Stadler BM. Oral anti-IgE immunization with epitope-displaying phage. Eur J immunol, 2000; 30(1): 128-135.
    73. Kornberg TB, Krasnow MA. The Drosophila genome sequence: implications for biology and medicine. Science, 2000, 287:2218-2220.
    74. Gregor PD, Wolchok JD, Turaga V, Latouche JB, Sadelain M, Bacich D, Heston WD, Houghton AN, Scher HI. Induction of auto-antibodies to syngeneic prostate-specificmembrane antigen by xenogeneic vaccination. Int J Cancer, 2005; 116(3): 415-421
    75. Roopa S, Jedd DW. Tumor antigens for cancer immunotherapy: therapeutic potential of xenogeneic DNA vaccines. J Transl Med, 2004, 2(1): 12-23
    76. Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nature Med 2002, 8: 1369~1375

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700